On the evolutionary dynamics of virulence

Barbara Boldin

Department of Mathematics and Statistics University of Helsinki

3rd Nordic EWM Summer School Turku, June 2009

"Given enough time, a state of peaceful coexistence eventually becomes established between any host and parasite."

R. Dubos, 1965

"Given enough time, a state of peaceful coexistence eventually becomes established between any host and parasite."

R. Dubos, 1965

Definition.

Harm done to the host \equiv infection induced death rate \equiv virulence

"Given enough time, a state of peaceful coexistence eventually becomes established between any host and parasite."

R. Dubos, 1965

Definition.

Harm done to the host \equiv infection induced death rate \equiv virulence

Some pathogens (e.g. common cold virus) virtually harmless while others (e.g. ebola) almost always lethal.

"Given enough time, a state of peaceful coexistence eventually becomes established between any host and parasite."

R. Dubos, 1965

Definition.

Harm done to the host \equiv infection induced death rate \equiv virulence

Some pathogens (e.g. common cold virus) virtually harmless while others (e.g. ebola) almost always lethal.

Question.

Is observed virulence an intermediate step in evolution towards avirulence? Can evolution towards nonzero virulence be explained?

Epidemiological dynamics

SI model (S \equiv susceptible, I \equiv infected):

$$\frac{dS}{dt} = b - \beta SI - dS,$$

$$\frac{dI}{dt} = \beta SI - (d + \alpha)I.$$

Epidemiological dynamics

SI model (S \equiv susceptible, I \equiv infected):

$$\begin{aligned} \frac{dS}{dt} &= b - \beta SI - dS, \\ \frac{dI}{dt} &= \beta SI - (d + \alpha)I. \end{aligned}$$

Steady states:

- ▶ Disease free equilibrium $\bar{I} = 0, \bar{S} = \frac{b}{d}$,
- ▶ Endemic equilibrium $\hat{S} = \frac{d+\alpha}{\beta}$, $\hat{I} = \frac{b}{d+\alpha} \frac{d}{\beta}$ is biologically meaningful when the **basic reproduction ratio**

$$\mathcal{R}_0 = \frac{b\beta}{d(d+\alpha)} > 1.$$

When the endemic equilibrium exists it is globally asymptotically stable.

The basic notions of Adaptive Dynamics

s(x, y) := the growth rate of a mutant with trait y introduced into the environment set by x

Then:

- if s(x, y) < 0 the mutant will go extinct,
- if s(x, y) > 0 the mutant will grow.

Singular strategy:

$$\frac{\partial s}{\partial y}|_{y=x}=0$$

Top: uninvadable SS (ESS) **Bottom:** invadable SS

Pairwise invasibility plot (PIP):

Plot the sign of s(x, y) for all feasible pairs (x, y) of (resident, mutant) trait values.

Black: s(x, y) < 0

White: s(x, y) > 0

Examples:

Top:

- \triangleright x^* is a CSS (convergent stable ESS),
- $ightharpoonup \bar{x}$ is an invadable repellor

Bottom: x^* is a branching point.

Evolution of virulence: single infection model

Assumption: complete cross immunity between strains.

Evolution of virulence: single infection model

Assumption: complete cross immunity between strains.

$$\frac{dS}{dt} = b - \beta S I_r - \beta S I_m - dS$$

$$\frac{dI_r}{dt} = \beta S I_r - (d + \alpha_r) I_r$$

$$\frac{dI_m}{dt} = \beta S I_m - (d + \alpha_m) I_m$$

Evolution of virulence: single infection model

Assumption: complete cross immunity between strains.

$$\frac{dS}{dt} = b - \beta S I_r - \beta S I_m - dS$$

$$\frac{dI_r}{dt} = \beta S I_r - (d + \alpha_r) I_r$$

$$\frac{dI_m}{dt} = \beta S I_m - (d + \alpha_m) I_m$$

Invasion exponent

$$s(\alpha_r, \alpha_m) = \beta \hat{S}(\alpha_r) - (d + \alpha_m)$$

determines the fate of a mutant:

- if $s(\alpha_r, \alpha_m) < 0$, the mutant will go extinct,
- if $s(\alpha_r, \alpha_m) > 0$, the mutant will grow.

Since
$$\hat{S}(\alpha) = \frac{d+\alpha}{\beta}$$
 and $\mathcal{R}_0(\alpha) = \frac{b\beta}{d(d+\alpha)}$ we find
$$s(\alpha_r, \alpha_m) > 0 \iff \hat{S}(\alpha_r) > \hat{S}(\alpha_m) \iff \mathcal{R}_0(\alpha_r) < \mathcal{R}_0(\alpha_m).$$

Since
$$\hat{S}(\alpha) = \frac{d+\alpha}{\beta}$$
 and $\mathcal{R}_0(\alpha) = \frac{b\beta}{d(d+\alpha)}$ we find
$$s(\alpha_r, \alpha_m) > 0 \iff \hat{S}(\alpha_r) > \hat{S}(\alpha_m) \iff \mathcal{R}_0(\alpha_r) < \mathcal{R}_0(\alpha_m).$$

Strategies that (locally) maximize

$$\mathcal{R}_0(\alpha) = \frac{b\beta}{d(d+\alpha)}$$

are convergent stable and uninvadable (CSS).

Top: If α and β independent

$$s(\alpha_r, \alpha_m) = \alpha_r - \alpha_m \Rightarrow$$

mutant successful if it decreases virulence ⇒ evolution towards avirulence (conventional evolutionary wisdom)

Bottom: Trade-off hypothesis pathogens aim to increase transmission to new hosts but cannot do so without harming the host, $\beta = \beta(\alpha)$. \Rightarrow CSS at a (local) maximum of

$$\mathcal{R}_0 = \frac{b\beta(\alpha)}{d(\alpha+d)}.$$

Hosts can deal with multiple infections in several ways:

Hosts can deal with multiple infections in several ways:

Single infection model: Assumes complete cross immunity. A host infected by one strain is protected from further infections.

Hosts can deal with multiple infections in several ways:

Single infection model: Assumes complete cross immunity. A host infected by one strain is protected from further infections.

Coinfection: Dynamic coexistence of traits. A host infected with a resident strain r that is reinfected by a mutant m will become a host infected with strains r and m (in the long run, of course, the host may revert to being infected with only one strain).

Hosts can deal with multiple infections in several ways:

Single infection model: Assumes complete cross immunity. A host infected by one strain is protected from further infections.

Coinfection: Dynamic coexistence of traits. A host infected with a resident strain r that is reinfected by a mutant m will become a host infected with strains r and m (in the long run, of course, the host may revert to being infected with only one strain).

Superinfection: Assumes fast within-host dynamics. Immediately after the introduction of a mutant, the system is in an attractor. For example, if competitive exclusion applies and mutant is the better competitor, the mutant replaces the resident immediately.

Evolution of virulence: superinfection model

$$\frac{dS}{dt} = b - \beta(\alpha_r)SI_r - \beta(\alpha_m)SI_m - dS$$

$$\frac{dI_r}{dt} = \beta(\alpha_r)SI_r - (d + \alpha_r)I_r$$

$$\frac{dI_m}{dt} = \beta(\alpha_m)SI_m - (d + \alpha_m)I_m$$

Evolution of virulence: superinfection model

$$\begin{split} \frac{dS}{dt} &= b - \beta(\alpha_r)SI_r - \beta(\alpha_m)SI_m - dS \\ \frac{dI_r}{dt} &= \beta(\alpha_r)SI_r - (d + \alpha_r)I_r + \Phi(\alpha_m, \alpha_r)I_rI_m \\ \frac{dI_m}{dt} &= \beta(\alpha_m)SI_m - (d + \alpha_m)I_m + \Phi(\alpha_r, \alpha_m)I_rI_m \end{split}$$

Evolution of virulence: superinfection model

$$\begin{aligned} \frac{dS}{dt} &= b - \beta(\alpha_r)SI_r - \beta(\alpha_m)SI_m - dS \\ \frac{dI_r}{dt} &= \beta(\alpha_r)SI_r - (d + \alpha_r)I_r + \Phi(\alpha_m, \alpha_r)I_rI_m \\ \frac{dI_m}{dt} &= \beta(\alpha_m)SI_m - (d + \alpha_m)I_m + \Phi(\alpha_r, \alpha_m)I_rI_m \end{aligned}$$

where

$$\Phi(\alpha_r, \alpha_m) = \beta(\alpha_m)\phi(\alpha_r, \alpha_m) - \beta(\alpha_r)\phi(\alpha_m, \alpha_r).$$

The superinfection function $\phi(\alpha_r, \alpha_m)$ describes the ability of strain α_m to 'take over' a host that is already infected with α_r .

Top left:

Single infection model

Top right:

Discontinuous SF

Bottom left:

Continuous SF

Bottom right:

Differentiable SF

Observations:

- possible branching points, coexistence of strains
- ▶ superinfections push virulence beyond the value that maximizes R₀.

Indeed, invasion exponent is given by :

$$r(\alpha_r, \alpha_m) = \beta(\alpha_m)\hat{S}(\alpha_r) - (d + \alpha_m) + \Phi(\alpha_r, \alpha_m)\hat{I}_r(\alpha_r)$$

= $s(\alpha_r, \alpha_m) + \Phi(\alpha_r, \alpha_m)\hat{I}_r(\alpha_r)$

singular strategies satisfy

$$\frac{\partial r}{\partial \alpha_m}|_{\alpha_m = \alpha_r = \alpha^*} = \frac{\partial s}{\partial \alpha_m}|_{\alpha_m = \alpha_r = \alpha^*} + \frac{\partial \Phi}{\partial \alpha_m}|_{\alpha_m = \alpha_r = \alpha^*} \hat{I}(\alpha^*)$$

and so

$$s'(\alpha^*) < 0.$$

Single infection mode Multiple infections Superinfection model

But ...

▶ Literature reports very little empirical evidence of a trade-off between transmissibilty and virulence.

But ...

- ▶ Literature reports very little empirical evidence of a trade-off between transmissibilty and virulence.
- Phenomenological superinfection functions, not clear how they relate to within-host competition of strains.

Suggestion: Instead of

$$\beta \longleftrightarrow \alpha$$

assume

WH dynamics

Relating within- and between-host dynamics

Model of within-host dynamics:

$$\frac{dT}{dt} = \lambda - kVT - \delta T$$

$$\frac{dT^*}{dt} = kVT - (\mu(p) + \delta)T^*$$

$$\frac{dV}{dt} = pT^* - kVT - cV.$$

Here, $T \equiv \text{uninfected target cells} \ T^* \equiv \text{infected target cells} \ V \equiv \text{free pathogens}$

Evolutionary dynamics in a single infected host

WH model has two equilibria:

- ▶ infection free steady state $(\bar{T}, \bar{T^*}, \bar{V}) = (\frac{\lambda}{\delta}, 0, 0)$
- ▶ a unique nontrivial equilibrium $(\hat{T}, \hat{T}^*, \hat{V})$.

The nontrivial steady state is globally stable when

$$\mathcal{R}_0^w(p) = \frac{k\lambda}{k\lambda + \delta c} \frac{p}{\mu(p) + \delta} > 1.$$

Evolutionary dynamics in a single infected host

WH model has two equilibria:

- infection free steady state $(\bar{T}, \bar{T}^*, \bar{V}) = (\frac{\lambda}{\delta}, 0, 0)$
- ▶ a unique nontrivial equilibrium $(\hat{T}, \hat{T}^*, \hat{V})$.

The nontrivial steady state is globally stable when

$$\mathcal{R}_0^w(p) = \frac{k\lambda}{k\lambda + \delta c} \frac{p}{\mu(p) + \delta} > 1.$$

Adaptive dynamics of p:

$$p_m$$
 invades $p_r \iff \mathcal{R}_0^w(p_m) > \mathcal{R}_0^w(p_r) \iff \hat{T}(p_m) < \hat{T}(p_r)$.

 \Rightarrow evolution in a single infected host minimizes $\hat{\mathcal{T}}$, maximizes \mathcal{R}_0^w .

Describing the dynamics at host population level

$$\begin{aligned} \frac{dS}{dt} &= b - \beta(p)SI_p - \beta(q)SI_q - dS \\ \frac{dI_p}{dt} &= \beta(p)SI_p - (d + \alpha(p))I_p + \Phi(q, p)I_pI_q \\ \frac{dI_q}{dt} &= \beta(q)SI_q - (d + \alpha(q))I_q + \Phi(p, q)I_pI_q, \end{aligned}$$

where

$$\Phi(p,q) = \beta(q)\phi(p,q) - \beta(p)\phi(q,p)$$

and

 $\phi(p,q)=$ the probability with which the trait q, upon transmission to a host already infected by trait p, eliminates p.

$$r_p(q) = \beta(q)\hat{S}(p) - (d + \alpha(q)) + \Phi(p,q)\hat{I}(p).$$

AD depends heavily on the smoothness of the superinfection function in q=p. If

$$r_p(q) = \beta(q)\hat{S}(p) - (d + \alpha(q)) + \Phi(p,q)\hat{I}(p).$$

AD depends heavily on the smoothness of the superinfection function in q=p. If

 $ightharpoonup \phi$ discontinuous: singular strategies are the same as in the WHM, character the same,

$$r_p(q) = \beta(q)\hat{S}(p) - (d + \alpha(q)) + \Phi(p,q)\hat{I}(p).$$

AD depends heavily on the smoothness of the superinfection function in q=p. If

- $ightharpoonup \phi$ discontinuous: singular strategies are the same as in the WHM, character the same,
- ϕ differentiable: singular strategies are the same as in SIM, attracting (repelling) SS in SIM remain attractors (repellors), invadability may change.

$$r_p(q) = \beta(q)\hat{S}(p) - (d + \alpha(q)) + \Phi(p,q)\hat{I}(p).$$

AD depends heavily on the smoothness of the superinfection function in q=p. If

- $ightharpoonup \phi$ discontinuous: singular strategies are the same as in the WHM, character the same,
- $ightharpoonup \phi$ differentiable: singular strategies are the same as in SIM, attracting (repelling) SS in SIM remain attractors (repellors), invadability may change.
- lacktriangledown ϕ continuous (but not differentiable): SS inbetween SIM and WHM.

On the mechanistic derivation of superinfection functions

Explicit submodel of WH dynamics allows us to calculate invasion probability of a mutant strain:

Suppose trait q introduced into environment $\hat{T}(p)$. Probability that strain q produces n new pathogens is

$$\pi_n = \frac{k \hat{T}(p)}{k \hat{T}(p) + c} \int_0^\infty (\mu(q) + \delta) e^{-(\mu(q) + \delta)t} e^{-qt} \frac{q^n t^n}{n!} dt.$$

On the mechanistic derivation of superinfection functions

Explicit submodel of WH dynamics allows us to calculate invasion probability of a mutant strain:

Suppose trait q introduced into environment $\hat{T}(p)$. Probability that strain q produces n new pathogens is

$$\pi_n = \frac{k \hat{T}(p)}{k \hat{T}(p) + c} \int_0^\infty (\mu(q) + \delta) e^{-(\mu(q) + \delta)t} e^{-qt} \frac{q^n t^n}{n!} dt.$$

▶ Probability of clan extinction is given as the smallest root of the generating function

$$G(z) = \frac{c}{k\hat{T}(p) + c} + \sum_{n=0}^{\infty} \pi_n z^n$$

► Probabilty of clan survival, following an introduction of a single mutant

$$\phi_1(p,q) = \left\{ egin{aligned} rac{k\,\hat{T}(p)}{c+k\,\hat{T}(p)} - rac{k\,\hat{T}(q)}{c+k\,\hat{T}(q)}, & \hat{T}(q) < \hat{T}(p) \ 0, & ext{otherwise} \end{aligned}
ight.$$

► Probabilty of clan survival, following an introduction of a single mutant

$$\phi_1(p,q) = \left\{ egin{aligned} rac{k\,\hat{T}(p)}{c+k\,\hat{T}(p)} - rac{k\,\hat{T}(q)}{c+k\,\hat{T}(q)}, & \hat{T}(q) < \hat{T}(p) \ 0, & ext{otherwise} \end{aligned}
ight.$$

▶ When *n* particles are introduced, the probability of survival equals

$$\phi_{\textit{n}}(\textit{p},\textit{q}) = \left\{ egin{array}{ll} 1 - \left(1 - \phi_{1}(\textit{p},\textit{q})
ight)^{\textit{n}}, & & \hat{\mathcal{T}}(\textit{q}) < \hat{\mathcal{T}}(\textit{p}) \ 0, & & ext{otherwise} \end{array}
ight.$$

Mechanistically derived SFs have the following properties:

- $p \mapsto \phi_n(p,q)$ continuous in q = p,
- ▶ $q \mapsto \phi_n(p,q)$ differentiable in q = pfrom the left, $\phi'_{n+} = n$,
- ▶ $\{q \mapsto \phi_n(p,q)\}_n$ increasing sequence of functions,

>

$$\lim_{n o\infty}\phi_n(p,q)=egin{cases} 1, & \hat{T}(q)<\hat{T}(p)\ 0, & ext{otherwise.} \end{cases}$$

Concluding remarks

- ▶ Mathematical models give insight into pathogen evolution.
- Simple single infection model ⇒ optimization principle. This is also due to simple demography of the underlying SI model. If density dependence in birth & death rates included, evolution no longer acts as optimization.
- Superinfection model: no optimization, coexistence of two or more strategies found. Critical function analysis can be used to study in which parameter regions branching possible.
- Nested models:
 - more easily tested relationships between transmissibility, virulence and WH dynamics,
 - 2. mechanistic derivation of mutant invasion probabilities (superinfection functions).

Introduction
Adaptive dynamics of virulence
AD in the context of nested models
Concluding remarks

Thank you!