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@ Complex Plane

@ Key Ideas in Higher Dimensions
@ Quaternions

@ Clifford algebra

@ Hypermonogenic functions

@ Integral formulas

@ Riemannian manifolds
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Complex Numbers

@ Extend real numbers to two dimensional numbers
z=x+yi

where xp, x1 € IRand 7 is a new number with the length 1
obtained by rotating 1 counter clockwise by the angle 7 .
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Complex Numbers

@ Extend real numbers to two dimensional numbers
z=x+yi

where xp, x1 € IRand 7 is a new number with the length 1
obtained by rotating 1 counter clockwise by the angle 7 .

@ z=r(cosf+isinf)
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@ the addition is the usual vector addition

x+ywi+xi+yni=xo+xi+M+y)i
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@ the addition is the usual vector addition
X0+ yoi+x1+yii =xo+x+ (Yo+y1)i
@ multiplication with the real number r is the usual

r(x+yi)=rx+ryi
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@ the addition is the usual vector addition
xo+yoi+xi+yii=x+xi+ (y+y)i
@ multiplication with the real number r is the usual
r(x+yi)=rx+ryi

e multiplication with / is the rotation counter clockwise by the
angle 7
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@ generally

(x0 +yoi) (i +y1i) = x0 (1 + y1i) + yoi (x1 + y1i)
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@ generally

(x0 +yoi) (i +y1i) = x0 (1 + y1i) + yoi (x1 + y1i)

o if z=cos@ +ising and w = cos @ + isin 0 are unit complex
numbers then zw is obtained by rotating w counter clockwise
by the angle ¢.
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Complex Plane

@ A continuously differentiable function f : (3 — C is holomorphic
if and only if
of .of
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Complex Plane

@ A continuously differentiable function f : (3 — C is holomorphic

if and only if
of n .of 0
—+i—=0.
ox  dy
o If f: () — C is holomorphic then Re f and Im f are harmonic
functions.
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Complex Plane

@ A continuously differentiable function f : (3 — C is holomorphic

if and only if
of n Of 0
— +i— =0.
ox  dy
o If f: () — C is holomorphic then Re f and Im f are harmonic
functions.
o If f:() — C is holomorphic, then f can be written locally in
the form
oH J0H
f=——i—
ox dy

for some harmonic function H.
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Complex Plane

@ A continuously differentiable function f : (3 — C is holomorphic

if and only if
of n .of 0
—+i—=0.
ox  dy
o If f: () — C is holomorphic then Re f and Im f are harmonic
functions.

o If f:() — C is holomorphic, then f can be written locally in
the form
. oH 0H
= — —j—

- ox dy
for some harmonic function H.

@ A function f : () — C is holomorphic if and only if f and zf are
harmonic.
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What Happens in Higher Dimensions?

@ Hamilton tried to find geometric multiplication of vectors in IR3
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in R3 the space has to extended by one dimension.
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@ Hamilton tried to find geometric multiplication of vectors in IR3

@ He finally realized that in order to multiply vectors geometrically
in R3 the space has to extended by one dimension.

@ “we must admit, in some sense, a fourth dimension of space for

the purpose of calculating with triples ... An electric circuit
seemed to close, and a spark flashed forth” by Hamilton
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What Happens in Higher Dimensions?

@ Hamilton tried to find geometric multiplication of vectors in IR3

@ He finally realized that in order to multiply vectors geometrically
in R3 the space has to extended by one dimension.

@ “we must admit, in some sense, a fourth dimension of space for
the purpose of calculating with triples ... An electric circuit
seemed to close, and a spark flashed forth” by Hamilton

@ He introduced quaternions in 1843
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Quaternions

@ The set H of quaternions is be the real associative algebra
generated by e;, e satisfying

ef = e22:—1,

€1€2 = —€e€
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Quaternions

@ The set H of quaternions is be the real associative algebra
generated by e;, e satisfying

ef = e22: -1,
€16 = —66
@ Setting
€12 = €1

any element in [H may be written as
X = Xp + x1€1 + x2€2 + Xx12€12

for xg, x1, x2, x12 € R.
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Theorem (Hamilton)

If T is a rotation the space

im H={xi + yj + zk | x,y, z € R}

with the angle 0 and the axes h € im H, |h| = 1,then T (q) = aqa

for any g € imH where a = cosg + hsin g.
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Pairs of complex numbers

@ Any quaternion x may be presented as
X =21+ 26

where z; and z are complex numbers and C is identified with
the set
{Xo + x1€1 | X0, X1 € ]R} )
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Pairs of complex numbers

@ Any quaternion x may be presented as
X =21+ 26

where z; and z are complex numbers and C is identified with
the set
{Xo + x1€1 | X0, X1 € ]R} )

o if z € C, then
zer = eZ.
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Pairs of complex numbers

@ Any quaternion x may be presented as
X =21+ 26

where z; and z are complex numbers and C is identified with
the set

{Xo + x1€1 | X0, X1 € ]R}
o if z € C, then
zer = eZ.
@ if z1,...,z2 € C, then

(21 + &) (z3 + 2n€2) = 2123 — 2224 + (2124 + 2273) €2
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Higher Dimensions

@ Let V be an n— dimensional vector space with a non-generated
symmetric bilinear form B : V x V — IR. The universal Clifford
algebra C/ (V, B) is the free associative algebra with a unit
generated by V satisfying the relation

X2 = —B(x,x) .
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Higher Dimensions

@ Let V be an n— dimensional vector space with a non-generated
symmetric bilinear form B : V x V — IR. The universal Clifford
algebra C/ (V, B) is the free associative algebra with a unit
generated by V satisfying the relation

X2 = —B(x,x) .

@ It is always possible to find an orthonormal bases basis
€1, ..., €p1q satisfying

-1, i=1,...,p
B(e"e’):{ 1, i=1..q

for some unique p and g with p 4+ g = n.(Sylvester)
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@ Let V be an n— dimensional vector space with a non-generated
symmetric bilinear form B : V x V — IR. The universal Clifford
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Higher Dimensions

@ Let V be an n— dimensional vector space with a non-generated
symmetric bilinear form B : V x V — IR. The universal Clifford
algebra CI (V, B) is the free associative algebra with a unit
generated by V satisfying the relation

x2 = —B(x,x) .

@ It is always possible to find an orthonormal bases basis
€1, ..., €p1q satisfying

-1, i=1,...,p
B(e"e’):{ 1, i=1..q

for some unique p and g with p 4+ g = n.(Sylvester)
@ Then the Clifford algebra C/ (V/, B) is denoted by Cl, 4.
o Clifford algebras were introduced by William Clifford in 1878.
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The Clifford algebra Clp 4 is formed by the elements presented as
X = ZerA,
A

where x4 are real numbers,
A={i1,/2,--- ,ik|1§i1<i2<"'<ik§n},

and
€A = €€ " - €, ep = € = 1.
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Special Cases

@ When n=0, Clppo~R
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Special Cases

@ When n=0, Clppo~R
@ Whenn=1, Cly; ~C,
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Special Cases

@ When n=0, Clppo~R
@ Whenn=1, Cly; ~C,
@ When n=2,Clpr ~ H.
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Special Cases

@ When n=0, Clppo~R
@ When n=1, Cly; ~C,
@ When n=2,Clpr ~ H.
o C£3,0 :Mat(2,C), Cgoyg =H®H,
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Involutions

@ In the complex plane there is one involution

xX+yi=x—y
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Involutions

@ In the complex plane there is one involution
x+yi=x—y

o In Clifford algebras there are several involutions

| involutions |i=1,..,n | products |
main or grade ' | e/ = —¢; (ab) = a'b
reversion * ef =g (ab)" = b*a*
conjugation — | €, = —¢; ab = ba

- & = (—1)°"e | ab=13b

Hyperbolic
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Involutions

@ In the complex plane there is one involution

x+yi=x—y

o In Clifford algebras there are several involutions

|

| involutions [i=1..n | products \
main or grade ' | e/ = —e¢; (ab) = b
reversion * ef = ¢ (ab)" = b*a*
conjugation — | € = —¢; ab = ba

~ & =(—1)"e | ab=13b

@ In the complex plane the main and the conjugation are the usual

complex conjugation.

Hyperbolic
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Generalizations of Real and Imaginary Parts

@ Any element a € C/lp , may be uniquely decomposed as
a= b+ ce,

for b, c € Cly n—1(the Clifford algebra generated by ey, ..., e5—-1).
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Generalizations of Real and Imaginary Parts

@ Any element a € C/lp , may be uniquely decomposed as
a= b+ ce,

for b, c € Cly n—1(the Clifford algebra generated by ey, ..., e5—-1).

@ The mappings P: Cly, — Clpp—1 and Q: Cly, — Cly n—1
are defined by
Pa = b, QRa=c.
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Generalizations of Real and Imaginary Parts

@ Any element a € C/lp , may be uniquely decomposed as
a= b+ ce,

for b, c € Cly n—1(the Clifford algebra generated by ey, ..., e5—-1).

@ The mappings P: Cly, — Clpp—1 and Q: Cly, — Cly n—1
are defined by
Pa = b, QRa=c.

@ When n =1, P is the real part and @ the imaginary part of the
complex number.
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Calculation Rules and Notations

P (ab) = (Pa) Pb+ (Qa) Q (b') ,

S.-L. Eriksson (TUT Hyperbolic
YF



Calculation Rules and Notations

P (ab) = (Pa) Pb+ (Qa) Q (V') ,

Q (ab) = a@b+ (Qa) b'.




Calculation Rules and Notations

P (ab) = (Pa) Pb+ (Qa) Q (V') ,

Q (ab) = aQb+ (Qa) b'.

Q) =Q'f, (PH) =PF.




Calculation Rules and Notations

P (ab) = (Pa) Pb+(Qa) Q (b') .
Q (ab) = aQb+ (Qa) b'.

Q) =Q'f, (PH) =PF

° IRL’FJrl is identified with the set of elements
xp + x1e1 + ... + xpe, called paravectors.
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Calculation Rules and Notations

P (ab) = (Pa) Pb+(Qa) Q (b') .
Q (ab) = aQb+ (Qa) b'.

Q) =Q'f, (PH) =PF

° ]R’}j'l is identified with the set of elements
Xp + x1€1 + ... + xpe, called paravectors.

@ An element a is a paravector in Clp , if and only if

n
Y ejaei+(n—1)a =0.
i=0

S.-L. Eriksson (TUT) Hyperbolic



Which Metric?

Theorem

The group of orientation preserving M&bius transformations mapping
the upper half space onto itself is the group of isometries of the
upper half space model, that is mappings f satisfying

d(f(v), f(w)) =d(v,w).

(that is translations, dilatations, special orthogonal transformations
and the inversion with respect to the sphere mapping the upper half
onto itself and their compositions)
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Hyperbolic Harmonic Functions

@ We consider harmonic functions on a Riemannian space
1
]Rffr = {(x0, ... Xn) | xp > 0}

with respect to the hyperbolic metric

_ dxg + .+ dx?

2
Xn

ds?
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Hyperbolic Harmonic Functions

@ We consider harmonic functions on a Riemannian space
1
R = {(x0, ... xn) | xo > 0}

with respect to the hyperbolic metric

dxg + .+ dx?

2
Xn

ds® =

@ They satisfy the Laplace-Beltrami equation

wAh—(n—1) 20 _o,

0xp
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Hyperbolic Harmonic Functions

@ We consider harmonic functions on a Riemannian space
RT™ = {(x0, ... Xn) | xa > 0}
with respect to the hyperbolic metric
dxg + .+ dx?

2
Xn

ds® =

@ They satisfy the Laplace-Beltrami equation

dh
anh—(n—l)axn 0.
@ This equation and the metric have been studied for example by
A. Weinstein in 1948-1953, A. Huber in 1953, Ahlfors in 1981,

Loo-keng Hua in 1969.

S.-L. Eriksson (TUT) Hyperbolic



Invariant Laplace

Theorem

Let () be an open subset of the upper half space ]R”++1. If
f : Q) — R is a function satisfying

Xnp A — (n—l)gj 0

then f o T satisfies the same equation on T~ (Q))for any orientation
preserving Mébius transformation T mapping IRQ’_+1 onto itself.

4
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Hyperbolic metric

@ The hyperbolic surface measure and the volume measure are

do dx
d(Th = —n,dXh = orl-
Xn n

and the hyperbolic normal derivative is

9 _.9
ony, TS
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Hyperbolic metric

@ The hyperbolic surface measure and the volume measure are

do dx
d(Th = —n,dXh = orl-
Xn n

and the hyperbolic normal derivative is

0 0
— = Xp=—.
any, "on
@ geodesics are circular arcs perpendicular to the hyperplane
xp = 0 (half-circles whose origin is on x, = 0 and straight
vertical lines ending on the hyperplane x, = 0.
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@ The hyperbolic ball By, (a, Ry) with the hyperbolic center a and
the radius Ry is an euclidean ball with the euclidean center

ae = ap+ aie1 + ... +ap_1€e,_1 + epan cosh Ry
and the euclidean radius

R. = a,sinh Ry.
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@ The hyperbolic ball By, (a, Ry) with the hyperbolic center a and
the radius Ry is an euclidean ball with the euclidean center

ae = ap+ aie1 + ... +ap_1€e,_1 + epan cosh Ry
and the euclidean radius
R. = a,sinh Ry.

e the hyperbolic distance dj(x, a) between the points
X=Xxp+exo+ ..+ xpe,and a = a3y + e1a1 + ... + ape, is

R, = du(x,a) = arcoshd(x, a),

|x — 3]2 + 2apxn

2Xpan
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We map P and Q to the points e, and Ae,. Then

A
1
3(P,Q) = b(enAey) = %(A—i— %)

coshdy(P, Q) = coshInA:%(e'”)‘Jre'”A) =45(P, Q).
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@ Hyperbolic function theory was initiated by Heinz Leutwiler
around 1990.
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@ Hyperbolic function theory was initiated by Heinz Leutwiler
around 1990.

e For any m € IN, the power function
f(x)=x"

is paravector-valued for any paravector
X =Xx9+x1e1 + ... + xpen.
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In Higher Dimensions

@ For any m € IN, the power function x™ satisfies the property

. 9h & oh
x :——;e,g (1)

where
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In Higher Dimensions

@ For any m € IN, the power function x™ satisfies the property

oh . oh

m
- _ - 1
x 8x0 /—Zl ¥ aX,' ( )
where 1
h(x) = o Re x™*1,

@ h satisfies the preceding hyperbolic equation

xp AF—(n—1)— o = 0.

%,
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H-solutions

@ Heinz Leutwiler initiated in 1992 the research of the functions f,
called H-solutions, admitting locally the preceding property for
some function h satisfying the equality
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@ Another characterization of H-solutions is that they are
paravector-valued solutions f = uy + uye1 + ... + upe, of the
following generalized Cauchy-Riemann equation

Xn (3%3—27:13—;;)+(n_1)un:o,

au,- _ auk H .

B — oxe  k=L..n (H)
dug _ _ duy o

W = _axo’ k = 1, oy N
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General assumptions

e Let O be an open subset of R"*1.
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General assumptions

e Let O be an open subset of R"*1.
@ We consider function mapping

f:Q— Cly,,

whose components are continuously differentiable.
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Dirac operators

@ The left Dirac operators in Cly , is defined by

Y S N
Dif =Y e— Df=Y &-—
/ i;oel aXI, ! i;oel aXI,
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Dirac operators

@ The left Dirac operators in Cly , is defined by

1. odf — T, of
Dif = — Dif =) e—
felene  PfELE
i=0 i=0
@ The right Dirac operators by

noof n
=Y Lo Df=Y) Le
' i;()axfe ' 'Zaxie
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Theorem (Cauchy formula)

Let Q € R™! be an open, K C Q) a compact set with smooth
boundary K and v its outer unit normal field. Then for any
monogenic function f : () — Cly , that is D;f =0, we have

Fla)= - [ =D ()£ (p) o

W _ _n—1
1o |p—dq|

o)
for all g € K, where w,1is the surface measure of the unit ball in
R+
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Modified Dirac Operators

@ Let () be an open subset of R"1\ {x, = 0}.
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Modified Dirac Operators

@ Let () be an open subset of R"1\ {x, = 0}.

o The modified Dirac operators M., MF, WL and M, are
introduced by

MLf (x) = Dif (x) +
My f (x) = Dif (x) —

where f € C1 (Q), Cly p).
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Hypermonogenic functions

Let O C R be open. A function f : Q — Clg,, is left
hypermonogenic function, if f € C* (Q)) and

MLf (x) =0

for any x € O\ {x, = 0} . The right k-hypermonogenic functions
are defined similarly. If k = n— 1 left hypermonogenic functions are
called hypermonogenic functions.

@ Hypermonogenic functions were introduced by H. Leutwiler and
S.-L. E in 2000.
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Basic properties

@ Hypermonogenic functions have values in the total Clifford
algebra Clp .
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Basic properties

@ Hypermonogenic functions have values in the total Clifford
algebra Clp .

@ Paravector-valued hypermonogenic functions are H-solutions
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Basic properties

@ Hypermonogenic functions have values in the total Clifford
algebra Clp .

@ Paravector-valued hypermonogenic functions are H-solutions

@ A function f : ) — Clp , is left k—hypermonogenic function if
and only if f* is right k—hypermonogenic
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Basic properties

@ Hypermonogenic functions have values in the total Clifford
algebra Clp .

@ Paravector-valued hypermonogenic functions are H-solutions

@ A function f : ) — Clp , is left k—hypermonogenic function if
and only if f* is right k—hypermonogenic

o If f: Q) — Clp,, is k—hypermonogenic, then 7 (X) is
k-hypermonogenic in Q= {x ceR™ | x e Q}
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Notably studied by

The theory is notably studied by
H. Leutwiler S.-L. Eriksson S. Krausshar

J. Cnops Kettunen, J. E. Lehman

P. Cerejeiras Hirvonen, J. |. Ramadanoff
Th. Hempfling H. Orelma Bernstein, Sw.
P. Zeilinger Ryan, J. Laville, G.
Pernas, L. Qiao, Yuying  Xiaoli Bian
Junxia Li
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Generalized Cauchy-Riemann equations

Theorem

Let Q) be an open subset of R™ tand f : O — Cly ,, be a mapping
!/

with continuous partial derivatives. The equation Df + k(i—nf =0is

equivalent with the following system of equations

Do_1 (PF) — 2@ kgL =o,
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Hyperbolic harmonic functions

Let f : Q) — Clp , be twice continuously differentiable. Then
— k oPf
P (MMif) = APF— X2
Xp 0Xp
— k 0Qf f
Q (MkMkf) = AQf — — @ + kQ—2
Xp 0Xp X5
If f is k-hypermonogenic, then
APf — ﬁan = 0
Xp OXp
AQFf — ﬁan + kQ—;c = 0.
Xp OXp X5
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Laplace Beltrami equations

These are Laplace-Beltrami equations with respect to the Riemannian

metric )
n
Lo dx;
- 2k )

ds?

n—

Xn
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k-hyperbolic harmonic functions

@ My_1(fx) = (M,_1f) x for any paravector valued function f.
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k-hyperbolic harmonic functions

@ My_1(fx) = (M,_1f) x for any paravector valued function f.

@ A twice continuously differentiable function f : (0 — Clp,5 is
called k-hyperbolic harmonic if MMy f = 0.
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k-hyperbolic harmonic functions

@ My_1(fx) = (M,_1f) x for any paravector valued function f.
@ A twice continuously differentiable function f : (0 — Clp,5 is
called k-hyperbolic harmonic if MM, f = 0.

o Let f: Q) — Cl, be twice continuously differentiable. Then f
is k-hypermonogenic if and only if f and xf are k-hyperbolic
harmonic functions.
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k-hyperbolic harmonic functions

@ My_1(fx) = (M,_1f) x for any paravector valued function f.

@ A twice continuously differentiable function f : (0 — Clp,5 is
called k-hyperbolic harmonic if MM, f = 0.

o Let f: Q) — Cl, be twice continuously differentiable. Then f
is k-hypermonogenic if and only if f and xf are k-hyperbolic
harmonic functions.

o Let O be an open subset of R"and f : Q — Cly,,, be twice
continuously differentiable. Then f is k-hypermonogenic if and
only if there exists locally a k-hyperbolic harmonic mapping H
with values in Cly p,—1 satisfying DH = f.

S.-L. Eriksson (TUT) Hyperbolic



Let U C ]Rf'lbe open. The following properties are equivalent:

@ h is hyperbolic harmonic on U.

v
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Let U C ]Rf'lbe open. The following properties are equivalent:

Q h is hyperbolic harmonic on U.
@ heC?(U) and

1
h = hd
(2) onsinh” Ry. /E)Bh(a,Rh) 7h

for all hyperbolic balls satisfying By (a, Ry) C U .
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Let U C ]Rf'lbe open. The following properties are equivalent:
Q h is hyperbolic harmonic on U.
@ heC?(U) and

1
h = hd
(2) onsinh” Ry. /E)Bh(a,Rh) 7h

for all hyperbolic balls satisfying By (a, Ry) C U .
@ heC?(U) and

1

h@) = g o) ey

for all hyperbolic balls satisfying By, (a, Rp) C U, where
Vi (By (a, R)) = o [ sinh” tdt.
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m

o xX™ m € Z, is hypermonogenic
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e x, m € Z, is hypermonogenic
0 & = Z%xk,
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e x, m € Z, is hypermonogenic
=Y hxk,

° sinxzz( )k x2kt1

2k+1) '( 1
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° x'", m € Z, is hypermonogenic
2 kvX

° smxzz( )R X2kt

2k+1) '( 1

@ Ccosx = ZW (—1)k x2
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° x'", m € Z, is hypermonogenic
° 2 k,x

k
@ sinx =Y (2k+1 I (—1)" x2k+L

@ Ccosx = ZW (—1)k x2

o If f(z) = Y axz* is holomorphic and ax € IR, then
f (x) = ¥ axx* is hypermonogenic.
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Fueter Construction

If f = u+ iv is holomorphic in an open set () C C, then

?(x) =u (xo, \/X12—|—...—|—X,%) +
X1€1+..+XnenV(XO' /x12+...—|—x,%)
\/X12+..—|—X,2,

is hypermonogenic.
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@ The k-hypermonogenic functions in an open subset () of R"*1
form a right Clg ,—1-module.
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@ The k-hypermonogenic functions in an open subset Q of R"*1
form a right Clg ,—1-module.

o If f is a k-hypermonogenic function, then the function fe, is
hypermonogenic if and only if f = 0.
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@ The k-hypermonogenic functions in an open subset Q of R"*1
form a right Clg ,—1-module.

o If f is a k-hypermonogenic function, then the function fe, is
hypermonogenic if and only if f = 0.

e A function f : O — C/ly p is k-hypermonogenic if and only if the
function % is —k-hypermonogenic.
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@ The k-hypermonogenic functions in an open subset Q of R"*1
form a right Clg ,—1-module.

o If f is a k-hypermonogenic function, then the function fe, is
hypermonogenic if and only if f = 0.

e A function f : O — C/ly p is k-hypermonogenic if and only if the
function % is —k-hypermonogenic.

@ A function f : () — Clp , is left k-hypermonogenic if and only
if the function fe, satisfies the equation
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Stokes theorem

Theorem

For Q an open subset of R (or R™™), K C Q a smoothly
bounded compact set with outer unit normal field v, and

f,g € Cl (Q, Cfoyn),

| Pleh S = [{P((M,Cg)f—l—gl\/l,’(f)%

n

/aKQ(gvf) do = /}(Q((l\/likg)f—i—gl\/l,’(f) .
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Theorem

Let () be an open subset of]R”j1 and K C Q) a smoothly bounded
compact set with outer unit normal field v. If f is hypermonogenic in
Q) and y € K, then

n—1 o
fy) = 2 /aK (K1 (x,y) v (x)f(x) — Kz (x, y) v (x)f (x)) do.

Wn41
where
_ -1
yit(x—y)
Ki(X'y):: . n—1 ~n—1
Ix —y|" " Ix =Y
n—1 (< -1
X R

__ n—1 ~in—1"
Ix —y|" " [x =Y
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Theorem

Let () be an open subset of ]R’J:rl and K C Q a smoothly bounded
compact set with outer unit normal field v. If f is hypermonogenic in

Qandy e K
Fo)=2 [ "(y)f' (v(y)f
(= [ Kx2) QW K)F 1) +2@ L))

where

are hypermonogenic with respect to x in R™1\ {y,y}.

-1
1 — 1 (1—52)n
k(le) = 22n—2ynD (/yXI ds

Sn

n [x=3I

ot ((x—yrl—(x—y)—l)_

Y ‘X_y‘nfl ‘X_y|nfl
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Theorem

Let ) be an open subset of]R”j1 and K C Q) a smoothly bounded
compact set with outer unit normal field v. If f is continuous on ()
then

2n—1

Wn+1

g (x) | kx3) (@ )F (1) +x@ (v(y)F (1)) do

. .. 1
is hypermonogenic in ]R’jrJr \9K.
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