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1. Introduction

In geometric function theory there are many different distance functions around,
which — to a greater or lesser degree — resemble the classical hyperbolic metric.
Some of these are defined by geometric means, some by implicit formulas, and
many by integrating over certain weight functions.

What all these metrics have in common, is that they are defined in some
proper subdomain D ( Rn, and are strongly affected by the geometry of the do-
main boundary. Thus we should actually speak of families of metrics {dD}D(Rn ,
since the metric looks different in each domain, even though the defining formula
might be the same. In the literature, however, one usually abuses notation and
speaks only of “the metric d”, which we will do here also. The metrics typically
have negative curvature, ie. the geodesics, if they exist, avoid the boundary.
Most of the metrics described here also have an invariance property in the sense
that

dD(x, y) = df(D)(f(x), f(y)),(1.1)
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for mappings f belonging to some fixed class, say similarities, Möbius transfor-
mations, or conformal mappings.

Many of the metrics, especially those with simple explicit formulas, have been
developed as tools for estimating other, more hard-to-handle metrics, such as the
quasihyperbolic metric, which is probably the one most commonly used metric
presented in this text. It has found applications in many branches of analysis,
and is a very natural generalization of the classical hyperbolic metric to any
domain D and dimension n ≥ 2. It has some flaws though, in most cases one
cannot compute it, and actually very little is known about the metric itself. The
difficulty of explicit computation is typical also for some other metrics, and for
this reason we have a lot of “similar” metrics around, which in many cases are
equivalent to each other; a handy feature, if one metric is suited for your study,
but the other is not. Here we will try to give a survey on some of these metrics.

2. The metrics

The classical starting point is the hyperbolic geometry developed by Poincaré
and Lobachevsky in the early 19:th century. Poincaré used the unit ball as
domain for his model, and Lobachevsky used the half space. These models
turned out to be equivalent in the sense that Möbius transformations between
them are isometries.

2.1. Definition. Let D ∈ {Hn,Bn}, and define a weight (or density) function
w : D → R by

w(z) =
1

dist(z, ∂D)
, for D = Hn and w(z) =

2

1 − |z|2
, for D = Bn.

Then the hyperbolic length ℓρ(γ) of a curve γ is defined by

ℓρ(γ) = ℓρ,D(γ) =

∫

γ

w(z) |dz|,(2.2)

where |dz| denotes the length element. After this, the hyperbolic distance ρD is
defined for all x, y ∈ D by

ρD(x, y) = inf
γ∈Γxy

ℓρ,D(γ) = inf
γ∈Γxy

∫

γ

w(z) |dz|,(2.3)

where Γxy is the family of all rectifiable curves joining x and y within D.

The above method to define metrics is frequently used. In fact, to get a
completely new metric, the only thing that needs to be changed is the weight
function. After that, the length and the new distance function are defined as in
(2.2) and (2.3), respectively. The benefit of defining a metric d like this is that
it will automatically be intrinsic, in other words, it will be its own inner metric
d̂. This means that

dD(x, y) = d̂D(x, y) := inf
γ∈Γxy

ℓd,D(γ).(2.4)
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2.5. Geodesics. When a metric is defined in the way described above, one
might ask how to find the curve γ ∈ Γxy giving the desired infimum (which —
if it is found — is in fact a minimum). In general, this can be far from trivial,
even if such a curve exists. Curves minimizing the distance in this way are
called geodesics or geodesic segments. Another way of characterizing a geodesic,
is that it satisfies the triangle inequality with equality, ie. the curve γ ∈ Γxy is a
geodesic, if for all u, v, w ∈ |γ| properly ordered, we have

dD(u,w) = dD(u, v) + dD(v, w).

We denote by JdD
[x, y] the geodesic segment between x and y in (D, d). This

segment may, however, not be unique, and no particular choice is made here. A
metric space in which geodesic segments exist between any two given points, is
called a geodesic metric space. If, in addition, the geodesic is unique, the space
is totally geodesic. Naturally a geodesic metric is always intrinsic.

2.6. Hyperbolic metric in G. It is also possible to define the hyperbolic
metric in a general simply connected subdomain G of the plane, since by the
Riemann mapping theorem there exists a conformal mapping f : G → fG = B2.
Then the metric density is defined by

ρG(z) = ρB2(f(z))|f ′(z)|.

From the Schwarz lemma it follows that ρG is independent of the choice of f .
We then define the hyperbolic metric hG by (2.3) using the density ρG. This
definition automatically gives the hyperbolic metric the invariance property of
(1.1) for the class of conformal mappings. Note, that while in the classical cases
we use the traditional notation ρBn and ρHn for the hyperbolic metric, in general
domains we use hG. Also, note that when the dimension n ≥ 3, every conformal
mapping is a Möbius mapping, so it is not possible to extend the definition to
general simply connected domains like above. In fact, for n ≥ 3 the hyperbolic
metric is defined only in Bn and Hn.

The hyperbolic metric is well understood, and the geodesic flow is known. In
fact, in the classical models Bn and Hn the geodesics are known to be circular
arcs orthogonal to the boundary, and in other domains the geodesics simply are
induced by the conformal mapping. Moreover, for the classical cases there are
explicit formulas to calculate the value of the hyperbolic metrics in terms of
euclidean distances. For a comprehensive study on the classical cases, see the
book by Beardon [Be1]. The hyperbolic metric in an arbitrary domain has been
studied by F. Gehring, K. Hag and A. Beardon, see eg. the articles [Be3] and
[GeHa1].
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Figure 1: Hyperbolic geodesics in Bn and Hn.

One way to calculate the hyperbolic distance, is to use the absolute cross-ratio
defined by

|a, b, c, d| =
|a − c||b − d|

|a − b||c − d|
, a, b, c, d ∈ Rn.

One can prove that, if C is the circle containing JρBn [x, y] or JρHn [x, y] and
{x∗, y∗} = C ∩∂Bn or {x∗, y∗} = C ∩∂Hn in the same order as in Figure 1, then

ρBn(x, y) = log |x∗, x, y, y∗| = ρHn(x, y).(2.7)

Other explicit formulas have also been derived, see the book [Be1].

2.8. The Apollonian metric. The formula in (2.7) makes one wonder whether
a similar approach could be generalized to any domain D ( Rn. It turns out
that this is very much possible; the Apollonian distance in a domain D is defined
by

αD(x, y) = sup
z,w∈∂D

log
|z − x|

|z − y|

|w − y|

|w − x|
,(2.9)

for all x, y ∈ D. This is a metric, unless the boundary is the subset of a circle
or a line, in which case it is only a pseudo-metric, ie. the metric axiom d(x, y) =
0 ⇒ x = y need not hold.

Geometrically the Apollonian metric can be thought of in the following way:
an Apollonian circle (or sphere, when n ≥ 3) with respect to the pair (x, y), is a
set

Bx,y,q =

{
z ∈ Rn

∣∣∣∣
|z − x|

|z − y|
= q

}
.

Then the Apollonian metric is

αD(x, y) = log qxqy,

where qx and qy are the ratios of the largest possible balls Bx,y,qx
and By,x,qy

still
contained in D.
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Figure 2: The Apollonian balls approach.

The Apollonian metric is invariant in Möbius mappings in the sense of (1.1).
It is an easy exercise in geometry to show that in the case D = Hn the points z
and w are actually the points x∗ and y∗ in (2.7), and thus ρHn = αHn .

The Apollonian metric has been studied in [GeHa2] and [Se], but especially
by P. Hästö and Z. Ibragimov in a series of articles, see e.g. [Hä1],[Hä2],[HäIb]
and [Ib].

The Apollonian metric is in a way a convenient construction with a clear
geometric interpretation, but as a shortcoming it has its lack of geodesics. In the
article [HäLi] some work is done to overcome this problem, by introducing the
half-Apollonian metric, defined by

(2.10) ηD(x, y) = sup
z∈∂D

∣∣∣∣log
|x − z|

|y − z|

∣∣∣∣ ,

for all x, y ∈ D. The geometric intuition here is the same as for the Apollonian
metric, Indeed, instead of log qxqy we have

ηD(x, y) = log max{qx, qy}.

This metric is a only similarity invariant, but instead it has more geodesics than
the Apollonian metric. It is also bilipschitz equivalent to the Apollonian metric,
in fact

1

2
αD(x, y) ≤ ηD(x, y) ≤ αD(x, y).

2.11. The quasihyperbolic metric. The quasihyperbolic metric is perhaps
the most well-known and frequently used of the metrics considered here. It was
developed by F. Gehring and his collaborators in the 70’s. It is defined by the
method of 2.1 using

w(z) =
1

dist(z, ∂D)
, z ∈ D

as weight function. It is immediate that for D = Hn the quasihyperbolic metric
coincides with the hyperbolic metric ρHn . The quasihyperbolic metric is invariant
under the class of similarity mappings.
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The quasihyperbolic metric is well-behaved in many senses: the weight func-
tion is quite simple and it is a natural generalization of the hyperbolic metric.
Also, it is known to be geodesic for any domain D ( Rn [GeOs]. One of the
shortcomings of the metric is that in general the geodesics are not easy to deter-
mine. Besides the half-space Hn, the geodesics are known in the punctured space
Rn \{z} and in the ball Bn, see [MaOs]. Recently the geodesics were determined
also for the punctured ball Bn \ {0}, and planar angular domains

Sϕ = {(r, θ) | 0 < θ < ϕ}, 0 < ϕ < 2π,

see [Li1].

2.12. Distance-ratio metrics. As the quasihyperbolic metric cannot be ex-
plicitly evaluated in the case of general domains, a typical way to overcome this
problem is to approximate it by another metric, often one of the distance-ratio
metrics or j-metrics. (Actually, by their construction also the Apollonian and
half-Apollonian metrics could be described as “distance-ratio metrics”). There
are two versions of these. The first, introduced by F. Gehring, is defined by

(2.13) j̃D(x, y) = log

(
1 +

|x − y|

dist(x, ∂D)

) (
1 +

|x − y|

dist(y, ∂D)

)
, x, y,∈ D.

The other one is defined by

(2.14) jD(x, y) = log

(
1 +

|x − y|

dist(x, ∂D) ∧ dist(y, ∂D)

)
. x, y,∈ D.

is a modification due to M. Vuorinen.

The two metrics have much in common, but also important differences, which
will be discussed further in Sections 2 and 3. Both are similarity invariant, and
can be used to estimate the quasihyperbolic metric. The metrics satisfy the
relation

jD(x, y) ≤ j̃D(x, y) ≤ 2 jD(x, y), x, y ∈ D.

The lower bound for the quasihyperbolic metric is given by the inequality

jD(x, y) ≤ kD(x, y)

proved in [GePa], which holds for points x, y in any proper subdomain D. The
upper bound holds for so called uniform domains, which is a wide class of domains
introduced in [MaSa].

2.15. Definition. A domain D ( Rn is called uniform or A-uniform, if there
exists a number A ≥ 1 such that the inequality

kD(x, y) ≤ A jD(x, y)

holds for all x, y ∈ D.

There are many definitions for uniform domains around, see eg. [Ge], so often
many “nice” domains can be shown to be uniform by other means, and so one
has access to the inequality in 2.15. However, typically very little can be said
about the constant A. These matters have been studied in [Li1].
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The j-metric defined in (2.14) has another important connection to the quasi-
hyperbolic metric. The quasihyperbolic metric is namely the inner metric of the
j-metric, in the sense of (2.4). In other words

kD(x, y) = inf
γ∈Γxy

ℓj,D(γ).

Since the j-metric fails to be intrinsic, it cannot be geodesic either. In fact,
the j-metric has geodesics only in some special cases, see [HäIbLi, 3.7]. Very

little is known about the geodesic segments of the j̃-metric, although it can be
conjectured that there is not much of them either.

3. Isometries and bilipschitz-mappings

As pointed out earlier, most of the hyperbolic-type metrics defined in this
article satisfy some kind of invariance property, that is, they satisfy the equality
(1.1) for some class of mappings f . Typically this invariance property follows
almost directly from the definition of the metric, for instance, it is easy to see
from the formulas (2.9) and (2.10) that the Apollonian metric is Möbius-invariant
and the half-Apollonian metric is similarity invariant. The interesting question
mostly regards the other implication. Is the class of “natural candidates” the
only mappings which give isometries in the metric in question? And what are the
“near-isometries”, that is, the bilipschitz mappings? There are still many open
ends regarding these questions, though some progress has been made recently.

3.1. Definition. Let D and D′ = f(D) be domains such that equipped with
distances dD and dD′ they are metric spaces. Then a continuous mapping f : D →
D′ is said to be L-bilipschitz in (or with respect to) the metric d if for all x, y ∈ D
we have

1

L
dD(x, y) ≤ dD′(f(x), f(y)) ≤ L dD(x, y)

for some L ≥ 1. If the above inequality holds with L = 1, f is a d-isometry.

3.2. “One-point” and “two-point” metrics. In general, the hyperbolic-
type metrics can be divided into length-metrics, defined by means of integrating
a weight function, and point-distance metrics. The point-distance metrics may
again be classified by the number of boundary points used in their definition.
So for instance the j-metric and the half-Apollonian metric would be ‘one-point
metrics”, whereas the j̃, and the Apollonian metrics are “two-point metrics”.

Actually also the length metrics can be characterized in the same way, by
looking at their weight function. Then the quasihyperbolic metric is a one-point
metric. An example of a two-point length metric is the so called Ferrand metric
σD, see [Fe1]. It is defined for a domain D ( R

n
with card ∂D ≥ 2, using the

weight function

wD(x) = sup
a,b∈∂D

|a − b|

|x − a||x − b|
, x ∈ D \ {∞}.
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This metric is Möbius invariant and coincides with the hyperbolic metric on Hn

and Bn. Moreover, it is bilipschitz equivalent to the quasihyperbolic metric by
the inequality

(3.3) kD(x, y) ≤ σD(x, y) ≤ 2 kD(x, y), x, y ∈ D.

Naturally one would expect the one-point point-distance metrics to be the
easiest ones to study. In fact, much can be said about these metrics when it
comes to the isometry question. The half-Apollonian metric has recently been
studied in [HäLi]. A point x ∈ D is called circularly accessible if there exists
a ball B ⊂ G such that x ∈ ∂B. If x is circularly accessible by two distinct
balls whose surfaces intersect at more than one point, it is called a corner point,
otherwise a regular point.

3.4. Theorem. Let D ( Rn be a domain which has at least n regular boundary
points which span a hyperplane. Then f : D → Rn is a homeomorphic η-isometry
if and only if it is a similarity mapping.

Furthermore, it was shown that Möbius mappings are in fact 2-bilipschitz
with respect to ηD.

For the j-metric, some results can be found in [HäIbLi], and in fact in a
slightly more general setting. The implications for the j-metric can be expressed
as follows;

3.5. Corollary. Let D ( Rn. Then f : D → Rn is a j-isometry if and only if
(1) f is a similarity, or
(2) D = Rn \ {a} and, up to similarity, f is the inversion in a sphere centered
at a.

Since ĵD = kD, it immediately follows that every isometry of the j-metric is
an isometry of the quasihyperbolic metric, of course in this case that does not
provide us with very much new information. However, a similar relation is true
for the Seittenranta metric δD defined in [Se] by

δD(x, y) = log

(
1 + sup

a,b∈∂D

|x − y||a − b|

|a − x||b − y|

)
, x, y ∈ D,

which is also studied in [HäIbLi]. Namely, here we have that δ̂D = σD, so we
directly see that this is a Möbius invariant metric. In [Se] it is proved that at least
Euclidean bilipschitz mappings are bilipschitz with respect to δ. The converse is
not true, as can be shown by the counterexample

f : B2 \ {0} → B2 \ {0}, f(x) = |x| · x.

However, in [Se] it was shown that every bilipschitz δ-mapping is a quasicon-
formal mapping, and that every δ-isometry is conformal with respect to the
Euclidean metric (and thus Möbius for n ≥ 3). In [HäIbLi] it was shown that
also for n = 2 in fact the δ-isometries are exactly the Möbius mappings.
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For the j-metric there are still many open problems regarding the bilipschitz
question. It is well known (see [Vu]), that an Euclidean L-bilipschitz mapping is
L2-bilipschitz with respect to the j (and k) metric.

For the Apollonian metric the isometry and bilipschitz questions have been
studied by several authors. The work was started by Beardon in [Be2], and con-
tinued by Gehring and Hag in [GeHa2] where they studied Apollonian bilipschitz
mappings. They proved the following theorem.

3.6. Theorem. Let D ( R2 be a quasidisk and f : D → D′ be an Apollonian
bilipschitz mapping.
(1) If D′ is a quasidisk, then f is quasiconformal in D and f = g|D, where

g : R
2
→ R

2
is quasiconformal.

(2) If f is quasiconformal in D, then D′ is a quasidisk and f = g|D, where

g : R
2
→ R

2
is quasiconformal.

In [Hä2] the above property (1) was generalized to hold also for n ≥ 3. In the
same article also a condition was introduced which determines when a Euclidean
bilipschitz mapping is also Apollonian bilipschitz. In the article [HäIb] it is
shown that for n = 2 the Apollonian isometries are exactly restrictions of Möbius
mappings.

For the quasihyperbolic metric the question regarding the isometries has long
been open. In [MaOs] it was shown that every kD-isometry is a conformal map-
ping. A similar proof gives the same result for Ferrand’s metric σD. However, in
[Hä3] it is shown that if the boundary of the domain is regular enough (C3, or C2

unless the domain is either strictly convex or has strictly convex complement),
then the quasihyperbolic isometries are exactly the similarity mappings.

3.7. Conformal modulus. We conclude by introducing two new metrics which
are particularly interesting regarding the question of bilipschitz mappings. Let Γ
be a family of curves in R

n
. By F(Γ) we denote the family of admissible functions,

that is, non-negative Borel-measurable functions ρ : R
n
→ R such that

∫

γ

ρ ds ≥ 1

for each locally rectifiable curve γ ∈ Γ. The n-modulus or the conformal modulus
of Γ is defined by

M(Γ) = Mn(Γ) = inf
ρ∈F(Γ)

∫

Rn

ρn dm,

where m is the n-dimensional Lebesgue measure. It is a conformal invariant,
i.e. if f : G → G′ is a conformal mapping and Γ is a curve family in G, then
M(Γ) = M(fΓ).

For E,F,G ⊂ R
n

we denote by ∆(E,F ; D) the family of all closed non-
constant curves joining E and F in D, that is, γ : [a, b] → R

n
belongs to

∆(E,F ; D) if one of γ(a), γ(b) belongs to E and the other to F , and furthermore
γ(t) ∈ D for all a < t < b.
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Now we will define two new conformal invariants in the following way. For
x, y ∈ D ( R

n
λD is defined by

λD(x, y) = inf
Cx,Cy

M
(
∆(Cx, Cy; D)

)
,

where Cz = γz[0, 1) and γz : [0, 1] → D is a curve such that z ∈ |γz| and γz(t) →
∂D when t → 1 and z = x, y. Correspondingly,

µD(x, y) = inf
Cxy

M
(
∆(Cxy, ∂D; D)

)
,

where Cxy is such that Cxy = γ[0, 1] and γ is a curve with γ(0) = x and γ(1) = y.

It is not difficult to show that both quantities µD and λD are conformal invari-
ants, and that µD is a metric (often called the modulus metric) when cap ∂D > 0,

see [Gá]. λD is not a metric, but λ∗
D = λ

1/(1−n)
D introduced in [Fe2] is, as long as

the boundary of the domain has more then two points.

One of the interesting feature regarding these metrics is that both are easily
seen — by their definitions — to be conformal invariants. Moreover, the following
can be shown (see [Vu, 10.19]);

3.8. Theorem. If f : D → D′ = fD is a quasiconformal mapping, then
(1) µD(x, y)/L ≤ µfD(f(x), f(y) ≤ L µD(x, y),
(2) λ∗

D(x, y)/L1/(n−1) ≤ λ∗
fD(f(x), f(y)) ≤ L1/(n−1) λ∗

D(x, y)
hold for all x, y ∈ D, where L = max{KI(f), KO(f)} is the maximal dilatation
of f .

It is not known if the class of bilipschitz mappings with respect to µ or λ∗

includes any other than quasiconformal mappings.

4. Gromov hyperbolicity

One way of telling “how hyperbolic” a metric in fact is, is to study whether
it satisfies hyperbolicity in the sense of M. Gromov. Classically such spaces
have been studied in the geodesic case, and then a space is said to be Gromov
δ-hyperbolic if for all triples of geodesics Jd[x, y], Jd[y, z] and Jd[x, z] we have
that

dist(w, Jd[y, z] ∪ Jd[z, x]) ≤ δ

for all w ∈ Jd[x, y], i.e. if all geodesic triangles are δ-thin.

4.1. The Gromov product. In non-geodesic spaces, however, we are con-
strained to use the definition involving the Gromov product. This can be defined
for two points x, y ∈ D with respect to a base point w by setting

(x|y)w =
1

2

(
d(x,w) + d(y, w) − d(x, y)

)
.



Hyperbolic-type metrics 161

A space is then said to be Gromov δ-hyperbolic if it satisfies the inequality

(x|z)w ≥ (x|y)w ∧ (y|z)w − δ

for all x, y, z ∈ D and a base point w ∈ D. A space is said to be Gromov
hyperbolic if it is Gromov δ-hyperbolic for some δ. Sometimes one wants to use
the equivalent definition for Gromov hyperbolicity

d(x, z) + d(y, w) ≤
(
d(x,w) + d(y, z) ∨ d(x, y) + d(z, w)

)
+ 2δ.(4.2)

Recently the study of Gromov hyperbolicity has become quite popular, and
even hyperbolicity results on particular metrics in geometric function theory
have been developed by a number of authors. A systematic study of the different
metrics is made easier by the fact that Gromov hyperbolicity is preserved by
certain classes of mappings, so called rough isometries. We say that two metrics
d and d′ are roughly isometric if there exists a positive constant C such that

d(x, y) − C ≤ d′(x, y) ≤ d(x, y) + C.

It is immediately clear from the definition (4.2) that roughly isometric metrics
are Gromov hyperbolic in the same domains. Moreover, we say that two metrics
are (A,C)-quasi-isometric if there is A ≥ 1, C ≥ 0 such that

A−1d(x, y) − C ≤ d′(x, y) ≤ A d(x, y) + C.

Also quasi-isometries (and thus bilipschitz mappings) are known to preserve Gro-
mov hyperbolicity, provided that the spaces are geodesic.

Naturally we would want the hyperbolic metric itself to be Gromov hyperbolic
also, and in fact it is, with constant δ = log 3, as is shown in [CoDePa]. One of
the more interesting and general results is one from the comprehensive study of
M. Bonk, J. Heinonen and P. Koskela [BoHeKo], where it is shown that for a
uniform domain D the space (D, kD) is always Gromov hyperbolic.

For many of the other metrics Gromov hyperbolicity is easily proved or dis-
proved using the results from [Hä4]. Namely, it turns out that the j̃-metric is
Gromov hyperbolic in every proper subdomain of Rn, whereas the j-metric is
Gromov hyperbolic only in Rn \ {a}. Then, using inequalities

jD(x, y) − log 3 ≤ ηD(x, y) ≤ jD(x, y),

j̃D(x, y) − log 9 ≤ αD(x, y) ≤ j̃D(x, y),

and

αD(x, y) ≤ δD(x, y) ≤ αD(x, y) + log 3

we immediately get some results by rough isometry, that is, the results in Table
1 regarding the Apollonian, half-Apollonian and Seittenranta metrics. For prov-
ing Gromov hyperbolicity of the Ferrand metric one can use geodesity, Gromov
hyperbolicity of the quasihyperbolic metric, and the bilipschitz equivalence in
(3.3).

Finally, for the µ and λ∗ metrics positive results regarding Gromov hyperbol-
icity are shown in [Li2].
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4.3. Theorem. The metric space (Bn, λ∗
Bn) is Gromov δ-hyperbolic, with Gro-

mov constant

δ ≤ 1
2

(
ωn−1

2

) 1

1−n
(
log 64

3
+ 4 log λn

)
≤ 1

2

(
ωn−1

2

) 1

1−n
(
log 64

3
+ 4(log 2 + n − 1)

)
,

where ωn−1 denotes the (n − 1)-dimensional surface area of Sn−1 and λn is the
Grötzsch constant. Also, any simply connected proper subdomain D ( R2 is
Gromov δ-hyperbolic with respect to the metric λ∗

G, where

δ ≤
log 5462

2π
≈ 1.3696.

4.4. Theorem. The metric space (Bn, µBn) is Gromov δ-hyperbolic, with Gro-
mov constant

δ ≤ 2n−1cn log 12,

where cn is the spherical cap inequality constant, see [Vu]. Especially, every
simply connected domain D ( R2 is Gromov hyperbolic with

δ ≤
2 log 12

π
≈ 1.5819.

4.5. Theorem. The metric space (Rn \ {z}, λ∗
Rn\{z}) is Gromov hyperbolic, with

δ ≤ 2ω
1

n−1

n−1 log 18λ2
n ≤ 2ω

1

n−1

n−1

(
log 72 + 2n − 2

)
.

As the below table indicates, the j-metric and the half-Apollonian metric are
the only metrics of the ones discussed here which fail to be Gromov hyperbolic
in most cases. These results indicate that these metrics are in a way “too easy”,
or have too little structure for satisfying Gromov hyperbolicity. On the other
hand, in other contexts that is one of their strongest features, as has been seen
in earlier sections.

Domain condition Proved where

kD D uniform [BoHeKo]
hD n = 2 all domains defined, n ≥ 3, D = Bn,Hn [CoDePa] and conf. invariance
αD All domains D ( Rn [Hä4] and rough isometry
ηD Only D = Rn \ {z}, δ = log 9 [Hä4],[HäLi]
jD Only D = Rn \ {z}, δ = log 9 [Hä4]

j̃D All domains D ( Rn [Hä4]
δD All domains D ( Rn [Hä4],[Se]
σD D uniform, for D = Bn δ = log 3 [Fe1],[BoHeKo]
λ∗

D D = Bn, Rn
∗ , n = 2 simply conn. domains [Li2]

µD D = Bn, n = 2 simply conn. domains [Li2]

Table 1: Gromov hyperbolicity of some metrics.
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