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Complex Numbers

Extend real numbers to two dimensional numbers

z = x + yi

where x0, x1 2 Rand i is a new number with the length 1
obtained by rotating 1 counter clockwise by the angle π

2 .

z = r (cos θ + i sin θ)
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the addition is the usual vector addition

x0 + y0i + x1 + y1i = x0 + x1 + (y0 + y1) i

multiplication with the real number r is the usual

r (x + yi) = rx + ryi

multiplication with i is the rotation counter clockwise by the
angle π

2
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i2 = �1
i (x0 + y0i) = �y0 + x0i
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generally

(x0 + y0i) (x1 + y1i) = x0 (x1 + y1i) + y0i (x1 + y1i)

if z = cos ϕ+ i sin ϕ and w = cos θ + i sin θ are unit complex
numbers then zw is obtained by rotating w counter clockwise
by the angle ϕ.
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Complex Plane

A continuously di¤erentiable function f : Ω ! C is holomorphic
if and only if

∂f
∂x
+ i

∂f
∂y
= 0.

If f : Ω ! C is holomorphic then Re f and Im f are harmonic
functions.

If f : Ω ! C is holomorphic, then f can be written locally in
the form

f =
∂H
∂x
� i ∂H

∂y

for some harmonic function H.

A function f : Ω ! C is holomorphic if and only if f and zf are
harmonic.
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What Happens in Higher Dimensions?

Hamilton tried to �nd geometric multiplication of vectors in R3

He �nally realized that in order to multiply vectors geometrically
in R3 the space has to extended by one dimension.

�we must admit, in some sense, a fourth dimension of space for
the purpose of calculating with triples ... An electric circuit
seemed to close, and a spark �ashed forth�by Hamilton

He introduced quaternions in 1843
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Quaternions

The set H of quaternions is be the real associative algebra
generated by e1, e2 satisfying

e21 = e22 = �1,
e1e2 = �e2e1

Setting
e12 = e1e2

any element in H may be written as

x = x0 + x1e1 + x2e2 + x12e12

for x0, x1, x2, x12 2 R.
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Theorem (Hamilton)
If T is a rotation the space

im H= fxi + yj + zk j x, y , z 2 Rg

with the angle θ and the axes h 2 im H, jhj = 1,then T (q) = aqa
for any q 2 im H where a = cos θ

2 + h sin
θ
2 .
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Pairs of complex numbers

Any quaternion x may be presented as

x = z1 + z2e2

where z1 and z2 are complex numbers and C is identi�ed with
the set

fx0 + x1e1 j x0, x1 2 Rg .

if z 2 C, then
ze2 = e2z̄.

if z1, ..., z4 2 C, then

(z1 + z2e2) (z3 + z4e2) = z1z3 � z2z̄4 + (z1z4 + z2z̄3) e2.
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Higher Dimensions

Let V be an n� dimensional vector space with a non-generated
symmetric bilinear form B : V � V ! R. The universal Cli¤ord
algebra Cl (V ,B) is the free associative algebra with a unit
generated by V satisfying the relation

x2 = �B (x, x) .

It is always possible to �nd an orthonormal bases basis
e1, ..., ep+q satisfying

B (ei , ei ) =
�
�1, i = 1, ..., p
1, i = 1, ..., q

for some unique p and q with p+ q = n.(Sylvester)
Then the Cli¤ord algebra Cl (V ,B) is denoted by Clp,q .
Cli¤ord algebras were introduced by William Cli¤ord in 1878.
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The Cli¤ord algebra Clp,q is formed by the elements presented as

x = ∑
A
xAeA,

where xA are real numbers,

A = fi1, i2, � � � , ik j 1 � i1 < i2 < � � � < ik � ng,

and
eA = ei1ei2 � � � eik , e∅ = e0 = 1.
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Special Cases

When n = 0, C`0,0 ' R

When n = 1, C`0,1 ' C,

When n = 2,C`0,2 ' H.

C`3,0 'Mat(2,C), C`0,3 = H�H,
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Involutions

In the complex plane there is one involution

x + yi = x � yi

In Cli¤ord algebras there are several involutions

involutions i = 1, ..., n products

main or grade 0 e 0i = �ei (ab)0 = a0b0

reversion � e�i = ei (ab)� = b�a�

conjugation _ e i = �ei ab = bab êi = (�1)δin ei bab = babb
In the complex plane the main and the conjugation are the usual
complex conjugation.
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Generalizations of Real and Imaginary Parts

Any element a 2 C`0,n may be uniquely decomposed as

a = b+ cen

for b, c 2 C`0,n�1(the Cli¤ord algebra generated by e1, ..., en�1).

The mappings P : C`0,n ! C`0,n�1 and Q : C`0,n ! C`0,n�1
are de�ned by

Pa = b, Qa = c.

When n = 1, P is the real part and Q the imaginary part of the
complex number.
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Calculation Rules and Notations

P (ab) = (Pa)Pb+ (Qa)Q
�
b0
�
,

Q (ab) = aQb+ (Qa) b0.

(Qf )0 = Q 0f , (Pf )0 = P 0f .

Rn+1
+ is identi�ed with the set of elements

x0 + x1e1 + ...+ xnen called paravectors.
An element a is a paravector in Cl0,n if and only if

n

∑
i=0
eiaei + (n� 1) a0 = 0.
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Which Metric?

Theorem
The group of orientation preserving Möbius transformations mapping
the upper half space onto itself is the group of isometries of the
upper half space model, that is mappings f satisfying

d(f (v), f (w)) = d(v ,w).

(that is translations, dilatations, special orthogonal transformations
and the inversion with respect to the sphere mapping the upper half
onto itself and their compositions)

S.-L. Eriksson (TUT) Hyperbolic 20 / 52



Hyperbolic Harmonic Functions

We consider harmonic functions on a Riemannian space

Rn+1
+ = f(x0, ..., xn) j xn > 0g

with respect to the hyperbolic metric

ds2 =
dx20 + ...+ dx

2
n

x2n
.

They satisfy the Laplace-Beltrami equation

xn4 h� (n� 1)
∂h
∂xn

= 0.

This equation and the metric have been studied for example by
A. Weinstein in 1948�1953, A. Huber in 1953, Ahlfors in 1981,
Loo-keng Hua in 1969.
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Invariant Laplace

Theorem
Let Ω be an open subset of the upper half space Rn+1

+ . If
f : Ω ! R is a function satisfying

xn4 f � (n� 1)
∂f
∂xn

= 0

then f �T satis�es the same equation on T�1 (Ω)for any orientation
preserving Möbius transformation T mapping Rn+1

+ onto itself.
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Hyperbolic metric

The hyperbolic surface measure and the volume measure are

dσh =
dσ

xnn
, dxh =

dx

xn+1n
.

and the hyperbolic normal derivative is

∂

∂nh
= xn

∂

∂n
.

geodesics are circular arcs perpendicular to the hyperplane
xn = 0 (half-circles whose origin is on xn = 0 and straight
vertical lines ending on the hyperplane xn = 0.
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The hyperbolic ball Bh (a,Rh) with the hyperbolic center a and
the radius Rh is an euclidean ball with the euclidean center

ae = a0 + a1e1 + ...+ an�1en�1 + enan cosh Rh

and the euclidean radius

Re = an sinh Rh.

the hyperbolic distance dh(x, a) between the points
x = x0 + e1x2 + ...+ xnen and a = a0 + e1a1 + ...+ anen is

Rh = dh(x, a) = arcosh δ(x, a),

δ(x, a) =
jx � aj2 + 2anxn

2xnan
.
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x = x0 + e1x2 + ...+ xnen and a = a0 + e1a1 + ...+ anen is

Rh = dh(x, a) = arcosh δ(x, a),

δ(x, a) =
jx � aj2 + 2anxn

2xnan
.
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We map P and Q to the points en and λen. Then

dh(P,Q) = dh (en,λen) =
Z λ

1

dt
t
= lnλ,

δ(P,Q) = δ (en,λen) =
1
2
(λ+

1
λ
)

coshdh(P,Q) = cosh lnλ =
1
2
(e ln λ + e� ln λ) = δ(P,Q).
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Hyperbolic function theory was initiated by Heinz Leutwiler
around 1990.

For any m 2 N, the power function

f (x) = xm

is paravector-valued for any paravector
x = x0 + x1e1 + ...+ xnen.
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In Higher Dimensions

For any m 2 N, the power function xm satis�es the property

xm =
∂h
∂x0

�
n

∑
i=1
ei

∂h
∂xi

(1)

where
h (x) =

1
m+ 1

Re xm+1.

h satis�es the preceding hyperbolic equation

xn4 f � (n� 1)
∂f
∂xn

= 0.
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H-solutions

Heinz Leutwiler initiated in 1992 the research of the functions f ,
called H-solutions, admitting locally the preceding property for
some function h satisfying the equality
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Another characterization of H-solutions is that they are
paravector-valued solutions f = u0 + u1e1 + ...+ unen of the
following generalized Cauchy-Riemann equation

xn
�

∂u0
∂x0
�∑n

i=1
∂ui
∂xi

�
+ (n� 1) un = 0,

∂ui
∂xk
= ∂uk

∂xi
, i , k = 1, ..., n,

∂u0
∂xk
= � ∂uk

∂x0
, k = 1, ..., n.

(H)
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General assumptions

Let Ω be an open subset of Rn+1.

We consider function mapping

f : Ω ! C`0,n,

whose components are continuously di¤erentiable.
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Dirac operators

The left Dirac operators in C`0,n is de�ned by

Dl f =
n

∑
i=0
ei

∂f
∂xi
, Dl f =

n

∑
i=0
ei

∂f
∂xi
,

The right Dirac operators by

Dr f =
n

∑
i=0

∂f
∂xi
ei , Dr f =

n

∑
i=0

∂f
∂xi
ei .
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Theorem (Cauchy formula)
Let Ω 2 Rn+1 be an open, K � Ω a compact set with smooth
boundary δK and ν its outer unit normal �eld. Then for any
monogenic function f : Ω ! Cl0,n, that is Dl f = 0, we have

f (q) =
1

ωn+1

Z
δK

(p� q)�1

jp� qjn�1
ν (p) f (p) dS ,

for all q 2
�
K, where ωn+1is the surface measure of the unit ball in

Rn+1.
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Modi�ed Dirac Operators

Let Ω be an open subset of Rn+1nfxn = 0g.

The modi�ed Dirac operators M l
k , M

r
k , M

l
k and M

r
kare

introduced by

M l
k f (x) = Dl f (x) + k

Q 0f
xn
, Mr

k f (x) = Dr f (x) + k
Qf
xn

M
l
k f (x) = D l f (x)� k Q

0f
xn
, Mk

r
f (x) = Dr f (x)� k Qfxn .

where f 2 C1 (Ω,C`0,n) .
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Hypermonogenic functions

De�nition
Let Ω � Rn+1 be open. A function f : Ω ! C`0,n is left
hypermonogenic function, if f 2 C1 (Ω) and

M l
k f (x) = 0

for any x 2 Ωn fxn = 0g . The right k-hypermonogenic functions
are de�ned similarly. If k = n� 1 left hypermonogenic functions are
called hypermonogenic functions.

Hypermonogenic functions were introduced by H. Leutwiler and
S.-L. E in 2000.
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Basic properties

Hypermonogenic functions have values in the total Cli¤ord
algebra C`0,n.

Paravector-valued hypermonogenic functions are H-solutions

A function f : Ω ! C`0,n is left k�hypermonogenic function if
and only if f � is right k�hypermonogenic
If f : Ω ! C`0,n is k�hypermonogenic, then bf (bx) is
k-hypermonogenic in bΩ =

�
x 2 Rn+1 j bx 2 Ω

	
.
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Notably studied by

The theory is notably studied by

H. Leutwiler S.-L. Eriksson S. Krausshar
J. Cnops Kettunen, J. E. Lehman
P. Cerejeiras Hirvonen, J. I. Ramadano¤
Th. Hemp�ing H. Orelma Bernstein, Sw.
P. Zeilinger Ryan, J. Laville, G.
Pernas, L. Qiao, Yuying Xiaoli Bian
Junxia Li
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Generalized Cauchy-Riemann equations

Theorem
Let Ω be an open subset of Rn+1and f : Ω ! C`0,n be a mapping
with continuous partial derivatives. The equation Df + k Q

0f
xn
= 0 is

equivalent with the following system of equations

Dn�1 (Pf )� ∂(Q 0f )
∂xn

+ k Q
0f
xn
= 0,

Dn�1 (Qf ) +
∂P 0(f )

∂xn
= 0.
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Hyperbolic harmonic functions

Theorem
Let f : Ω ! C`0,n be twice continuously di¤erentiable. Then

P
�
MkMk f

�
= 4Pf � k

xn

∂Pf
∂xn

Q
�
MkMk f

�
= 4Qf � k

xn

∂Qf
∂xn

+ k
Qf
x2n

If f is k-hypermonogenic, then

4Pf � k
xn

∂Pf
∂xn

= 0

4Qf � k
xn

∂Qf
∂xn

+ k
Qf
x2n

= 0.
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Laplace Beltrami equations

These are Laplace-Beltrami equations with respect to the Riemannian
metric

ds2 =
∑n
i=0 dx

2
i

x
2k
n�1
n

.
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k-hyperbolic harmonic functions

Mn�1 (fx) = (Mn�1f ) x for any paravector valued function f .

A twice continuously di¤erentiable function f : Ω ! Cl0,n is
called k-hyperbolic harmonic if MkMk f = 0.

Let f : Ω ! Cl0,n be twice continuously di¤erentiable. Then f
is k-hypermonogenic if and only if f and xf are k-hyperbolic
harmonic functions.

Let Ω be an open subset of Rn+1and f : Ω ! C`0,n be twice
continuously di¤erentiable. Then f is k-hypermonogenic if and
only if there exists locally a k-hyperbolic harmonic mapping H
with values in C`0,n�1 satisfying DH = f .
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Theorem
Let U � Rn+1

+ be open. The following properties are equivalent:

1 h is hyperbolic harmonic on U.

2 h 2 C2 (U) and

h (a) =
1

σn sinhn Rh.

Z
∂Bh(a,Rh)

hdσh

for all hyperbolic balls satisfying Bh (a,Rh) � U .
3 h 2 C2 (U) and

h (a) =
1

Vh (Bh (a,Rh))

Z
Bh(a,Rh)

fdxh,

for all hyperbolic balls satisfying Bh (a,Rh) � U, where
Vh (Bh (a,Rh)) = σ

R Rh
0 sinhn tdt.
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Examples

xm, m 2 Z, is hypermonogenic

ex = ∑ 1
k !x

k ,

sin x = ∑ 1
(2k+1)! (�1)

k x2k+1,

cos x = ∑ 1
(2k)! (�1)

k x2k

If f (z) = ∑ akzk is holomorphic and ak 2 R, then
f (x) = ∑ akxk is hypermonogenic.
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Fueter Construction

If f = u+ iv is holomorphic in an open set Ω � C, then

ef (x) = u�x0,qx21 + ...+ x2n�+
x1e1 + ..+ xnenq
x21 + ..+ x

2
n

v
�
x0,
q
x21 + ...+ x

2
n

�

is hypermonogenic.
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The k-hypermonogenic functions in an open subset Ω of Rn+1

form a right C`0,n�1-module.

If f is a k-hypermonogenic function, then the function fen is
hypermonogenic if and only if f = 0.

A function f : Ω ! C`0,n is k-hypermonogenic if and only if the
function fen

xkn
is �k-hypermonogenic.

A function f : Ω ! C`0,n is left k-hypermonogenic if and only
if the function fen satis�es the equation

Dlg �
kenPg
xn

= 0.
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Stokes theorem

Theorem
For Ω an open subset of Rn+1

+ (or Rn+1
� ), K � Ω a smoothly

bounded compact set with outer unit normal �eld ν, and
f , g 2 C1 (Ω,C`0,n),Z

∂K
P (gνf )

dσ

xkn
=

Z
K
P
�
(Mr

kg) f + gM
l
k f
� dx
xknZ

∂K
Q (gνf ) dσ =

Z
K
Q
�
(Mr

�kg) f + gM
l
k f
�
dx.
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Theorem
Let Ω be an open subset of Rn+1

+ and K � Ω a smoothly bounded
compact set with outer unit normal �eld ν. If f is hypermonogenic in
Ω and y 2 K, then

f (y) =
2n�1

ωn+1

Z
∂K

�
K1 (x, y) ν (x) f (x)�K2 (x, y)[ν (x)[f (x)

�
dσ.

where

K1 (x, y) =
yn�1n (x � y)�1

jx � y jn�1 jx � by jn�1
K2 (x, y) =

yn�1n (bx � y)�1
jx � y jn�1 jx � by jn�1 .
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Theorem
Let Ω be an open subset of Rn+1

+ and K � Ω a smoothly bounded
compact set with outer unit normal �eld ν. If f is hypermonogenic in
Ω and y 2 K

f (x) =
2n�1

ωn+1

Z
∂K
k(x, y)

�
Q
�
yν0(y)f 0(y)

�
+ xQ 0 (ν(y)f (y))

�
where

k(x, y) =
1

22n�2ynn
D
x

 Z 1

jy�x j
jx�by j

�
1� s2

�n�1
sn

ds

!

= �x
n�1
n

yn

 
(x � y)�1 � (x � by)�1
jx � y jn�1 jx � by jn�1

!
.

are hypermonogenic with respect to x in Rn+1n fy , byg.
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Theorem
Let Ω be an open subset of Rn+1

+ and K � Ω a smoothly bounded
compact set with outer unit normal �eld ν. If f is continuous on Ω
then

g (x) =
2n�1

ωn+1

Z
∂K
k(x, y)

�
Q
�
yν0(y)f 0(y)

�
+ xQ 0 (ν(y)f (y))

�
dσ

is hypermonogenic in Rn+1
+ n∂K.
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