Function Theories in Higher dimensions

Sirkka-Liisa Eriksson
Tampere University of Technology
Department of Mathematics
P.O.Box 553
Fl-33101 Tampere, Finland
sirkka-liisa.eriksson@tut.fi

TUT

Collaborator

Heinz Leutwiler University of Erlangen-Nürnberg Bismarckstrasse $1\frac{1}{2}$ D-91054 Erlangen, Germany E-mail:leutwil@mi.uni-erlangen.de

Complex Plane

- Complex Plane
- Key Ideas in Higher Dimensions

- Complex Plane
- Key Ideas in Higher Dimensions
- Quaternions

- Complex Plane
- Key Ideas in Higher Dimensions
- Quaternions
- Clifford algebra

- Complex Plane
- Key Ideas in Higher Dimensions
- Quaternions
- Clifford algebra
- Hypermonogenic functions

- Complex Plane
- Key Ideas in Higher Dimensions
- Quaternions
- Clifford algebra
- Hypermonogenic functions
- Integral formulas

- Complex Plane
- Key Ideas in Higher Dimensions
- Quaternions
- Clifford algebra
- Hypermonogenic functions
- Integral formulas
- Riemannian manifolds

Complex Numbers

• Extend real numbers to two dimensional numbers

$$z = x + yi$$

where $x_0, x_1 \in \mathbb{R}$ and i is a new number with the length 1 obtained by rotating 1 counter clockwise by the angle $\frac{\pi}{2}$.

S.-L. Eriksson (TUT)

Complex Numbers

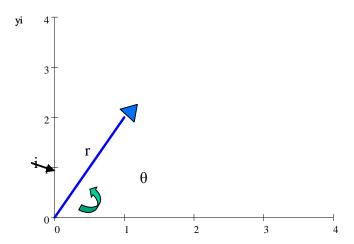
• Extend real numbers to two dimensional numbers

$$z = x + yi$$

where $x_0, x_1 \in \mathbb{R}$ and i is a new number with the length 1 obtained by rotating 1 counter clockwise by the angle $\frac{\pi}{2}$.

• $z = r(\cos\theta + i\sin\theta)$

S.-L. Eriksson (TUT)



the addition is the usual vector addition

$$x_0 + y_0i + x_1 + y_1i = x_0 + x_1 + (y_0 + y_1)i$$

• the addition is the usual vector addition

$$x_0 + y_0i + x_1 + y_1i = x_0 + x_1 + (y_0 + y_1)i$$

• multiplication with the real number r is the usual

$$r(x + yi) = rx + ryi$$

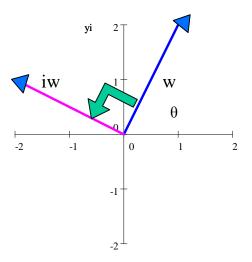
the addition is the usual vector addition

$$x_0 + y_0 i + x_1 + y_1 i = x_0 + x_1 + (y_0 + y_1) i$$

multiplication with the real number r is the usual

$$r\left(x+yi\right)=rx+ryi$$

• multiplication with i is the rotation counter clockwise by the angle $\frac{\pi}{2}$



$$i^2 = -1$$

 $i(x_0 + y_0 i) = -y_0 + x_0 i$

generally

$$(x_0 + y_0i)(x_1 + y_1i) = x_0(x_1 + y_1i) + y_0i(x_1 + y_1i)$$

generally

$$(x_0 + y_0 i) (x_1 + y_1 i) = x_0 (x_1 + y_1 i) + y_0 i (x_1 + y_1 i)$$

• if $z = \cos \varphi + i \sin \varphi$ and $w = \cos \theta + i \sin \theta$ are unit complex numbers then zw is obtained by rotating w counter clockwise by the angle φ .

• A continuously differentiable function $f:\Omega\to\mathbb{C}$ is holomorphic if and only if

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0.$$

• A continuously differentiable function $f:\Omega \to \mathbb{C}$ is holomorphic if and only if

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0.$$

• If $f: \Omega \to \mathbb{C}$ is holomorphic then $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic functions.

• A continuously differentiable function $f:\Omega \to \mathbb{C}$ is holomorphic if and only if

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0.$$

- If $f: \Omega \to \mathbb{C}$ is holomorphic then $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic functions.
- If $f:\Omega \to \mathbb{C}$ is holomorphic, then f can be written locally in the form

$$f = \frac{\partial H}{\partial x} - i \frac{\partial H}{\partial y}$$

for some harmonic function H.

• A continuously differentiable function $f:\Omega\to\mathbb{C}$ is holomorphic if and only if

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0.$$

- If $f: \Omega \to \mathbb{C}$ is holomorphic then $\operatorname{Re} f$ and $\operatorname{Im} f$ are harmonic functions.
- If $f:\Omega \to \mathbb{C}$ is holomorphic, then f can be written locally in the form

$$f = \frac{\partial H}{\partial x} - i \frac{\partial H}{\partial y}$$

for some harmonic function H.

• A function $f:\Omega\to\mathbb{C}$ is holomorphic if and only if f and zf are harmonic.

◆□▶◆□▶◆≣▶◆≣▶ ■ 少९○

ullet Hamilton tried to find geometric multiplication of vectors in \mathbb{R}^3

S.-L. Eriksson (TUT)

- ullet Hamilton tried to find geometric multiplication of vectors in \mathbb{R}^3
- He finally realized that in order to multiply vectors geometrically in \mathbb{R}^3 the space has to extended by one dimension.

- ullet Hamilton tried to find geometric multiplication of vectors in ${\mathbb R}^3$
- He finally realized that in order to multiply vectors geometrically in \mathbb{R}^3 the space has to extended by one dimension.
- "we must admit, in some sense, a fourth dimension of space for the purpose of calculating with triples ... An electric circuit seemed to close, and a spark flashed forth" by Hamilton

10 / 52

- ullet Hamilton tried to find geometric multiplication of vectors in \mathbb{R}^3
- He finally realized that in order to multiply vectors geometrically in \mathbb{R}^3 the space has to extended by one dimension.
- "we must admit, in some sense, a fourth dimension of space for the purpose of calculating with triples ... An electric circuit seemed to close, and a spark flashed forth" by Hamilton
- He introduced quaternions in 1843

10 / 52

S.-L. Eriksson (TUT) Hyperbolic

Quaternions

• The set $\mathbb H$ of quaternions is be the real associative algebra generated by e_1 , e_2 satisfying

$$e_1^2 = e_2^2 = -1,$$

 $e_1e_2 = -e_2e_1$

Quaternions

 The set H of quaternions is be the real associative algebra generated by e₁, e₂ satisfying

$$e_1^2 = e_2^2 = -1$$
,
 $e_1e_2 = -e_2e_1$

Setting

$$e_{12} = e_1 e_2$$

any element in ${\mathbb H}$ may be written as

$$x = x_0 + x_1 e_1 + x_2 e_2 + x_{12} e_{12}$$

for $x_0, x_1, x_2, x_{12} \in \mathbb{R}$.

Theorem (Hamilton)

If T is a rotation the space

im
$$\mathbb{H} = \{xi + yj + zk \mid x, y, z \in \mathbb{R}\}$$

with the angle θ and the axes $h \in \text{im } \mathbb{H}$, |h| = 1,then $T(q) = aq\overline{a}$ for any $q \in \text{im } \mathbb{H}$ where $a = \cos \frac{\theta}{2} + h \sin \frac{\theta}{2}$.

Pairs of complex numbers

• Any quaternion x may be presented as

$$x=z_1+z_2e_2$$

where z_1 and z_2 are complex numbers and $\mathbb C$ is identified with the set

$$\{x_0 + x_1 e_1 \mid x_0, x_1 \in \mathbb{R}\}$$
.

Pairs of complex numbers

Any quaternion x may be presented as

$$x = z_1 + z_2 e_2$$

where z_1 and z_2 are complex numbers and $\mathbb C$ is identified with the set

$$\{x_0 + x_1 e_1 \mid x_0, x_1 \in \mathbb{R}\}$$
.

• if $z \in \mathbb{C}$, then

$$ze_2=e_2\bar{z}$$
.

Pairs of complex numbers

Any quaternion x may be presented as

$$x = z_1 + z_2 e_2$$

where z_1 and z_2 are complex numbers and $\mathbb C$ is identified with the set

$$\{x_0 + x_1 e_1 \mid x_0, x_1 \in \mathbb{R}\}$$
.

• if $z \in \mathbb{C}$, then

$$ze_2=e_2\bar{z}$$
.

• if $z_1, ..., z_4 \in \mathbb{C}$, then

$$(z_1+z_2e_2)(z_3+z_4e_2)=z_1z_3-z_2\bar{z}_4+(z_1z_4+z_2\bar{z}_3)e_2.$$

• Let V be an n- dimensional vector space with a non-generated symmetric bilinear form $B: V \times V \to \mathbb{R}$. The universal Clifford algebra Cl(V,B) is the free associative algebra with a unit generated by V satisfying the relation

$$x^2 = -B(x, x).$$

• Let V be an n- dimensional vector space with a non-generated symmetric bilinear form $B:V\times V\to \mathbb{R}$. The universal Clifford algebra Cl(V,B) is the free associative algebra with a unit generated by V satisfying the relation

$$x^2 = -B(x, x).$$

• It is always possible to find an orthonormal bases basis $e_1, ..., e_{p+q}$ satisfying

$$B(e_i, e_i) = \begin{cases} -1, & i = 1, ..., p \\ 1, & i = 1, ..., q \end{cases}$$

for some unique p and q with p + q = n.(Sylvester)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

• Let V be an n- dimensional vector space with a non-generated symmetric bilinear form $B:V\times V\to \mathbb{R}$. The universal Clifford algebra Cl(V,B) is the free associative algebra with a unit generated by V satisfying the relation

$$x^2 = -B(x, x).$$

• It is always possible to find an orthonormal bases basis $e_1, ..., e_{p+q}$ satisfying

$$B(e_i, e_i) = \begin{cases} -1, & i = 1, ..., p \\ 1, & i = 1, ..., q \end{cases}$$

for some unique p and q with p + q = n.(Sylvester)

• Then the Clifford algebra Cl(V, B) is denoted by $Cl_{p,q}$.

• Let V be an n- dimensional vector space with a non-generated symmetric bilinear form $B:V\times V\to \mathbb{R}$. The universal Clifford algebra Cl(V,B) is the free associative algebra with a unit generated by V satisfying the relation

$$x^2 = -B(x, x).$$

• It is always possible to find an orthonormal bases basis $e_1, ..., e_{p+q}$ satisfying

$$B(e_i, e_i) = \begin{cases} -1, & i = 1, ..., p \\ 1, & i = 1, ..., q \end{cases}$$

for some unique p and q with p + q = n.(Sylvester)

- Then the Clifford algebra Cl(V, B) is denoted by $Cl_{p,q}$.
- Clifford algebras were introduced by William Clifford in 1878.

The Clifford algebra $Cl_{p,q}$ is formed by the elements presented as

$$x=\sum_{A}x_{A}e_{A},$$

where x_{Δ} are real numbers,

$$A = \{i_1, i_2, \cdots, i_k \mid 1 \le i_1 < i_2 < \cdots < i_k \le n\},\$$

and

$$e_A = e_{i_1}e_{i_2}\cdots e_{i_k}$$
, $e_{\emptyset} = e_0 = 1$.

• When n=0, $C\ell_{0,0}\simeq \mathbb{R}$

- When n=0, $C\ell_{0,0}\simeq \mathbb{R}$
- When n=1, $C\ell_{0,1}\simeq \mathbb{C}$,

- When n=0, $C\ell_{0,0}\simeq \mathbb{R}$
- When n=1, $C\ell_{0,1}\simeq \mathbb{C}$,
- When n = 2, $C\ell_{0.2} \simeq \mathbb{H}$.

- When n=0, $C\ell_{0.0}\simeq \mathbb{R}$
- When n=1, $C\ell_{0.1}\simeq\mathbb{C}$,
- When n = 2, $C\ell_{0.2} \simeq \mathbb{H}$.
- ullet $C\ell_{3,0} \simeq Mat(2,\mathbb{C})$, $C\ell_{0,3} = \mathbb{H} \oplus \mathbb{H}$,

Involutions

• In the complex plane there is one involution

$$\overline{x + yi} = x - yi$$

Involutions

• In the complex plane there is one involution

$$\overline{x + yi} = x - yi$$

• In Clifford algebras there are several involutions

involutions	i = 1,, n	products
main or grade ' reversion * conjugation –	$egin{aligned} e_i' &= -e_i \ e_i^* &= e_i \ \overline{e}_i &= -e_i \ \hat{e}_i &= (-1)^{\delta_{in}} e_i \end{aligned}$	(ab)' = a'b' $\frac{(ab)^*}{ab} = b^*a^*$ ab = ba ab = ab

S.-L. Eriksson (TUT)

Involutions

• In the complex plane there is one involution

$$\overline{x + yi} = x - yi$$

• In Clifford algebras there are several involutions

involutions	i=1,,n	products
main or grade '	$e_i' = -e_i$	(ab)' = a'b'
reversion *	$e_i^* = e_i$	$\left \begin{array}{c} (ab)^* = b^*a^* \end{array} \right $
conjugation –	$\overline{e}_i = -e_i$	$ab = b\overline{a}$
	$\hat{e}_{i} = (-1)^{\delta_{in}}e_{i}$	$\widehat{ab}=\widehat{a}\widehat{b}$

• In the complex plane the main and the conjugation are the usual complex conjugation.

S.-L. Eriksson (TUT) Hyperbolic 17 / 52

Generalizations of Real and Imaginary Parts

• Any element $a \in C\ell_{0,n}$ may be uniquely decomposed as

$$a = b + ce_n$$

for $b, c \in C\ell_{0,n-1}$ (the Clifford algebra generated by $e_1,...,e_{n-1}$).

S.-L. Eriksson (TUT)

Generalizations of Real and Imaginary Parts

• Any element $a \in C\ell_{0,n}$ may be uniquely decomposed as

$$a = b + ce_n$$

for $b, c \in C\ell_{0,n-1}$ (the Clifford algebra generated by $e_1, ..., e_{n-1}$).

• The mappings $P: C\ell_{0,n} \to C\ell_{0,n-1}$ and $Q: C\ell_{0,n} \to C\ell_{0,n-1}$ are defined by

$$Pa = b$$
, $Qa = c$.

Generalizations of Real and Imaginary Parts

• Any element $a \in C\ell_{0,n}$ may be uniquely decomposed as

$$a = b + ce_n$$

for $b, c \in C\ell_{0,n-1}$ (the Clifford algebra generated by $e_1, ..., e_{n-1}$).

• The mappings $P: C\ell_{0,n} \to C\ell_{0,n-1}$ and $Q: C\ell_{0,n} \to C\ell_{0,n-1}$ are defined by

$$Pa = b$$
, $Qa = c$.

• When n = 1, P is the real part and Q the imaginary part of the complex number.

S.-L. Eriksson (TUT)

$$P(ab) = (Pa) Pb + (Qa) Q(b')$$
 ,

$$P\left(\mathsf{a}\mathsf{b}
ight) = \left(\mathsf{P}\mathsf{a}
ight)\mathsf{P}\mathsf{b} + \left(\mathsf{Q}\mathsf{a}
ight)\mathsf{Q}\left(\mathsf{b}'
ight)$$
 ,

$$Q(ab) = aQb + (Qa)b'.$$

•

$$P(ab) = (Pa) Pb + (Qa) Q(b')$$
 ,

$$Q(ab) = aQb + (Qa)b'.$$

$$(Qf)' = Q'f, \qquad (Pf)' = P'f.$$

•

$$P(ab) = (Pa) Pb + (Qa) Q(b')$$
,

•

$$Q(ab) = aQb + (Qa)b'.$$

•

$$(Qf)' = Q'f, \qquad (Pf)' = P'f.$$

• \mathbb{R}^{n+1}_+ is identified with the set of elements $x_0 + x_1 e_1 + ... + x_n e_n$ called **paravectors**.

P(ab) = (Pa) Pb + (Qa) Q(b') ,

$$(ab) = (ab) \cdot b + (ab) \cdot Q(b)$$

 $Q\left(ab
ight)=aQb+\left(Qa
ight)b^{\prime}.$

$$(Qf)' = Q'f, \qquad (Pf)' = P'f.$$

- \mathbb{R}^{n+1}_+ is identified with the set of elements $x_0 + x_1 e_1 + ... + x_n e_n$ called **paravectors**.
- An element a is a paravector in $Cl_{0,n}$ if and only if

$$\sum_{i=0}^{n} e_i a e_i + (n-1) a' = 0.$$

Which Metric?

Theorem

The group of orientation preserving Möbius transformations mapping the upper half space onto itself is the group of isometries of the upper half space model, that is mappings f satisfying

$$d(f(v), f(w)) = d(v, w).$$

(that is translations, dilatations, special orthogonal transformations and the inversion with respect to the sphere mapping the upper half onto itself and their compositions)

S.-L. Eriksson (TUT) Hyperbolic 20 / 52

Hyperbolic Harmonic Functions

We consider harmonic functions on a Riemannian space

$$\mathbb{R}^{n+1}_+ = \{(x_0, ..., x_n) \mid x_n > 0\}$$

with respect to the hyperbolic metric

$$ds^2 = \frac{dx_0^2 + ... + dx_n^2}{x_n^2}.$$

Hyperbolic Harmonic Functions

• We consider harmonic functions on a Riemannian space

$$\mathbb{R}^{n+1}_+ = \{(x_0, ..., x_n) \mid x_n > 0\}$$

with respect to the hyperbolic metric

$$ds^2 = \frac{dx_0^2 + ... + dx_n^2}{x_n^2}.$$

They satisfy the Laplace-Beltrami equation

$$x_n \triangle h - (n-1) \frac{\partial h}{\partial x_n} = 0.$$

S.-L. Eriksson (TUT)

Hyperbolic Harmonic Functions

• We consider harmonic functions on a Riemannian space

$$\mathbb{R}^{n+1}_+ = \{(x_0, ..., x_n) \mid x_n > 0\}$$

with respect to the hyperbolic metric

$$ds^2 = \frac{dx_0^2 + ... + dx_n^2}{x_n^2}.$$

They satisfy the Laplace-Beltrami equation

$$x_n \triangle h - (n-1) \frac{\partial h}{\partial x_n} = 0.$$

 This equation and the metric have been studied for example by A. Weinstein in 1948–1953, A. Huber in 1953, Ahlfors in 1981, Loo-keng Hua in 1969.

Invariant Laplace

Theorem

Let Ω be an open subset of the upper half space \mathbb{R}^{n+1}_+ . If $f:\Omega\to\mathbb{R}$ is a function satisfying

$$x_n \triangle f - (n-1) \frac{\partial f}{\partial x_n} = 0$$

then $f \circ T$ satisfies the same equation on $T^{-1}(\Omega)$ for any orientation preserving Möbius transformation T mapping \mathbb{R}^{n+1}_+ onto itself.

S.-L. Eriksson (TUT)

Hyperbolic metric

• The hyperbolic surface measure and the volume measure are

$$d\sigma_h = \frac{d\sigma}{x_n^n}, dx_h = \frac{dx}{x_n^{n+1}}.$$

and the hyperbolic normal derivative is

$$\frac{\partial}{\partial n_h} = x_n \frac{\partial}{\partial n}.$$

Hyperbolic metric

The hyperbolic surface measure and the volume measure are

$$d\sigma_h = \frac{d\sigma}{x_n^n}, dx_h = \frac{dx}{x_n^{n+1}}.$$

and the hyperbolic normal derivative is

$$\frac{\partial}{\partial n_h} = x_n \frac{\partial}{\partial n}.$$

• geodesics are circular arcs perpendicular to the hyperplane $x_n = 0$ (half-circles whose origin is on $x_n = 0$ and straight vertical lines ending on the hyperplane $x_n = 0$.

◆ロト ◆団ト ◆草ト ◆草ト ■ りへぐ

• The hyperbolic ball $B_h(a, R_h)$ with the hyperbolic center a and the radius R_h is an euclidean ball with the euclidean center

$$a_e = a_0 + a_1 e_1 + ... + a_{n-1} e_{n-1} + e_n a_n \cosh R_h$$

and the euclidean radius

$$R_e = a_n \sinh R_h$$
.

• The hyperbolic ball $B_h(a, R_h)$ with the hyperbolic center a and the radius R_h is an euclidean ball with the euclidean center

$$a_e = a_0 + a_1 e_1 + ... + a_{n-1} e_{n-1} + e_n a_n \cosh R_h$$

and the euclidean radius

$$R_e = a_n \sinh R_h$$
.

• the hyperbolic distance $d_h(x, a)$ between the points $x = x_0 + e_1x_2 + ... + x_ne_n$ and $a = a_0 + e_1a_1 + ... + a_ne_n$ is

$$R_h = d_h(x, a) = \operatorname{arcosh} \delta(x, a),$$

 $\delta(x, a) = \frac{|x - a|^2 + 2a_nx_n}{2x_na_n}.$

We map P and Q to the points e_n and λe_n . Then

$$\begin{split} d_h(P,Q) &= d_h\left(e_n,\lambda e_n\right) = \int_1^\lambda \frac{dt}{t} = \ln\lambda, \\ \delta(P,Q) &= \delta\left(e_n,\lambda e_n\right) = \frac{1}{2}(\lambda + \frac{1}{\lambda}) \\ \cosh d_h(P,Q) &= \cosh\ln\lambda = \frac{1}{2}(e^{\ln\lambda} + e^{-\ln\lambda}) = \delta(P,Q). \end{split}$$

 Hyperbolic function theory was initiated by Heinz Leutwiler around 1990.

- Hyperbolic function theory was initiated by Heinz Leutwiler around 1990.
- For any $m \in \mathbb{N}$, the power function

$$f(x) = x^m$$

is paravector-valued for any paravector $x = x_0 + x_1 e_1 + ... + x_n e_n$.

In Higher Dimensions

• For any $m \in \mathbb{N}$, the power function x^m satisfies the property

$$x^{m} = \frac{\partial h}{\partial x_{0}} - \sum_{i=1}^{n} e_{i} \frac{\partial h}{\partial x_{i}}$$
 (1)

where

$$h(x) = \frac{1}{m+1} \operatorname{Re} x^{m+1}.$$

In Higher Dimensions

• For any $m \in \mathbb{N}$, the power function x^m satisfies the property

$$x^{m} = \frac{\partial h}{\partial x_{0}} - \sum_{i=1}^{n} e_{i} \frac{\partial h}{\partial x_{i}}$$
 (1)

where

$$h(x) = \frac{1}{m+1} \operatorname{Re} x^{m+1}.$$

h satisfies the preceding hyperbolic equation

$$x_n \triangle f - (n-1) \frac{\partial f}{\partial x_n} = 0.$$

H-solutions

 Heinz Leutwiler initiated in 1992 the research of the functions f, called H-solutions, admitting locally the preceding property for some function h satisfying the equality • Another characterization of H-solutions is that they are paravector-valued solutions $f = u_0 + u_1 e_1 + ... + u_n e_n$ of the following generalized Cauchy-Riemann equation

$$\begin{aligned} x_n \left(\frac{\partial u_0}{\partial x_0} - \sum_{i=1}^n \frac{\partial u_i}{\partial x_i} \right) + (n-1) u_n &= 0, \\ \frac{\partial u_i}{\partial x_k} &= \frac{\partial u_k}{\partial x_i}, \quad i, k = 1, ..., n, \\ \frac{\partial u_0}{\partial x_k} &= -\frac{\partial u_k}{\partial x_0}, \quad k = 1, ..., n. \end{aligned}$$
 (H)

General assumptions

• Let Ω be an open subset of \mathbb{R}^{n+1} .

General assumptions

- Let Ω be an open subset of \mathbb{R}^{n+1} .
- We consider function mapping

$$f:\Omega\to \mathcal{C}\ell_{0,n}$$

whose components are continuously differentiable.

Dirac operators

• The left Dirac operators in $C\ell_{0,n}$ is defined by

$$D_I f = \sum_{i=0}^n e_i \frac{\partial f}{\partial x_i}, \qquad \overline{D}_I f = \sum_{i=0}^n \overline{e_i} \frac{\partial f}{\partial x_i},$$

Dirac operators

• The left Dirac operators in $C\ell_{0,n}$ is defined by

$$D_I f = \sum_{i=0}^n e_i \frac{\partial f}{\partial x_i}, \qquad \overline{D}_I f = \sum_{i=0}^n \overline{e_i} \frac{\partial f}{\partial x_i},$$

• The right Dirac operators by

$$D_r f = \sum_{i=0}^n \frac{\partial f}{\partial x_i} e_i, \qquad \overline{D_r} f = \sum_{i=0}^n \frac{\partial f}{\partial x_i} \overline{e_i}.$$

Theorem (Cauchy formula)

Let $\Omega \in \mathbb{R}^{n+1}$ be an open, $K \subset \Omega$ a compact set with smooth boundary δK and ν its outer unit normal field. Then for any monogenic function $f: \Omega \to Cl_{0,n}$, that is $D_l f = 0$, we have

$$f(q) = \frac{1}{\omega_{n+1}} \int_{\delta K} \frac{(p-q)^{-1}}{|p-q|^{n-1}} \nu(p) f(p) dS,$$

for all $q \in K$, where ω_{n+1} is the surface measure of the unit ball in \mathbb{R}^{n+1} .

S.-L. Eriksson (TUT) Hyperbolic

Modified Dirac Operators

• Let Ω be an open subset of $\mathbb{R}^{n+1} \setminus \{x_n = 0\}$.

Modified Dirac Operators

- Let Ω be an open subset of $\mathbb{R}^{n+1} \setminus \{x_n = 0\}$.
- The modified Dirac operators M_k^l , M_k^r , \overline{M}_k^l and \overline{M}_k^r are introduced by

$$\begin{split} & M_{k}^{I}f\left(x\right) = D_{I}f\left(x\right) + k\frac{Q^{\prime}f}{x_{n}}, & M_{k}^{r}f\left(x\right) = D_{r}f\left(x\right) + k\frac{Qf}{x_{n}}\\ & \overline{M}_{k}^{I}f\left(x\right) = \overline{D}_{I}f\left(x\right) - k\frac{Q^{\prime}f}{x_{n}}, & \overline{M_{k}}^{r}f\left(x\right) = \overline{D}_{r}f\left(x\right) - k\frac{Qf}{x_{n}}. \end{split}$$

where $f \in \mathcal{C}^1\left(\Omega, C\ell_{0,n}\right)$.

Hypermonogenic functions

Definition

Let $\Omega \subset \mathbb{R}^{n+1}$ be open. A function $f: \Omega \to C\ell_{0,n}$ is *left hypermonogenic function*, if $f \in C^1(\Omega)$ and

$$M_{k}^{I}f\left(x\right) =0$$

for any $x \in \Omega \setminus \{x_n = 0\}$. The right k-hypermonogenic functions are defined similarly. If k = n - 1 left hypermonogenic functions are called hypermonogenic functions.

 Hypermonogenic functions were introduced by H. Leutwiler and S.-L. E in 2000.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

S.-L. Eriksson (TUT) Hyperbolic 34 / 52

• Hypermonogenic functions have values in the total Clifford algebra $C\ell_{0,n}$.

- Hypermonogenic functions have values in the total Clifford algebra $C\ell_{0,n}$.
- Paravector-valued hypermonogenic functions are *H*-solutions

- Hypermonogenic functions have values in the total Clifford algebra $C\ell_{0,n}$.
- Paravector-valued hypermonogenic functions are *H*-solutions
- A function $f: \Omega \to C\ell_{0,n}$ is left k-hypermonogenic function if and only if f^* is right k-hypermonogenic

S.-L. Eriksson (TUT) Hyperbolic

- Hypermonogenic functions have values in the total Clifford algebra $C\ell_{0,n}$.
- Paravector-valued hypermonogenic functions are H-solutions
- A function $f: \Omega \to C\ell_{0,n}$ is left k-hypermonogenic function if and only if f^* is right k-hypermonogenic
- If $f: \Omega \to C\ell_{0,n}$ is k-hypermonogenic, then $\widehat{f}(\widehat{x})$ is k-hypermonogenic in $\widehat{\Omega} = \{x \in \mathbb{R}^{n+1} \mid \widehat{x} \in \Omega\}$.

S.-L. Eriksson (TUT) Hyperbolic

Notably studied by

The theory is notably studied by

H. Leutwiler

J. Cnops

P. Cerejeiras

Th. Hempfling

P. Zeilinger

Pernas, L.

Junxia Li

S.-I. Friksson

Kettunen, J.

Hirvonen, J. H. Orelma

Ryan, J.

Qiao, Yuying

S. Krausshar

F. Lehman

I. Ramadanoff

Bernstein, Sw.

Laville, G.

Xiaoli Bian

Generalized Cauchy-Riemann equations

Theorem

Let Ω be an open subset of \mathbb{R}^{n+1} and $f:\Omega\to C\ell_{0,n}$ be a mapping with continuous partial derivatives. The equation $Df+k\frac{Q'f}{x_n}=0$ is equivalent with the following system of equations

$$\begin{aligned} &D_{n-1}\left(Pf\right) - \frac{\partial (Q'f)}{\partial x_n} + k \frac{Q'f}{x_n} = 0, \\ &D_{n-1}\left(Qf\right) + \frac{\partial P'(f)}{\partial x_n} = 0. \end{aligned}$$

Theorem

Let $f: \Omega \to C\ell_{0,n}$ be twice continuously differentiable. Then

$$P(M_{k}\overline{M}_{k}f) = \triangle Pf - \frac{k}{x_{n}}\frac{\partial Pf}{\partial x_{n}}$$

$$Q(M_{k}\overline{M}_{k}f) = \triangle Qf - \frac{k}{x_{n}}\frac{\partial Qf}{\partial x_{n}} + k\frac{Qf}{x_{n}^{2}}$$

If f is k-hypermonogenic, then

$$\triangle Pf - \frac{k}{x_n} \frac{\partial Pf}{\partial x_n} = 0$$

$$\triangle Qf - \frac{k}{x_n} \frac{\partial Qf}{\partial x_n} + k \frac{Qf}{x_n^2} = 0.$$

S.-L. Eriksson (TUT) Hyperbolic 38 / 52

Laplace Beltrami equations

These are Laplace-Beltrami equations with respect to the Riemannian metric

$$ds^2 = \frac{\sum_{i=0}^n dx_i^2}{x_n^{\frac{2k}{n-1}}}.$$

• $M_{n-1}(fx) = (M_{n-1}f)x$ for any paravector valued function f.

- $M_{n-1}(fx) = (M_{n-1}f)x$ for any paravector valued function f.
- A twice continuously differentiable function $f: \Omega \to Cl_{0,n}$ is called k-hyperbolic harmonic if $M_k \overline{M}_k f = 0$.

- $M_{n-1}(fx) = (M_{n-1}f)x$ for any paravector valued function f.
- A twice continuously differentiable function $f: \Omega \to Cl_{0,n}$ is called k-hyperbolic harmonic if $M_k \overline{M}_k f = 0$.
- Let f: Ω → Cl_{0,n} be twice continuously differentiable. Then f
 is k-hypermonogenic if and only if f and xf are k-hyperbolic
 harmonic functions.

- $M_{n-1}(fx) = (M_{n-1}f)x$ for any paravector valued function f.
- A twice continuously differentiable function $f: \Omega \to Cl_{0,n}$ is called k-hyperbolic harmonic if $M_k \overline{M}_k f = 0$.
- Let $f:\Omega \to Cl_{0,n}$ be twice continuously differentiable. Then f is k-hypermonogenic if and only if f and xf are k-hyperbolic harmonic functions.
- Let Ω be an open subset of \mathbb{R}^{n+1} and $f:\Omega\to C\ell_{0,n}$ be twice continuously differentiable. Then f is k-hypermonogenic if and only if there exists locally a k-hyperbolic harmonic mapping H with values in $C\ell_{0,n-1}$ satisfying $\overline{D}H=f$.

S.-L. Eriksson (TUT) Hyperbolic

Let $U \subset \mathbb{R}^{n+1}_+$ be open. The following properties are equivalent:

• h is hyperbolic harmonic on U.

Let $U \subset \mathbb{R}^{n+1}_+$ be open. The following properties are equivalent:

- h is hyperbolic harmonic on U.
- \bullet $h \in \mathcal{C}^{2}\left(U\right)$ and

$$h(a) = \frac{1}{\sigma_n \sinh^n R_h} \int_{\partial B_h(a, R_h)} h d\sigma_h$$

for all hyperbolic balls satisfying $B_h\left(a,R_h\right)\subset U$.

Let $U \subset \mathbb{R}^{n+1}_+$ be open. The following properties are equivalent:

- h is hyperbolic harmonic on U.
- \bullet $h \in \mathcal{C}^2(U)$ and

$$h\left(\mathbf{a}
ight) = rac{1}{\sigma_{n} \sinh^{n} R_{h}.} \int_{\partial B_{h}\left(\mathbf{a}, R_{h}
ight)} h d\sigma_{h}$$

for all hyperbolic balls satisfying $\overline{B_h(a,R_h)}\subset U$.

 \bullet $h \in \mathcal{C}^{2}\left(U\right)$ and

$$h\left(a
ight)=rac{1}{V_{h}\left(B_{h}\left(a,R_{h}
ight)
ight)}\int_{B_{h}\left(a,R_{h}
ight)}fdx_{h},$$

for all hyperbolic balls satisfying $\overline{B_h(a, R_h)} \subset U$, where $V_h(B_h(a, R_h)) = \sigma \int_0^{R_h} \sinh^n t dt$.

• x^m , $m \in \mathbf{Z}$, is hypermonogenic

- x^m , $m \in \mathbf{Z}$, is hypermonogenic
- $e^x = \sum \frac{1}{k!} x^k$,

- x^m , $m \in \mathbf{Z}$, is hypermonogenic
- $e^x = \sum \frac{1}{k!} x^k$,
- $\sin x = \sum \frac{1}{(2k+1)!} (-1)^k x^{2k+1}$,

- x^m , $m \in \mathbf{Z}$, is hypermonogenic
- $e^x = \sum \frac{1}{k!} x^k$,
- $\sin x = \sum \frac{1}{(2k+1)!} (-1)^k x^{2k+1}$,
- $\cos x = \sum \frac{1}{(2k)!} (-1)^k x^{2k}$

- x^m , $m \in \mathbf{Z}$, is hypermonogenic
- $e^x = \sum \frac{1}{k!} x^k$,
- $\sin x = \sum \frac{1}{(2k+1)!} (-1)^k x^{2k+1}$,
- $\cos x = \sum \frac{1}{(2k)!} (-1)^k x^{2k}$
- If $f(z) = \sum a_k z^k$ is holomorphic and $a_k \in \mathbb{R}$, then $f(x) = \sum a_k x^k$ is hypermonogenic.

Fueter Construction

If f = u + iv is holomorphic in an open set $\Omega \subset \mathbf{C}$, then

$$\widetilde{f}(x) = u\left(x_0, \sqrt{x_1^2 + \dots + x_n^2}\right) + \frac{x_1e_1 + \dots + x_ne_n}{\sqrt{x_1^2 + \dots + x_n^2}} v\left(x_0, \sqrt{x_1^2 + \dots + x_n^2}\right)$$

is hypermonogenic.

• The k-hypermonogenic functions in an open subset Ω of \mathbb{R}^{n+1} form a right $C\ell_{0.n-1}$ -module.

- The k-hypermonogenic functions in an open subset Ω of \mathbb{R}^{n+1} form a right $C\ell_{0,n-1}$ -module.
- If f is a k-hypermonogenic function, then the function fe_n is hypermonogenic if and only if f = 0.

- The k-hypermonogenic functions in an open subset Ω of \mathbb{R}^{n+1} form a right $C\ell_{0,n-1}$ -module.
- If f is a k-hypermonogenic function, then the function fe_n is hypermonogenic if and only if f = 0.
- A function $f:\Omega\to C\ell_{0,n}$ is k-hypermonogenic if and only if the function $\frac{fe_n}{\kappa^k}$ is -k-hypermonogenic.

- The k-hypermonogenic functions in an open subset Ω of \mathbb{R}^{n+1} form a right $C\ell_{0,n-1}$ -module.
- If f is a k-hypermonogenic function, then the function fe_n is hypermonogenic if and only if f = 0.
- A function $f: \Omega \to C\ell_{0,n}$ is k-hypermonogenic if and only if the function $\frac{fe_n}{x^k}$ is -k-hypermonogenic.
- A function $f: \Omega \to C\ell_{0,n}$ is left k-hypermonogenic if and only if the function fe_n satisfies the equation

$$D_I g - \frac{k e_n P g}{x_n} = 0.$$

Stokes theorem

Theorem

For Ω an open subset of \mathbb{R}^{n+1}_+ (or \mathbb{R}^{n+1}_-), $K \subset \Omega$ a smoothly bounded compact set with outer unit normal field ν , and $f, g \in \mathcal{C}^1(\Omega, C\ell_{0,n})$,

$$\begin{split} &\int_{\partial K} P\left(g \nu f\right) \frac{d\sigma}{x_n^k} &= \int_K P\left(\left(M_k^r g\right) f + g M_k^l f\right) \frac{dx}{x_n^k} \\ &\int_{\partial K} Q\left(g \nu f\right) d\sigma &= \int_K Q\left(\left(M_{-k}^r g\right) f + g M_k^l f\right) dx. \end{split}$$

S.-L. Eriksson (TUT) Hyperbolic 45 / 5

Let Ω be an open subset of \mathbb{R}^{n+1}_+ and $\overline{K} \subset \Omega$ a smoothly bounded compact set with outer unit normal field ν . If f is hypermonogenic in Ω and $y \in K$, then

$$f(y) = \frac{2^{n-1}}{\omega_{n+1}} \int_{\partial K} \left(K_1(x, y) \nu(x) f(x) - K_2(x, y) \widehat{\nu(x)} \widehat{f(x)} \right) d\sigma.$$

where

$$K_{1}(x,y) = \frac{y_{n}^{n-1}(x-y)^{-1}}{|x-y|^{n-1}|x-\widehat{y}|^{n-1}}$$

$$K_{2}(x,y) = \frac{y_{n}^{n-1}(\widehat{x}-y)^{-1}}{|x-y|^{n-1}|x-\widehat{y}|^{n-1}}.$$

Let Ω be an open subset of \mathbb{R}^{n+1}_+ and $\overline{K}\subset \Omega$ a smoothly bounded compact set with outer unit normal field ν . If f is hypermonogenic in Ω and $y\in K$

$$f(x) = \frac{2^{n-1}}{\omega_{n+1}} \int_{\partial K} k(x, y) \left(Q\left(yv'(y)f'(y)\right) + xQ'\left(v(y)f(y)\right) \right)$$

where

$$k(x,y) = \frac{1}{2^{2n-2}y_n^n} \overline{D}^x \left(\int_{\frac{|y-x|}{|x-\widehat{y}|}}^1 \frac{(1-s^2)^{n-1}}{s^n} ds \right)$$
$$= -\frac{x_n^{n-1}}{y_n} \left(\frac{(x-y)^{-1} - (x-\widehat{y})^{-1}}{|x-y|^{n-1} |x-\widehat{y}|^{n-1}} \right).$$

are hypermonogenic with respect to x in $\mathbb{R}^{n+1} \setminus \{y, \hat{y}\}$.

Let Ω be an open subset of \mathbb{R}^{n+1}_+ and $\overline{K} \subset \Omega$ a smoothly bounded compact set with outer unit normal field ν . If f is continuous on Ω then

$$g(x) = \frac{2^{n-1}}{\omega_{n+1}} \int_{\partial K} k(x, y) \left(Q\left(y\nu'(y)f'(y)\right) + xQ'\left(\nu(y)f(y)\right) \right) d\sigma$$

is hypermonogenic in $\mathbb{R}^{n+1}_+ \backslash \partial K$.

References

- Cnops, J., Hurwitz pairs and applications of Möbius transformation, Habilitation thesis, Univ. Gent, 1994.
- Eriksson-Bique, S.-L, On modified Clifford analysis, *Complex Variables*, Vol. 45, (2001), 11–32.
- Eriksson-Bique, S.-L., *k*—hypermonogenic functions. *In Progress in Analysis*, Vol I, World Scientific (2003), 337–348.

- Eriksson, S.-L., Integral formulas for hypermonogenic functions, *Bull. Bel. Math. Soc.* **11** (2004), 705–717.
- Eriksson-Bique, S.-L. and Leutwiler, H., On modified quaternionic analysis in \mathbb{R}^3 , Arch. Math. **70** (1998), 228–234.
- Eriksson-Bique, S.-L. and Leutwiler, H., Hypermonogenic functions. In *Clifford Algebras and their Applications in Mathematical Physics*, Vol. 2, Birkhäuser, Boston, 2000, 287–302.

- Eriksson-Bique, S.-L. and Leutwiler, H., Hypermonogenic functions and Möbius transformations, *Advances in Applied Clifford algebras*, Vol **11** (S2), December (2001), 67–76.
- Eriksson, S.-L. and Leutwiler, H., Hypermonogenic functions and their Cauchy-type theorems. In *Trend in Mathematics: Advances in Analysis and Geometry*, Birkhäuser, Basel/Switzerland, 2004, 97–112.
- Eriksson, S.-L. and Leutwiler, H., Contributions to the theory of hypermonogenic functions, *Complex Variables and elliptic equations* **51**, Nos. 5-6 (2006), 547–561.

- Leutwiler, H., Modified Clifford analysis, *Complex Variables* **17** (1992), 153–171.
- Leutwiler, H., Modified quaternionic analysis in \mathbb{R}^3 , Complex Variables **20** (1992), 19–51.
- Eriksson, S-L., Bernstein, S., Ryan, J., Qiao, Y., Function Theory for Laplace and Dirac-Hodge Operators in Hyperbolic Space, Journal d'Analyse Mathematique, Vol 98 (2006) 43–64.