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1. Introduction

The deep connections between the combinatorial and geometric properties of
circle packings and the analytic properties of the maps they induce have been the
subject of intense study in recent years. In 1985, William Thurston conjectured,
and Burt Rodin and Dennis Sullivan proved, that maps between circle packings
were nearly analytic [Thu85, RS87]. Since then the study of circle packings has
exploded to impact a great many other fields including conformal mapping [HS93,
HS96,Ste05], complex analysis [BS91,DS95a,Ste97,Ste02, Ste03] Teichmiiller the-
ory [BS90, Bro96, Wil01b, BW02, Wil03, BS04b], brain mapping [Bea99, Kra99],
random walks [Ste96, Dub97, HS95, McC98, DW05], tilings [BS97, Rep98|, mini-
mal surfaces and integrable systems [BS04a], numerical analysis [Moh93, CS99],
metric measure spaces [BK02] and much more.

The fundamental folk theorem of circle packing is that “packings desperately
want to be conformal.” They react to combinatorial or geometric changes in
precisely the same way as conformal maps. Maps between packings seem de-
termined to approximate conformal maps. There is, however, much to be said
about the relationships between circle packings and quasiconformal maps. It is
principally with these connections and the applications arising from them that
we will concern ourselves in this paper.

After some initial background on quasiconformal mappings in Section 2, we
describe the crucial concept of conformal welding in Section 3. We review the
fundamental concepts of circle packing in Section 4, and then describe three
applications of circle packings and quasiconformal maps in Section 5. Namely,
we discuss the use of packings in image recognition, in implementing Radnell-
Schippers quantum field theory, and in constructing quasiconformal maps.

2. Quasiconformal Maps

2.1. Analytic Definition of Quasiconformality. Quasiconformal mappings
form the heart of Teichmiiller theory as developed in the 1950’s and 1960’s.
They are the natural generalization of analytic functions. For more detailed
explanations, a number of excellent resources are available, including [Ahl66,

LV73,Leh87, Nag88,1T92, GLOO].

Definition 2.1. A homeomorphism f € L? is quasiconformal if

(2.1) O-f = pd. f

for some p € L™, ||u||l < 1. Recall the complex partial derivatives are defined
by

0:f = 5 (0. +0,0)

0.1 =5 (0.5 ~0,1).
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FIGURE 1. A geometric measure of quasiconformality. The quo-
tient of the length of the dashed lines measures how close the curve
on the right is to being a circle.

Equation 2.1 is called the Beltrami equation and p, a Beltrami differ-
ential. Notice that when p = 0, the Beltrami equation becomes 0-f = 0,
which when separated into real and imaginary parts is precisely the familiar
Cauchy-Riemann equations. Thus g determines how “quasi” a quasiconformal
map really is. This measure of the “quasi-ness,” or distortion of a map is most
often expressed in terms of the dilatation

_ 1A [l

1= lplle
of the map. A quasiconformal map f with dilatation K is called a K-quasiconformal
map; a l-quasiconformal map is thus conformal.

K >1

The Beltrami differential p corresponding to a quasiconformal map is often
called its complex dilatation. Notice, however, that the complex dilatation is
a complex function and actually measures the distortion of f at every point in its
domain. The dilatation, on the other hand, is a single real number and provides
a global bound on the distortion of f over the entire domain.

2.2. Geometric Definition of Quasiconformality. An equivalent measure
of the distortion of a quasiconformal map is provided by the dilatation quotient

Dy(2) — limsup S0+ 76) — 1))
ot infolf(z +re?) — f(2)]
The dilatation quotient has a simple geometric interpretation. If we consider a
small circle of radius r about z in the domain, it will be mapped to some curve
about f(z) in the range. The dilatation quotient is then the ratio of the maximal
to the minimal distance from f(z) to this curve. See Figure 1.

Recall that conformal maps preserve angles; moreover, if f/(z) = re?? # 0,
then
df = f'(2)dz = re® dz.
Thus infinitesimally, f acts geometrically like

2 rely + O
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for some number C; that is, f acts like the composition of a scaling, rotation, and
translation. This not only explains the reason analytic maps with non-vanishing
derivative preserve angles, but also implies that they must map infinitesimal cir-
cles to infinitesimal circles. Consequently, the dilatation quotient of a conformal
map is identically 1.

It turns out that the dilatation of a quasiconformal map is nothing more than
the supremum of the dilatation quotient over the domain. Thus we have the
following equivalent definition of quasiconformality.

Definition 2.2. A homeomorphism f is K-quasiconformal if it is absolutely
continuous on lines and

for all z in its domain.
2.3. An Important Example. If we think of the complex plane as R? and
T + 1y as (;), then it is natural to consider the effect of linear and affine

transformations. Suppose

22) revin=(2 0 (0)+ ()

where ad — be # 0.

A moment’s linear algebra shows f can be re-written as

(2.3) fz +iy) = (Z‘j:ggi;)

(- ()46
= 3((9) () -3(20)

Notice that dzf = 0 if and only if a = d and ¢ = —b, in which case, mul-

1
2

tiplication by the matrix (Z d) is equivalent to multiplication by the complex

number a + ib.
In general, however, we will have
_Of _(a—d)+i(c+b)
H=0.f  (atd) +ilc—b)
and f will be quasiconformal.

Geometrically, f will map the basis vectors 1 and 7 to a + ic and b + 1d,
respectively, and then translate by e 4+ ¢f. It is easy to check that 4 = 0 if and
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only if the new basis vectors a+ic and b+ id are perpendicular, and |u| increases
toward 1 as the angle decreases toward 0.

Notice that affine maps have constant complex dilatation; conversely, if p is
constant, it is a simple exercise to solve for the affine map whose dilatation is pu.

The importance of this example becomes apparent when we consider the infin-
itesimal behavior of any quasiconformal map. Just as we observed that confor-
mal maps act infinitesimally by rotation, scaling, and translation, quasiconformal
maps act infinitesimally as affine maps.

3. Conformal Welding

3.1. Quasisymmetries and Quasicircles. We continue our exploration of
quasiconformal maps with an investigation of their boundary values [BA56,1.V73,
DES86, LP88, GL00]. Note that when maps extend continuously or smoothly to
the boundary, we will use same notation for the extended maps.

Definition 3.1. A homeomorphism ¢ : 0D — 0D is quasisymmetric or a
quasisymmetry if it is the boundary function of some quasiconformal map of
D onto itself.

As might be expected, quasisymmetries have a beautiful geometric character-
ization as well [BA56,LV73, Leh87, Krz87].

Definition 3.2. An orientation preserving homeomorphism ¢ : 0D — 0D is a
k - quasisymmetry if

1 < (D) |p <k

k™ le(J)lo
for any two adjacent intervals (subarcs) I and J of dD having equal length
H|p = |Jlp-

Essentially, this definition says quasisymmetries can’t map adjacent symmetric
intervals to extremely non-symmetric intervals.

Next, we temporarily leave quasisymmetries to consider the effect of quasicon-
formal maps on circles. However, as we will see, these quasicircles are intimately
connected to quasisymmetries.

Definition 3.3. A Jordan curve I' is a K-quasicircle if it is the image of the
unit circle under a K-quasiconformal map of C onto itself.

As might be expected by now, quasicircles have both analytic and geometric

definitions [Ahl63, Ahl66].

Definition 3.4. A Jordan curve I' is a quasicircle if there exists R > 1 so that
for all points z,y € T’
diam(T', ) < R|z —y|,

where I'; ,, is the sub-arc of I' connecting o and y which has the smaller diameter.
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FiGure 2. If T' is a Jordan curve, then the Riemann Mapping
Theorem promises the existence of a conformal map f from the
inside of I" to the inside of the unit disc ID. Similarly, there exists
a conformal map ¢ from the outside of I' to the outside of the unit
disc.

FIGURE 3. Since f and g extend to the boundary, they induce a
homeomorphism ¢ = go f~!: 9D — OD.

Loosely speaking, this condition limits “pinching” — a quasicircle cannot visit a
point x, wander far away, and then return to a point very near z. Fred Gehring’s
monograph [Geh82] contains an extensive list of these and other characterizations
of quasicircles.

3.2. Conformal Welding Theorem. The intimate connection between qua-

sisymmetries and quasicircles is illustrated by the following two theorems [Pfl51,
LV73,Leh87, GLOO].

Theorem 3.5. Suppose ' is Jordan curve dividing the plane into complemen-
tary components Q and Q*. Let f : Q — D and g : * — D* be conformal
homeomorphisms, the existence of which are promised by the Riemann Mapping
Theorem. Then f and g extend to homeomorphisms of the boundary and

gof':0D — oD

15 a quasisymmetry if I' 1s a quasicircle. See Figures 2 and 3.



Circle Packings, QC Maps, and Applications 333

The converse is also true. Given a quasisymmetry ¢ : 0D — 0D, we can glue D
and D* together by attaching points e € dID to their image points ¢ (ew) € oD*.
The result is a topological sphere. As D and D* struggle to fit together after the
welding, the “seam” between them will be pushed and pulled into a quasicircle.

Conformal Welding Theorem. Let ¢ : 0D — 0D be a quasisymmetry. Then
© nduces a conformal welding of D and D*. That s, there exist conformal
maps f:Q — D and g : QO — D* of complementary Jordan domains in C with
boundary values satisfying

go f7H(e") = p(e”).
Moreover, the Jordan curve T' = f~1(0D) = ¢~ '(9D*) is unique up to Mdobius
transformations.

For quasisymmetries defined on 0D, it is customary to normalize our welding
maps so that f~1(1) = g7}(1) = ¢(1) = 1, f(0) = 0, and g(o0) = co. With these
normalizations, the maps f and g and the curve I' are unique.

4. Circle Packing

4.1. Definitions and Examples. Since William Thurston’s work in the mid-
1980’s, the connections between circle packings and analytic functions have been
widely studied. More detailed information is contained in the rapidly expanding
literature, including several recent survey articles [DS95b,Ste97,Ste02,Ste03] and
Ken Stephenson’s excellent new book [Ste05].

Definition 4.1. A CP-complex K is an abstract simplicial 2-complex such
that

1. K is simplicially equivalent to a triangulation of an (orientable) surface.
2. Every boundary vertex of K has an interior neighbor.

3. The collection of interior vertices is nonempty and edge-connected.

4. There is an upper bound on the degree of vertices in .

The restrictions imposed by conditions 2 through 4 are extremely mild and
are met by most any reasonable triangulation.

Notice that a CP-complex is a purely combinatorial object. It possesses no
geometric structure until it is embedded in a surface by a circle packing. To
emphasize this fact, we will often refer to a CP-complex simply as an abstract
triangulation.

Definition 4.2. A circle packing is a configuration of circles with a specified
pattern of tangencies. In particular, if IC is a CP-complex, then a circle packing
P for K is a configuration of circles such that

1. P contains a circle C, for each vertex v in K,

2. C, is externally tangent to C, if [v,u| is an edge of IC,

3. (Cy,Cy,Cy) forms a positively oriented mutually tangent triple of circles if
(v,u,w) is a positively oriented face of .
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FIGURE 4. A finite circle packing (left). The underlying trian-
gulation can be recovered by connecting centers of tangent circles
with line segments (middle). The resulting collection of triangles
forms the carrier of the packing (right).

FIGURE 5. A portion of the “regular hex” packing. Notice that
every circle has the same radius.

A packing is called univalent if none of its circles overlap, that is, if no pair of
circles intersect in more than one point.

A univalent circle packing produces a geometric realization of its underlying

complex. Vertices can be embedded as centers of their corresponding circles,
and edges can be realized as geodesic segments joining centers of circles. The
collection of triangles embedded in this way is called the carrier of the packing,
written carr P. See Figure 4.

Example 4.3. William Thurston’s original interest in packings began with the
infinite “regular hex packing” in which every circle touches exactly 6 others. He
showed that the only univalent packing with this combinatorial pattern is the
one in which every circle has the same radius. (It remains an open question to
characterize the non-univalent ones.) See Figure 5.
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FIGURE 6. A portion of the “ball bearing” packing. The carrier
has been drawn in to emphasize the lattice structure.

Example 4.4. Another useful infinite packing is the “ball bearing packing”
named by Tomasz Dubejko and Ken Stephenson [DS95b]. The underlying tri-
angulation is created from a lattice, and the original lattice structure is still
apparent in the resulting packing. Consequently, the carrier of the packing can
be decomposed into small squares. Moreover, there is a natural refinement of
the triangulation and carrier created by replacing each square with four copies
of the original. See Figure 6.

4.2. Packings and Maps. The connection between circle packings and func-
tion theory arises from the investigation of maps between the carriers of two
different packings for the same abstract complex. That is, suppose P and P are
both Euclidean circle packings for the same underlying complex K. Then every
face in K is realized as both a Euclidean triangle T' in carr P and a triangle T
in carr P. It is easy now to construct an affine map between triangles 7" and T
If we translate one vertex of each to the origin, then the two edges meeting at
the origin form a basis for R? and can be mapped one onto the other by a linear
map.

Thus the entire carrier of P can be mapped onto the carrier of P by a piecewise
affine map defined triangle by triangle. Notice that the individual triangle maps
agree on adjacent edges, so the complete map is continuous. Circle packing maps
constructed in this way are called discrete conformal maps. See Figure 7.

4.3. The Rodin-Sullivan Theorem. Recall from Section 2.3, that affine maps
are quasiconformal. The dilation on each triangle will be constant and depend
only by the difference between corresponding angles. If there are only finitely
many circles in the packings, the dilatation of a discrete conformal map will
be finite and depend only on the maximal difference in corresponding angles
between triangles in the two carriers.
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FiGURE 7. Two circle packings with the same underlying trian-
gulation. The carrier for each is indicated and one pair of corre-
sponding triangles are shaded. Each triangle in the carrier on the
left can be mapped via an affine map to its corresponding triangle
in the carrier on the right.

At this point in our story, we come to Burt Rodin and Dennis Sullivan’s Ring
Lemma, the first connection between the analytic properties of discrete conformal
maps and the combinatorial properties of packings [RS87].

Ring Lemma. In a univalent packing, there is a lower bound C,, on the ratio of
the radius of any interior circle to the radius of any of its neighbors. This bound
depends only on the degree n (the number of neighbors) of the circle.

The sharp value of the bound C,, was determined by Dov Aharonov [Aha97].

Lemma 4.5. If {a,} is the Fibonacci sequence, then
1

2 2 :
Ap_9 + Ap_1 — 1

Cn =

Moreover, converges to the square of the golden ratio.

n+1

The Ring Lemma thus connects a purely combinatorial property of the packing
(the degree) with a geometric property of the packing (the ratio of the radii of
adjacent circles). This geometric constraint on the circles implies angles in the
carrier must be bounded away from 0 and 7. Hence there is a uniform bound
on the difference between corresponding angles in the carriers of two packings
with the same underlying triangulation. Consequently, the associated discrete
conformal map is quasiconformal with a bound on the dilatation determined
only the degree. In this way, a combinatorial property of the triangulation leads
directly to an analytic property of the associated discrete conformal maps.

In 1985, William Thurston conjectured the relationships between the combina-
torics, geometry, and mapping properties of packings run much deeper [Thu85].
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FIGURE 8. A cross-shaped packing (left) which has been re-packed
in the unit disc (right). Since both packings share the same under-
lying triangulation, there is discrete conformal map between them
which approximates the classical Riemann map.

Suppose 2 C C is a bounded simply connected region and p,q € 2, p # q. The
Riemann Mapping Theorem implies there is a unique conformal map f : Q — D
with f(p) =0 and f(q) >0

Now suppose P, is a sequence of packings in 2 with mesh (radius of the largest
circle) decreasing to 0 and carr P, — € as n — oco. Let K, be the underlying
triangulation of P,. Paul Koebe [Koe36], E. M. Andreev [And70a, And70b], and
William Thurston [Thu| independently proved that any finite, simply connected
CP-complex (such as /C,,) can be realized by a packing in D which is “maximal”
in the sense that boundary circles are tangent to 0ID. This maximal, or Andreev,
packing is unique up to disc automorphisms.

Thus for each P, C €, there is a maximal packing 75n C D with the same
underlying triangulation K, as P,. Moreover, we can normalize P, so that
it C, and C, are the nearest circles in P, to p and g, respectively, then the
corresponding circles C and C in P, are centered at 0 and on the positive real
axis, respectively.

Since P, and P, share the same underlying triangulation, there is a discrete
conformal map

fn : carr P, — carr 7571
William Thurston conjectured that f, — f locally uniformly on 2 as n —

oo [Thu85]. This was quickly proven by Burt Rodin and Dennis Sullivan [RS87].
See Figure 8.

Rodin-Sullivan Theorem. The discrete conformal maps described above con-
verge locally uniformly to the conformal map f : Q@ — D with f(p) = 0 and

f(g) > 0.

Recall that if the degree of K, is uniformly bounded for all n (Thurston’s
original conjecture was for packings with degree 6), then the Ring Lemma implies
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each f, will be K-quasiconformal, with K independent of n. It remains to show
that the dilatation of f,, must actually decrease to 1 as n — oo. This follows
from the uniqueness of infinite packings.

Theorem 4.6. Every infinite, simply connected CP-complex has a packing in
either C or D. This packing is unique up to conformal automorphisms.

Various versions of Theorem 4.6 have been proven. Thurston’s original proof
was only for the regular hex packing of Example 4.3 and relied on deep results
from the theory of hyperbolic 3-manifolds [Thu]. Later improvements by Ken
Stephenson [Ste96], Alan Beardon and Ken Stephenson [BS90], Yves Colin de
Verdiére [dV89,dV91], Zheng-Xu He and Burt Rodin [HR93|, and Zheng-Xu He
and Oded Schramm [HS96, HS98| utilized probabilistic techniques, variational
principles, the Perron method, or elementary topology.

The effect of Theorem 4.6 is to force the dilation of f, to decrease to 1 as
n — oo. Consider a circle C' “deep inside” P, that is, separated from 0f2 by a
great many generations of other circles. If C' is far enough from the boundary,
it can hardly tell if it is part of a finite packing, or the unique infinite one. The
same must be true for the corresponding circle C' in P, C D. Thus triangles in
carr P, and carr P, which are far from the boundary, must be nearly the same
(up to scaling, translation, and rotation). In particular, the corresponding angles
must be nearly the same, and the resulting affine map must be nearly conformal.
This is usually stated as the Packing Lemma [Ste96, Ste05].

Packing Lemma. Suppose K, is a sequence of simply connected CP-complexes
with uniformly bounded degree and having univalent packings P, in a bounded
simply connected domain 2. If 75n is any other sequence of univalent packings
for K, then the maximum difference between corresponding angles in carr P,
and carr ﬁn goes to 0 locally uniformly as n — oo.

Finally, recall that we assumed the mesh of P, decreased to 0 as n — o0;
thus on compact subsets of €2, the number of generations of circles between
the compact subset and the boundary must go uniformly to infinity as n — oc.

Consequently, the dilatation of f,, will decrease to 1 uniformly on compact subsets
of Q.

5. Applications

5.1. Image Recognition. In work with Ken Stephenson, we have applied cir-
cle packing techniques to two-dimensional image recognition problems. David
Mumford and Eitan Sharon have recently developed a technique for studying
two-dimensional shapes (Jordan curves) by means of the Weil-Peterson metric on
their associated welding homeomorphisms [MS04]. They restrict their attention
to smooth curves which then produce diffeomorphisms of 9ID. The Weil-Peterson
metric on these diffeomorphisms is invariant under Mobius transformations; thus
shapes which differ only by scaling or rotation are recognized as being the same.



Circle Packings, QC Maps, and Applications 339

(6.283,6.283)

(0.000,0.000)

FIGURE 9. A cross-shaped quasicircle (left) and the graph of the
resulting quasisymmetry, parametrized as a map from [0, 27| onto
0, 27].

It is relatively easy to extend their program to shapes bounded by quasicircles
and to quasisymmetric maps on JD. By packing both the inside €2 and outside
Q* of a quasicircle I', then repacking in D and D*, respectively, we can create
discrete analytic functions

fn Ky — D
Gn 2y, — D,
where 2, —  and 0 — Q.

It is much trickier to compare the boundary values of f,, and g, since the
packings in 2 and Q* don’t necessarily match up on the boundary. However, it
is possible with careful application of the geometry of quasicircles and a dash a
topology to create a map

O : 0D — ID

which is essentially given by g,of,!. We then have the following theorem [WilOlal:

Theorem 5.1. The mappings ¢, converge uniformly to the quasisymmetry ¢
induced by the quasicircle I'. Moreover, f, and g, converge locally uniformly to
the Riemann maps f: Q — D and g : Q — D*, respectively.

For example, consider the cross-shaped curve in Figure 9. Creating discrete
conformal maps as described above (Recall Figure 8), we can approximate the
corresponding quasisymmetry.

Repeating this procedure for a T-shaped curve and a hand-drawn cross in
Figures 10 and 11, the similarities and differences with the straight-sided cross
are easy to see.

A more difficult problem is to recover the shape given the map ¢ : dD —
0D. The Conformal Welding Theorem guarantees that this is possible, but is
no help in actually computing the shape. Again, circle packing comes to the
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(6.283,6.283)

(0.000,0.000)

FI1GURE 10. A T-shaped quasicircle (left) and the graph of the
resulting quasisymmetry (right).

(6.283,6.283)

(0.000,0.000)

FIGURE 11. A hand-drawn cross (left) and the graph of the re-
sulting quasisymmetry (right). Compare with Figures 9 and 10.
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FIGURE 12. A discrete welding for the map p(e”) = ¢i(0+3 sin(30))

The circles corresponding to the “seam” in packing (left) are
shaded. The packing provides a realization on S? of the weld-
ing triangulations (middle). The edges along the “seam” form the
discrete welding curve (right).
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rescue. Instead of welding D to D*, we will weld triangulations of discs. For
example, if ¢ is a homeomorphism from the boundary of an triangulation I to
the boundary of IC*, we use ¢ to glue the triangulations together. After a few
minor refinements and adjustments, we attach every boundary edge e of K to its
image o(e). This discrete welding then yields a triangulation IC of a sphere.
The welded triangulation K can be realized by a unique circle packing on S2.
The uniqueness of this packing is exactly analogous to the uniqueness of the
conformal structure on S?. The circles must push and pull against each other to
settle in locations compatible with the global pattern provided by K in precisely
the same way that two welded discs settle in locations compatible with the global
conformal structure on S2?. This circle packing provides a geometric realization
of the formerly purely combinatorial welding. In particular, the “seam” between
the original triangulations is realized as a polygonal Jordan curve, a discretized
version of the conformal welding curve.

Notice also that K contains a copy of both K and K*. Thus we can define
discrete analytic functions from K and K* onto their copies in K. This is, of
course, analogous to the existence of classical welding maps f and g onto com-
plementary regions of S?. Moreover, because of the way we used ¢ to weld K
together, a version of the welding condition g o f=! = ¢ also holds.

In fact, the discrete version is more than just analogous to the classical case —
it converges to it as well. Welding finer and finer triangulations using the same
quasisymmetric map produces discrete welding curves that converge uniformly to
the classical conformal welding curve. Moreover, the discrete analytic functions
converge locally uniformly to the classical conformal welding maps [Wil04].

Discrete Conformal Welding Theorem. Given a quasisymmetric map ¢ :
0D — 0D, our construction produces discrete analytic functions {f,} and {g,}
converging locally uniformly to the conformal welding maps f and g induced by
w. Moreover, the discrete conformal welding curves I'), converge uniformly to the
quasicircle ' induced by .

5.2. Radnell-Schippers Quantum Field Theory. Recently David Radnell
and Eric Schippers [RS05] have developed a two-dimensional quantum field the-
ory based on conformal welding and rigged Teichmiiller spaces. Very briefly, one
of fundamental ideas of string theory is that a one-dimensional closed string will
sweep out a surface, called its world sheet, as it travels through time. As a
string breaks apart and rejoins with itself, it alters the topology of the world
sheet. See Figure 13. Dennis Sullivan and Moira Chas have in this manner de-
scribed the topology of all world sheets in terms of the splitting and joining of
strings [Sul01].

While the topology of the world sheet captures the splitting and re-joining of a
string, it is the conformal structure of the world sheet that captures features such
as the relative size of the string and length of time between splittings and joinings.
Thus for many computations it is necessary to consider all possible conformal
structures on all possible surfaces. The Universal Teichmiiller space contains
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FiGURE 13. A depiction of a string traveling through time. As
the string breaks into two pieces and then rejoins, a topological
handle is created.

the Teichmiiller spaces of all Riemann surfaces and as such has recently gained
the attention of physicists as a possible setting for string theory computations
[Pek94, Pek95].

Two common models for the Universal Teichmiiller space are the space of
normalized quasicircles and the space of normalized quasisymmetries. The pro-
cess of conformal welding described in Section 3.2 provides the mechanism for
switching between the two models [Leh87, Krz95]. Our method of discrete con-
formal welding described above provides the means for actually computing this
correspondence as well [Wil0la, Wil04].

In the Radnell-Schippers model of quantum field theory, the ends of the world
sheets are parametrized (“rigged”) by quasisymmetric maps. The interaction
between two strings then corresponds to the welding of the two worldsheets via
the rigging [RS05]. These operations can be carried out using circle packings to
approximate the world sheets. The packable surfaces are dense [Bro86, Bro92,
Bro96, BS92, BS93, Wil03] in the moduli space of all surfaces, so nothing is lost
in this approach, while much is gained by the ability to actually compute the
new welded surface.

5.3. Circle Packing Measurable Riemann Mapping Theorem. Recall
that the distortion of a quasiconformal map f is described by its complex di-
latation u, defined by the Beltrami equation

(5.1) of = pof.

The classical Measurable Riemann Mapping Theorem asserts that given a Bel-
trami differential p on a simply connected domain €2 C C, there is a correspond-
ing quasiconformal map f* from 2 to the unit disc D having p as its complex
dilatation. If f* is normalized to send two points p,q € 2, p # ¢, to 0 and
the positive real axis, respectively, then f* is unique [LV73,Leh87, GL00].. The
original Riemann Mapping Theorem follows from the special case p = 0.

Circle packings have been used previously by Zheng-Xu He [He90] to solve
Beltrami differential equations, but they appear indirectly. By applying our
discrete conformal welding technique, however, we can create quasiconformal
maps directly from their complex dilatation.
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Given a Beltrami differential ;1 on a bounded simply connected region Q2 C C,
we pack 2 with a “ball bearing” packing. See Figure 6. The carrier divides €2
into small squares. We approximate g by a constant function on each square.
Recall from Section 2.3 that a map with constant dilatation is affine.

In work with Roger Barnard, we showed that the conformal structure on any
compact torus can be transformed into any other by cutting it open appropriately
and welding it back together [BW02]. However, the conformal structures of
compact tori can also be distorted by affine maps. Thus our work on welding
tori provides the mechanism for creating the effect of affine maps.

By refining our ball-bearing packing and performing a discrete conformal weld-
ing on each of the small squares in {2, we can create a normalized discrete
quasiconformal map f,, whose dilatation is approximately equal to u on each
square [Wil].

Circle Packing Measureable Riemann Mapping Theorem. As the pack-
ings are refined, the discrete quasiconformal maps f, converge to the similarly
normalized quasiconformal map f* : Q — D with dilation .
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