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1. Introduction

This survey is meant to supplement the talks I presented at the International

Workshop on Quasiconformal Mappings and their Applications and at the Interna-

tional Conference on Geometric Function Theory, Special Functions and their Appli-

cations. Primarily, I provide here basic background material including definitions,
terminology, and fundamental facts. I also list a few references, many of which
themselves contain additional references to this material. I have made no at-
tempt to render a complete list of references and apologize to all those whose
work I have neglected to mention. The reader is absolutely encouraged to consult
the many works referred to by the authors I do mention.

The goal of these notes is to provide the reader with a foundation enabling
them to understand the meaning and relevance of the recent work [BHK01],
[BHR01], [BKR98] of Bonk, Heinonen, Koskela and Rohde along with [Her04]
and [Her06]. I am delighted to thank Mario Bonk, Juha Heinonen and Pekka
Koskela for numerous helpful discussions and hours of blackboard sessions re-
garding these topics.

By now Euclidean uniform spaces (domains in Euclidean space in which points
can be joined by short twisted double cone arcs) are well recognized as being the
‘nice’ spaces for quasiconformal function theory as well as many other areas of
analysis (e.g., potential theory); see [Geh87], [Väi88] for Euclidean space and
[Gre01], [CGN00], [CT95] for the Carnot-Carathéodory setting. In [BHK01]
Bonk, Heinonen, and Koskela develop a uniformization theory which provides a
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two way correspondence between uniform spaces and Gromov hyperbolic spaces.
In particular, they prove the following fundamental result; see [BHK01, Theorem
1.1].

There is a one-to-one (conformal) correspondence between quasiisom-
etry classes of proper geodesic roughly starlike Gromov hyperbolic spaces
and quasisimilarity classes of bounded locally compact uniform spaces.

A simple, yet beautiful, example is the open unit disk in the plane. In terms of
its Euclidean geometry, each pair of points can be joined by a twisted double cone
which stays away from the boundary and is not much bigger than the distance
between the given points (it is a uniform space). On the other hand, the disk
also admits a non-euclidean geometry, in terms of its Poincaré hyperbolic metric,
and as such the disk is a Gromov hyperbolic space.

The Bonk, Heinonen, Koskela theory asserts that this phenomenon holds in a
very general setting. The complete proof of their result is presented in Chapters
2-5 of [BHK01] and beyond the scope of our discussion. However, there are two
basic results involved which are central to my workshop lectures: Fact 4.1 says
that every locally compact uniform space has a Gromov hyperbolic quasihyper-
bolization; Fact 5.1 says that every (proper geodesic) Gromov hyperbolic space
can be uniformized. I will describe what uniform spaces are, what their con-
nection is with Gromov hyperbolicity, and explain some of the ideas behind the
proofs. Time permitting, I will also look at the related question of when there
exists a uniformization with the property that the associated measure (see (2.7))
has regular volume growth. My conference lecture will focus on §6.D and §6.E.

For the remainder of this introduction, I advertise results from [Her04] and
[Her06] hoping to wet the reader’s appetite for this flavor of metric measure space
geometric function theory. See §2-§5 for precise definitions.

In [BHR01] and [BKR98] the authors investigate conformal deformations of
the unit ball in Euclidean space. The primary object of study in these notes
is the geometry of quasiconformal deformations of an abstract metric measure
space (Ω, d, µ). Following BHKR, we consider a metric-density ρ on Ω and Ωρ =
(Ω, dρ, µρ) denotes the deformed space (see subsection 2.G). We are interested
in the situation when this new space Ωρ is uniform (see Section 3) and describe
this by calling such a ρ a uniformizing density. Every proper geodesic Gromov
hyperbolic space can be uniformized, and, there is a natural canonical proper
geodesic space associated with any locally compact abstract domain, namely, its
quasihyperbolization; see Facts 4.1 and 5.1. However, in general the associated
measure (see (2.7)) may fail to have Ahlfors regular volume growth. For example,
applying the BHK uniformization to the quasihyperbolized Euclidean unit ball
we obtain a new metric measure space which has exponential volume growth.

The theory developed in [BHK01] is exploited in [Her06] to extend some results
of [BHR01] to the setting of abstract metric measure spaces (Ω, d, µ). More
importantly, we establish the result given below which provides an answer to the
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question: When does an abstract domain admit a quasiconformal deformation
which is both uniformizing and such that the induced measure (2.7) satisfies the
natural volume growth estimate? That is, when is there a conformal uniformizing
density? In particular, the induced measure should be Ahlfors regular. Under
certain reasonable minimal hypotheses, this occurs precisely when the conformal
Assouad dimension of the space’s Gromov boundary is small enough. See §5.E
for a discussion of the proof of the following.

Theorem A. Let Ω be an abstract domain with bounded Q-geometry. Suppose Ω
admits a bounded uniformizing conformal density. Then Ω has a Gromov hyper-
bolic roughly starlike quasihyperbolization and the conformal Assouad dimension
of its Gromov boundary is strictly less than Q. The converse holds too, provided
we assume that the Gromov boundary of Ω is uniformly perfect.

The above result is quantitative: the asserted constants depend only on the data
associated with Ω and the density.

In what follows we consider metric measure spaces (Ω, d, µ) which satisfy the
following basic minimal hypotheses:

Ω is an abstract domain having bounded Q-geometry and a
Gromov hyperbolic roughly starlike quasihyperbolization.

Precise definitions are stated in subsections 2.B, 2.D, 2.H, 5.C; roughly, these
hypotheses ensure that Ω has ‘enough’ of the local properties enjoyed by domains
in Euclidean space. The data associated with these basic hypotheses consists of
six parameters: Q (the ‘dimension’), M , m, λ (the bounded geometry constants),
δ (the Gromov hyperbolicity constant) and κ (the rough starlike constant).

There are a number of auxiliary results (namely, Theorems B-F) needed for
the proof of Theorem A; all of these can be found in [Her04] or [Her06]. First
we have the so-called Gehring-Hayman Inequality (cf. [GH62]); it is an essential
tool for most of what follows. This was proved in [BKR98, Theorem 3.1] for
deformations of the Euclidean unit ball and in [HR93] for quasiconformal images
of uniform domains in Euclidean space; see also [BB03, Theorem 2.3], [BHK01,
Chpt. 5] and [HN94]. Our proof of the following (see [Her04, Theorem A]) utilizes
ideas from both [BKR98, Theorem 3.1] and [HR93, Theorem 1.1].

Theorem B. Let ρ be an Ahlfors Harnack density on a uniform Loewner met-
ric measure space (Ω, d, µ). Then there exists a constant Λ such that for all
quasihyperbolic geodesics [x, y]k with endpoints in Ω̄,

ℓρ ([x, y]k) ≤ Λ dρ(x, y).

This result is quantitative: Λ depends only on the data associated with Ω.
Throughout this article the symbol Λ will stand for this Gehring-Hayman In-
equality constant.

Here is a simple, but useful, consequence of the Gehring-Hayman Inequality:
if there is an arc α joining some point w in Ω to some point ζ in ∂Ω with



Uniformity and Hyperbolicity 83

ℓρ(α) <∞, then ℓρ(γ) <∞ for every quasihyperbolic geodesic ray going to ζ. In
fact, there is even a ‘radial limit theorem’ [Her04, Theorem B] which says that
this is true for modQ-a.e. point of ∂Ω.

Next we communicate the primary tool employed in our proof of Theorem A.
It is based on a lifting procedure discussed in [BKR98, 2.7] and established for
the Euclidean unit ball as [BHR01, Proposition 1.25]. See (5.9) and (2.5) for the
definitions of ρν (the lift of ν) and δν,1/P (the quasimetric determined by ν). See
§5.D for a discussion of the proof of the following.

Theorem C. Assume the basic minimal hypotheses, that the Gromov boundary
of Ω is uniformly perfect, and that P < Q. Suppose ν is a P -dimensional metric
doubling measure on ∂GΩ. Then the lift ρ = ρν of ν is a doubling conformal
density on Ω and the natural map (∂ρΩ, dρ) → (∂GΩ, δν,1/P ) is bilipschitz.

The Bonk-Heinonen-Koskela uniformization theory is a crucial tool employed
in all our arguments and permits us to replace the space Ω with a bounded
uniform space Ωε where the geometry is more transparent; see Fact 5.1. A key
ingredient in our proof of Theorem A is the following generalization of [BHR01,
Proposition 2.11]. In particular, it asserts that a conformal density on a bounded
uniform space is uniformizing if and only if the associated measure (2.7) is a
doubling measure on the original space. (See §5.E for the precise definition of a
doubling conformal density.)

Theorem D. Assume the basic minimal hypotheses. Let Ωε be any BHK-
uniformization of Ω. Suppose ρ is a conformal density on Ω. Then the following
are quantitatively equivalent:

(a) ρ is doubling on Ω.
(b) Ωρ is bounded and uniform.
(c) Ωρ is bounded and Q-Loewner.
(d) Ωρ is bounded, Q-Loewner and Ahlfors Q-regular.
(e) the identity map Ωρ → Ωε is quasisymmetric.

Again, this result is quantitative: the asserted constants depend only on the data
associated with Ω and ρ, and the related data. Also, we point out that the proof
of (b) shows that the quasihyperbolic geodesics in Ω will be uniform arcs in Ωρ.

A crucial component of the proof of Theorem C is the following result which
permits us to estimate dρ(x) = distρ(x, ∂ρΩ) in terms of ρ(x)d(x). More precisely,
it tells us that Ahlfors Harnack metric-densities are Koebe under the right condi-
tions. The lower bound is immediate via the Harnack inequality. To obtain any
upper bound, we at least need ∂ρΩ 6= ∅. In fact, we require a condition which
ensures that Ω has a uniformly thick boundary as seen from each point. With
this in mind, we introduce the following notion: we say that (Ω, d, µ) satisfies a
Whitney ball modulus property if there exists a constant m > 0 such that

modQ(B̄(x;λ d(x)), ∂Ω; Ω) ≥ m for all x ∈ Ω.



84 D.A.Herron IWQCMA05

Theorem E. Let ρ be a Ahlfors Harnack metric-density on a uniform Loewner
abstract domain (Ω, d, µ). Suppose that Ω enjoys a Whitney ball modulus prop-
erty. Then there is a constant K such that for all x ∈ Ω,

K−1ρ(x)d(x) ≤ dρ(x) ≤ Kρ(x)d(x);

the constant K depends only on the data associated with Ω.

An important consequence of Theorem E is that the quasihyperbolizations
of Ω and Ωρ are bilipschitz equivalent, and it follows that (Ωρ, kρ) is a Gromov
hyperbolic space.

We mention that any uniform Loewner space with connected boundary satis-
fies a Whitney ball modulus property, provided it and its boundary are simulta-
neously bounded or unbounded. Similarly any bounded uniform Loewner space
with a finite number of non-degenerate boundary components will enjoy this
modulus property. Here is a sufficient condition for this property to hold which
allows for a totally disconnected boundary.

Theorem F. Let (Ω, d, µ) be a locally Loewner, uniform metric measure space.
Assume Ω and ∂Ω are either both bounded or both unbounded. Suppose that for
some p > 0, ∂Ω satisfies the Hausdorff p-content condition

Hp
∞(∂Ω ∩ B̄(ζ; r)) ≥ c rp for all 0 < r ≤ diam(∂Ω) and all ζ ∈ ∂Ω.

Then Ω enjoys a Whitney ball modulus property with a constant m which depends
only on c and the data associated with Ω.

In contrast to the Euclidean case, the converse to the above is false; see
[Her04, Example 3.2] which furnishes a space with an isolated boundary point
which nonetheless satisfies a Whitney ball modulus property.

Our notation is relatively standard and, for the most part, conforms with that
of [BHK01]. We write C = C(a, . . .) to indicate a constant C which depends only
on the parameters a, . . .; the notation A . B means there exists a finite constant
c with A ≤ cB, and A ≃ B means that both A . B and B . A hold. Typically
a, b, c, C,K, . . . will be constants that depend on various parameters, and we try
to make this as clear as possible often giving explicit values, however, at times
C will denote some constant whose value depends only on the data present but
may differ even on the same line of inequalities.

2. Metric Space Background

Naturally there are scores of references for metric space geometry. Here is a
brief list of some texts which I have found especially helpful: [BH99], [BBI01],
[Hei01], [Sem01], [Sem99], [DS97], and of course the references mentioned in these
works.
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2.A. General Information. In what follows (X, d) will always denote a generic
metric space possessing no additional presumed properties. For the record, this
means that d is a distance function; that is, d : X × X → R is positive semi-
definite, symmetric, and satisfies the triangle inequality. We often write the
distance between x and y as d(x, y) = |x− y|. The open ball (sphere) of radius r
centered at the point x is B(x; r) := {y : |x−y| < r} (S(x; r) := {y : |x−y| = r}).
When B = B(x; r) and λ > 0, λB := B(x;λ r). We say that X is a proper met-
ric space if it has the Heine-Borel property that every closed ball is compact (or
equivalently, the compact sets are exactly the closed and bounded sets).

In general, we work in the setting of a metric measure space (X, d, µ) with
X a non-complete locally complete (often locally compact) rectifiably connected
metric space and µ a Borel regular measure satisfying µ[B(x; r)] > 0 for each
ball.

Recall that every metric space can be isometrically embedded into a complete
metric space. We let X̄ denote the metric completion of a metric space X and
we call ∂X = X̄ \X the metric boundary of X. Then d(x) = dist(x, ∂X) is the
distance from a point x ∈ X to the boundary ∂X of X; note that when ∂X is
closed in X̄, we have d(x) > 0 for all x ∈ X. For example, this holds when X
is locally compact. Of course, if X is complete to begin with, then ∂X = ∅ and
d(x) = ∞ for all x ∈ X. We call X locally complete provided d(x) > 0 for all
x ∈ X.

In a locally complete metric space we make extensive use of the notation

B(x) := B(x; d(x)).

In this setting, we call λB(x) = B(x;λ d(x)) a Whitney ball in X with associated
Whitney ball constant λ ∈ (0, 1).

It is convenient, at times, to consider quasimetric spaces (X, q). We call q a
quasimetric on X if q : X ×X → R is symmetric and positive definite but only
satisfies

q(x, y) ≤ K (q(x, z) + q(y, z)) for all x, y, z ∈ X

in place of the triangle inequality. See [Hei01, 14.1], [Sem01] and [DS97].

Starting with a quasimetric q, there is a standard way to define a pseudometric
d with d ≤ q (cf. [BH99, 1.24, p.14]), but it may happen that d(x, y) = 0 for
some x 6= y. However, by first ‘snowflaking’ q and then applying this procedure
we can arrive at an honest distance function; see [Hei01, Proposition 14.5] or
[BH99, Proposition 3.21, p.435].

2.1. Fact. Let q be a quasimetric on X. There is an ε0 > 0 depending only on
the quasimetric constant K for q such that for all ε ∈ (0, ε0), the quasimetric
qε(x, y) = q(x, y)ε is bilipschitz equivalent to an honest distance function d on
X; in fact there is a constant L = L(ε,K) such that

L−1qε(x, y) ≤ d(x, y) ≤ qε(x, y) for all x, y ∈ X.
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We remark that all the quasimetrics qε as defined above are QS equivalent to
each other.

Another useful notion, apparently introduced by Väisälä, is that of a meta-
metric m : X ×X → R which is symmetric, non-negative, satisfies the triangle
inequality, but only

m(x, y) = 0 =⇒ x = y

and so possibly m(x, x) > 0. See [Väi05a, 4.2] for a treatment of metametric
spaces.

A metric space X is called uniformly perfect provided it has at least two
points and there is a constant ϑ ∈ (0, 1) such that for all balls B ⊂ X, B \
ϑB 6= ∅ provided X \ B 6= ∅. This concept, which involves three points, is
especially useful when dealing with quasisymmetric maps and also with doubling
measures (see §2.F). The property of being uniformly perfect is preserved by
quasisymmetric homeomorphisms, with the new constant depending only on the
original constant and the quasisymmetry data; in particular, one can ask whether
or not a conformal gauge is uniformly perfect (see §2.C).

It is a routine exercise to see that uniformly perfect locally compact spaces
contain quasisymmetrically embedded middle-third Cantor dusts. Using this
fact, together with a scaling argument and properties of quasisymmetric homeo-
morphisms (e.g. [Hei01, 11.10,11.11]), one can verify a version of the following.
For a simple more direct approach, which also provides the indicated explicit
constants, see [Her06, Lemma 4.2].

2.2. Fact. Suppose X is a uniformly perfect compact metric space. Then X
satisfies the p-dimensional Hausdorff measure density condition

Hp[B(x; r)] ≥
rp

6
for all 0 < r ≤ diam(X) and all x ∈ X,

where p = 1/ log2(4/ϑ) and ϑ is the uniform perfectedness constant.

The above result can be used in conjunction with Theorem F to see that the
Whitney ball modulus property holds.

2.B. Abstract Domains. We call a metric measure space (Ω, d, µ) an abstract
domain if Ω is a non-complete locally complete rectifiably connected metric space
(and µ a Borel regular measure with dense support). An important example of
such a space is, of course, a proper subdomain of Euclidean space with either
Euclidean distance or the induced Euclidean length distance.

Unless explicitly indicated otherwise, the adjective locally means that the
modified property or condition holds in all Whitney-type balls λB(x) where
0 < λ < 1 is some fixed constant which we call the Whitney ball constant;
when there are several such local conditions in play, we always take λ to be the
minimum of all the associated Whitney ball constants.
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2.C. Maps and Gauges. An embedding f : X → Y from a metric space X
into a metric space Y is quasisymmetric, abbreviated QS, if there is a homeomor-
phism η : [0,∞) → [0,∞) (called a distortion function) such that for all triples
x, y, z ∈ X,

|x− y| ≤ t|x− z| =⇒ |fx− fy| ≤ η(t)|fx− fz|.

These mappings were studied by Tukia and Väisälä in [TV80]; see also [Hei01].
The bilipschitz maps form an important subclass of the quasisymmetric maps;
f : X → Y is bilipschitz if there is a constant L such that for all x, y ∈ X,

L−1|x− y| ≤ |fx− fy| ≤ L|x− y|.

More generally, a map f : X → Y is an (L,C)-quasiisometry if L ≥ 1, C ≥ 0
and for all x, y ∈ X,

L−1|x− y| − C ≤ |fx− fy| ≤ L|x− y| + C.

There seems to be no universal agreement regarding this terminology; some au-
thors use the adjective quasiisometry to mean what we have called bilipschitz,
and then a rough quasiisometry satisfies our definition of quasiisometry. So the
reader should beware! Of course a (1, 0)-quasiisometry is simply called an isom-
etry (onto its range).

Note that the above definitions also make sense for mappings of quasimetric
spaces.

Given a metric (or a quasimetric) on X, we can form the conformal gauge
G on X consisting of all metrics on X which are QS equivalent to the original
(quasi)metric. That is, G is the family of all metrics ∂ on X such that the identity
map (X, d) → (X, ∂) is QS. See [Hei01, Chapter 15] for more discussion of this
topic.

An embedding f : X → Y from a metric space X into a metric space Y is
called quasimöbius, abbreviated QM, if there is a homeomorphism ϑ : [0,∞) →
[0,∞) (called a distortion function) such that for all quadruples x, y, z, w of
distinct points in X,

|x, y, z, w| ≤ t =⇒ |fx, fy, fz, fw| ≤ ϑ(t)

where the absolute cross ratio is

|x, y, z, w| =
|x− y||z − w|

|x− z||y − w|
.

These mappings were introduced and investigated by Väisälä in [Väi85]; see
also [Väi05a]. Every QS homeomorphism is QM; the converse holds in certain
special cases. Clearly Möbius transformations are QM maps in Euclidean space;
however, a Möbius transformation from the unit ball onto a half-space is not QS.
The QM maps are more flexible than the QS.

The QS and QM maps are defined by global conditions whereas QC (quasicon-
formal) maps only satisfy a local condition. I highly recommend Tyson’s recent
survey article [Tys03]. Väisälä’s notes [Väi71] are the classical reference for QC
maps in the Euclidean setting. These maps have been studied in the Heisenberg
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group setting and there is still much research underway there. Heinonen and
Koskela strongly advanced the theory in the general metric space setting; see
[HK95] and [HK98]. See Koskela’s notes [Kos07] for a ‘modern’ approach to QC
maps in the Euclidean setting.

There are three so-called definitions for QC maps: the metric definition, the
geometric definition, and the analytic definition. We present the first two. A
homeomorphism f : X → Y is (metrically) quasiconformal provided there is a
constant H <∞ such that for all x ∈ X,

lim sup
rց0

H(x, f, r) ≤ H where H(x, f, r) =
L(x, f, r)

l(x, f, r)
,

L(x, f, r) = sup{|f(y) − f(x)| : |x− y| ≤ r} ,

l(x, f, r) = inf{|f(y) − f(x)| : |x− y| ≥ r} .

A homeomorphism f : X → Y is (geometrically) quasiconformal provided there
is a constant K <∞ such that for all curve families Γ in X,

K−1 mod(Γ) ≤ mod(fΓ) ≤ K mod(Γ).

Notice that unlike the metric definition, which makes sense for any pair of met-
ric spaces, the geometric definition requires measure metric spaces. These are
generally assumed to be Ahlfors Q-regular spaces (see §2.J) in which case mod(·)
denotes the Q-modulus.

2.D. Length and Geodesics. The length of a continuous path γ : [0, 1] → X
is defined in the usual way by

ℓ(γ) := sup
n

∑

i=1

|γ(ti) − γ(ti−1)| where 0 = t0 < t1 < · · · < tn = 1.

We call γ rectifiable when ℓ(γ) < ∞. We let Γ(x, y) = Γ(x, y;X) denote the
collection of all rectifiable paths joining x and y in X; in general we should
also indicate the metric in this notation, but it will always be understood from
context. Väisälä’s notes [Väi71, §1-§5] provide an excellent reference for studying
properties of curves, and the results are valid in the general metric space setting.
Each rectifiable path γ : [0, 1] → X has an associated arclength function s :
[0, 1] → [0, ℓ(γ)], given by s(t) = ℓ(γ[0, t]), which is of bounded variation. Given
a Borel measurable function ρ : X → [0,∞], we define

∫

γ

ρ ds :=

∫ 1

0

ρ(γ(t)) ds(t).

An arc in a metric space X is the homeomorphic image of an interval I ⊂ R.
Given two points x and y on an arc α, we write α[x, y] to denote the subarc of
α joining x and y.

A geodesic in X is the image ϕ(I) of some isometric embedding ϕ : I → X
where I ⊂ R is an interval; we use the adjectives segment, ray, or line (re-
spectively) to indicate that I is bounded, semi-infinite, or all of R. When ϕ is
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L-bilipschitz we call ϕ(I) an L-quasigeodesic. More generally, if ϕ is (L,C)-
quasiisometric, then we call ϕ(I) an (L,C)-quasigeodesic. Thus γ is an L-
quasigeodesic precisely when

∀x, y ∈ γ : ℓ(γ[x, y]) ≤ L|x− y|;

classically, such curves in the plane R2 were called chord arc curves.

A metric space is geodesic if each pair of points can be joined by a geodesic
segment. We use the notation [x, y] to mean a (not necessarily unique) geodesic
segment joining points x, y; such geodesics always exist if our space is geodesic,
but may not be unique. (If there is some other distance function, such as k, then
we write [x, y]k to denote a k-geodesic joining x, y). We consider a given geodesic
[x, y] as being ordered from x to y (so we can use phrases such as the ‘first’ point
encountered). An unbounded metric space is roughly κ-starlike with respect to a
base point w if each point lies within distance κ of some geodesic ray emanating
from w.

The geodesic boundary ∂gX of an unbounded geodesic metric space X is the
set of equivalence classes of geodesic rays in X where two such rays are consid-
ered equivalent when they are at a finite Hausdorff distance from each other.
Equivalently, if α, β : [0,∞) → X are geodesic rays in X, then α ≃ β if
supt |α(t) − β(t)| < ∞. The geodesic boundary of Rn is the sphere Sn−1. The
geodesic boundary of hyperbolic n-space (Bn, h) is also the sphere Sn−1.

Every metric space (X, d) admits a natural (or intrinsic) metric, the so-called
length distance given by

l(x, y) := inf{ℓ(γ) : γ a rectifiable curve joining x, y in Ω}.

A metric space (X, d) is a length space provided d(x, y) = l(x, y) for all points
x, y ∈ X; it is also common to call such a d an intrinsic distance function. Notice
that an l-geodesic [x, y]l is a shortest curve joining x and y.

The Hopf-Rinow Theorem (see [Gro99, p.9], [BBI01, p.51], [BH99, p.35]) says
that every locally compact length space is proper (and therefore geodesic). In
a general length space, when geodesics may not exist, one works with so-called
short arcs; see [Väi05a].

Since |x−y| ≤ ℓ(x, y) for all x, y, the identity map (X, l)
id
→ (X, d) is Lipschitz

continuous. It is important to know when this map will be a homeomorphism
(cf. [BHK01, Lemma A.4, p.92]). Notice that the identity map (X, d) → (X, l) is
uniformly locally Lipschitz when X is locally quasiconvex; see §2.E. More gen-
erally, one can show that the identity map (X, l) → (X, d) is a homeomorphism
precisely when X satisfies a weak notion of local quasiconvexity; see [BH07].

2.E. Connectivity Conditions. A metric space (X, d) is a-quasiconvex pro-
vided each pair of points can be joined by a path whose length is at most a
times the distance between its endpoints. A locally complete space X is locally
quasiconvex if there exists a constant a ≥ 1 such that for all z ∈ X, points
x, y ∈ λB(z) can be joined by a rectifiable arc α in X with ℓ(α) ≤ a|x− y|; we
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abbreviate this by the phrase ‘X is locally a-quasiconvex’. (Here it is understood
that there is some Whitney ball constant λ ∈ (0, 1) which may also depend on
other parameters).

A space (X, d) is c-linearly locally connected, or c-LLC, if c ≥ 1 and the
following conditions hold for all x ∈ X and all r > 0:

points in B(x; r) can be joined in B(x; c r)(LLC1)

and

points in X \ B̄(x; r) can be joined in X \ B̄(x; r/c).(LLC2)

Here the phrase ‘can be joined’ means ‘can be joined by a continuum’. We also
use the term LLC with respect to arcs in which case ‘can be joined’ means ‘can
be joined by a rectifiable arc’. Note that quasiconvexity implies LLC1 (even with
respect to arcs).

The generic example of a space which does not satisfy the LLC2 condition is
the interior of an infinite Euclidean cylinder such as Bn−1 × R ⊂ Rn. However,
for 2 ≤ k < n the regions Bn−k × Rk ⊂ Rn are easily seen to be 1-LLC2. The
complement of a semi-infinite slab (e.g., Rn \ {(x1, . . . , xn) : x1 ≥ 0, |xn| ≤ 1})
fails to be LLC1.

Ahlfors regular Loewner spaces are LLC; see [HK98, Theorem 3.13]. Uniform
domains also enjoy this property, but not necessarily uniform spaces. The LLC
condition was invented by Gehring who first used it to characterize quasidisks;
see [Geh82] and the references mentioned therein.

2.F. Doubling and Dimensions. The p-dimensional Hausdorff measure of a
set A ⊂ X is given by Hp(A) := limr→0 H

p
r(A) where

Hp
r(A) := inf{

∑

diam(Bi)
p : A ⊂ ∪Bi, Bi balls with diam(Bi) ≤ r}.

The Hausdorff p-content of A is just Hp
∞(A). The Hausdorff dimension of A is

determined by

dimH(A) := inf {p > 0 : Hp(A) = 0} .

We also require the Assouad dimension of X which is given by

dimA(X) := inf{p : #S ≤ C(R/r)p for all S ⊂ X

with r ≤ |x− y| ≤ R for all x, y ∈ S}

where #S denotes the cardinality of the set S. See [Hei01, 10.15] or [Luu98,
3.2]. The spaces with finite Assouad dimension are precisely the doubling spaces
(which we discuss below in more detail). Finally, the conformal Assouad dimen-
sion of a metric space X is

c-dimA(X) := inf{dimA(X, d) : d ∈ G},

where G is the conformal gauge on X determined by the original metric; see
[Hei01, 15.8, p.125].
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A metric space (X, d) satisfies a (metric) doubling condition if there is a con-
stant N such that each ball in X of radius R can be covered by at most N balls of
radius R/2; these are precisely the spaces of finite Assouad dimension. A Borel
measure ν is a doubling measure on X if there is a constant D = Dν such that

ν[B(x; 2r)] ≤ Dν[B(x; r)] for all x ∈ X and all r > 0.

A Borel measure ν on X is p-homogeneous if there is a constant C = Cν such
that

ν[B(x;R)]

ν[B(x; r)]
≤ C

(

R

r

)p

for all x ∈ X and all 0 < r ≤ R.

Obviously every homogeneous measure is doubling; the converse holds too with
C = D and p = log2(D). Every Ahlfors Q-regular measure is Q-homogeneous.

The existence of a doubling measure is easily seen to imply a metric doubling
condition; the converse holds if our metric space is complete. Here is a precise
statement of this result, which is due to Vol’berg and Konyagin for compact
spaces, and Luukkainen and Saksman for complete spaces (see [Hei01, Theo-
rem 13.5]).

2.3. Fact. A complete doubling space X carries a p-homogeneous measure for
each p > dimA(X).

An especially important property of doubling measures is their exponential
decay on uniformly perfect spaces, which we record as follows; see [Hei01, (13.2)]
or [Sem99, Lemma B.4.7, p.420].

2.4. Fact. Let ν be a doubling measure on a uniformly perfect metric space.
There are constants C ≥ 1 and α > 0, depending only on the doubling constant
for ν and the uniformly perfect constant, such that for all balls B(z; r) ⊂ B(x;R),

ν[B(z; r)]

ν[B(x;R)]
≤ C

( r

R

)α

.

Now we discuss an interesting way to deform the geometry of a doubling space.
Let ν be a doubling measure on a metric space (X, d). For each α > 0 we define
δ = δν,α by

(2.5) δ(x, y) := ν[B(xy)]α, where B(xy) := B̄(x; |x− y|) ∪ B̄(y; |x− y|);

see [DS97, §16.2], [Sem99, (B.3.6)], [Hei01, 14.11]. This always defines a quasi-
metric on X, and, when X is uniformly perfect, the identity map (X, d) → (X, δ)
will be quasisymmetric and (X, δ, ν) will be Ahlfors (1/α)-regular. Moreover,
there is an α0 > 0 (depending only on the doubling constant for ν) such that
for all 0 < α < α0, δν,α is bilipschitz equivalent to an honest distance function
on X (see Fact 2.1). In particular, if ν is p-homogeneous, then δν,1/p is already
bilipschitz equivalent to an honest distance function (e.g., if (X, d, ν) is Ahlfors
p-regular, then δν,1/p is bilipschitz equivalent to d).

In conjunction with the above chain of ideas, we declare ν to be a p-dimensional
metric doubling measure on X if ν is a doubling measure on X with the prop-
erty that δν,1/p is bilipschitz equivalent to a distance on X. For example, a
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p-homogeneous measure will be a p-dimensional metric doubling measure. We
summarize the above comments; see [Hei01, 14.11,14.14], [Sem99, B.3.7, B.4.6,
p.421], [DS97, 16.5,16.7,16.8].

2.6. Fact. Let ν be a p-dimensional metric doubling measure on a uniformly
perfect metric space (X, d). Define δ = δν,1/p as in (2.5). Then δ is a quasimetric
on X which is bilipschitz equivalent to a distance function on X, the identity map
(X, d) → (X, δ) is quasisymmetric, and (X, δ, ν) is an Ahlfors p-regular space.
All of the new parameters depend only on the original data for X and ν.

There is one final comment we wish to point out regarding the quasimetrics
δν,α. As above, suppose ν is a doubling measure on a metric space (X, d), and
suppose X has another metric, say, ∂ which is QS equivalent to d. Then by
using the doubling property of ν in conjunction with quasisymmetry we see that
ν[Bd(xy)] ≃ ν[B∂(xy)] (where these sets are defined as above using balls centered
at x and y in the appropriate metrics); here the constant depends only on the
doubling constant and the quasisymmetry data. It therefore follows that the
quasimetric δd (defined as in (2.5) via Bd(xy)) is bilipschitz equivalent to δ∂
(defined via B∂(xy)).

We note the important fact that quasisymmetric homeomorphisms preserve
these doubling conditions; cf. [Hei01, Theorem 10.18] or [DS97, Lemma 16.4].
In particular, the notions of doubling measure, the quasimetrics δν,α, and metric
doubling measures do not depend on the given distance function per se; they all
make sense for a conformal gauge.

2.G. Quasiconformal Deformations. Given an abstract domain (Ω, d, µ) and
a positive Borel measurable function ρ on Ω, we wish to define a new metric mea-
sure space Ωρ = (Ω, dρ, µρ) which is a quasiconformal deformation of Ω. (Above
in §2.F we described another method for deforming the geometry of Ω which was
based on having a doubling measure. See Fact 2.6.)

We start by defining the ρ-length of a rectifiable curve γ via

ℓρ(γ) :=

∫

γ

ρ ds

and then the ρ-distance between two points x, y is

dρ(x, y) := inf{ℓρ(γ) : γ a rectifiable curve joining x, y in Ω};

see §2.D. The careful reader no doubt recognizes that, in general, dρ(x, y) could
be zero or even infinite; in order to ensure that dρ be an honest distance function,
we must require that 0 < dρ(x, y) < ∞ for all points x, y ∈ Ω. We designate
this by calling such ρ a metric-density on Ω. One way to guarantee this is to ask
that ρ be locally bounded away from zero and infinity. In practice, our densities
will always satisfy a Harnack inequality—see below—so this is never a problem
for us.



Uniformity and Hyperbolicity 93

The ρ-balls (etc.) are written as Bρ(x; r); these are the metric balls in Ωρ, so
Bρ(x; r) = {y ∈ Ω : dρ(x, y) < r}. We define a new measure µρ by

(2.7) µρ(E) :=

∫

E

ρQ dµ.

Here Q is usually the Hausdorff dimension of (Ω, d).

When Ωρ is non-complete (which will often be the case for us), we can form
∂ρΩ = Ω̄ρ \ Ωρ and define dρ(x) = distρ(x, ∂ρΩ). In this setting we also employ
the notation Bρ(x) = Bρ(x; dρ(x)); thus λBρ(x) is a Whitney ball in Ωρ.

We are especially interested in the metric-densities ρ for which Ωρ is a uniform
space, and we call such a ρ a uniformizing density (which implicitly includes
the hypothesis that Ωρ is non-complete). The Bonk-Heinonen-Koskela theory
produces uniformizing densities on proper geodesic Gromov hyperbolic spaces;
see Fact 4.1. Some other classes of metric-densities which we wish to single out
for attention include Harnack, Ahlfors, and Koebe densities; their definitions
follow below. We let Hρ, Aρ, Kρ denote the parameters associated with these
densities.

Before delving into the technical definitions, we wish to make a few com-
ments. The reader no doubt has encountered deformations of Euclidean domains
Ω ⊂ Rn by continuous densities ρ; in this setting Ωρ is a conformal deformation
of Ω, meaning that the identify map Ω → Ωρ is conformal (i.e., metrically 1-
quasiconformal). However, in our more general setting, even for the case ρ = 1
say, the identity map Ω → Ωρ = Ωl may fail to be quasiconformal (e.g., if Ω does
not satisfy some sort of local quasiconvexity condition). A similar phenomenon
holds for Borel metric-densities, even for domains Ω ⊂ Rn. Nonetheless, when
Ω is locally quasiconvex and ρ is a Harnack metric-density, Lemma 2.8 below
reveals that the identity map Ω → Ωρ is QC (and according to Proposition 2.9
even QS under the right circumstances). This is a good thing: we want Ωρ to be
a quasiconformal deformation of Ω.

With this in mind, we pronounce the following definitions. First, we declare ρ
to be a bounded density if the deformed space Ωρ is bounded, i.e., diamρ(Ω) <∞.

Next, we call ρ a Harnack density provided it satisfies a uniform local Harnack
type inequality: for all points x in Ω,

(H)
1

H
≤
ρ(y)

ρ(x)
≤ H for all y ∈ λB(x).

HereH = Hρ ≥ 1 and 0 < λ < 1 (generally λ will be small). Note that in contrast
to the situation in [BKR98, p.637], the validity of (H) for some 0 < λ < 1 need
not mean a similar set of inequalities will hold for λ = 1/2. The condition (H)
provides local control and permits the use of standard chaining type arguments;
e.g., see Lemma 2.13.

We call ρ an Ahlfors density if the associated metric measure space Ωρ =
(Ω, dρ, µρ) is Ahlfors upper Q-regular (cf. §2.J); i.e., if µρ satisfies a global upper
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Ahlfors Q-regular volume growth estimate: there is a constant A = Aρ such that
for all points x in Ω,

(A) µρ[Bρ(x; r)] ≤ ArQ for all r > 0.

The positive real number Q is generally the Hausdorff dimension of our space;
it must agree with the number Q appearing in the definition of a Loewner space
(a notion also discussed in §2.J). The volume growth condition (A) ensures
that Ωρ satisfies an upper mass condition and so provides modulus estimates via
Facts 2.15, 2.16, 2.17.

Below (in §2.H) we discuss the density 1/d which determines the quasihyper-
bolic distance; of course this is a continuous Harnack density, but in general 1/d
does not satisfy the volume growth requirement (A).

We call ρ a Koebe density if Ωρ is non-complete and there is a constantK = Kρ

such that dρ(x) = distρ(x, ∂ρΩ) enjoys the property

(K)
1

K
≤

dρ(x)

ρ(x)d(x)
≤ K for all x ∈ Ω.

(Note that when ρ is a Harnack density, dρ(x) ≥ (λ/H)ρ(x)d(x) always holds,
and so it is the upper estimate which is needed.) For example, if ρ = |f ′| where f
is a holomorphic homeomorphism defined in a subdomain Ω of the complex plane,
then a classical theorem in univalent function theory asserts that ρ is a Koebe
density with constant K = 4. As another example we note that Theorem E
asserts that any Harnack Ahlfors density on a uniform Loewner space (with suf-
ficiently ‘thick’ boundary) is a Koebe density; see [Her04, Theorem E]. We point
out that when ρ is a Koebe density on (Ω, d), the identity map (Ω, k) → (Ωρ, kρ)
is easily seen to be Kρ-bilipschitz; here (Ωρ, kρ) denotes the quasihyperbolization
of Ωρ.

We employ the terminology conformal density for a metric-density which is
Harnack, Ahlfors, and Koebe. A basic example of a conformal density is ρ = |f ′|
for any holomorphic homeomorphism |f ′| defined in a subdomain of the complex
plane; we refer to [BKR98, Section 2] for other examples of conformal densities
on the Euclidean unit ball. The reader should be aware that the phrase ‘ρ is a
conformal density’ does not necessarily mean that the identity map Ω → Ωρ is
quasiconformal (unless Ω is locally quasiconvex).

Here are some especially useful estimates which also provide information con-
cerning the identity map Ω → Ωρ for certain densities. Roughly speaking, this
map is locally bilipschitz (therefore quasiconformal) for Harnack densities and
uniformly locally quasisymmetric for Harnack Koebe densities, provided Ω is lo-
cally quasiconvex. Proposition 2.9 gives a significant strengthening of this result.

2.8. Lemma. Let ρ : Ω → (0,∞) be a Harnack density on a locally a-
quasiconvex abstract domain (Ω, d). Put η = λ/2a. Then for all z ∈ Ω,

1

H
≤

dρ(x, y)

ρ(z)|x− y|
≤ aH for all points x 6= y in ηB(z);
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in particular,

1

H
≤

diamρ[ηB(z)]

ηρ(z)d(z)
≤ 2aH.

If ρ is also a Koebe density, then for all 0 ≤ ϑ ≤ λ/2C and all x ∈ Ω,

C−1ϑB(x) ⊂ ϑBρ(x) ⊂ CϑB(x),

where C = aHK. Here H = Hρ, K = Kρ and λ is the Whitney ball constant.

One immediate consequence of Lemma 2.8 is that the identity map Ω → Ωρ

is metrically quasiconformal with linear dilatation aH2. In addition, because of
the definition of the associated measure (see (2.7)), a straightforward calcula-
tion reveals that this identity map is geometrically quasiconformal with inner
dilatation HQ and outer dilatation (aH)Q. (Here we assume a Harnack density
on a locally quasiconvex Ω.) It is therefore natural to inquire about possible
quasisymmetry properties of this identity map.

Heinonen and Koskela proved that a quasiconformal map of bounded Ahlfors
regular spaces, with domain a Loewner space and a linearly locally connected
target space, is in fact quasisymmetric [HK98, Theorem 4.9]. The corollary to
the following analog of their result is used in the proof of Theorem D; note that
here our domain space is not assumed to be Ahlfors regular.

2.9. Proposition. Let Ω be a bounded locally quasiconvex Q-Loewner space.
Suppose ρ is a conformal density on Ω with Ωρ a bounded linearly locally con-
nected space. Then the identity map Ω → Ωρ satisfies the weak-quasisymmetry
condition

∀x, y, z ∈ Ω : |x− y| ≤ |x− z| =⇒ dρ(x, y) ≤ Ldρ(x, z)

for some constant L which depends only on the data associated with Ω, ρ, Ωρ,
and the ratios r, q given in the proof.

2.10. Corollary. Let Ω be a bounded quasiconvex Q-Loewner space. Suppose
ρ is a conformal density on Ω and Ωρ is a bounded Q-Loewner space. Then the
identity map Ω → Ωρ is quasisymmetric with a distortion function which depends
only on the data associated with Ω, ρ, Ωρ, and the ratios r, q given in the proof
of Proposition 2.9.

As an exercise to help understand the various properties of these metric-
densities, the interested reader can provide a proof for the following [Her06,
Lemma 2.6].

2.11. Lemma. Suppose (Ω, d, µ) is a locally a-quasiconvex abstract domain. Let
τ be a positive Borel function on Ω which is locally bounded away from 0 and
∞. Put ∆ = Ωτ . If σ is a metric-density on ∆, then its pull-back ρ = σ τ is a
metric-density on Ω, Ωρ = ∆σ, and

(a) ρ and σ either are, or are not, both Ahlfors regular (with Aρ = Aσ),

(b1) if σ, τ are both Koebe, then so is ρ with Kρ = KσKτ ,
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(c1) if σ, τ are both Harnack, then so is ρ with Hρ = HσHτ .

On the other hand, if ρ is a metric-density on Ω, then its push-forward σ = ρ τ−1

is a metric-density on ∆, ∆σ = Ωρ, (a) holds, and

(b2) if ρ, τ are Koebe, then so is σ with Kσ = KρKτ ,

(c2) if ρ, τ are Harnack and τ is Koebe, then σ is Harnack with Hσ = HρHτ .

2.H. Quasihyperbolic Distance and Geodesics. The quasihyperbolic dis-
tance in an abstract domain (Ω, d) is defined by

k(x, y) = kΩ(x, y) := inf ℓk(γ) = inf

∫

γ

ds

d(z)

where the infimum is taken over all rectifiable curves γ which join x, y in Ω.
The quasihyperbolization of an abstract domain (Ω, d) is the metric space (Ω, k)
obtained by using quasihyperbolic distance. It is not hard to see that (Ω, k)
is complete, provided the identity map (Ω, ℓ) → (Ω, d) is a homeomorphism;
see [BHK01, Proposition 2.8]. Thus by the Hopf-Rinow theorem ([Gro99, p.9],
[BBI01, p.51], [BH99, p.35]), every locally compact abstract domain has a proper
(hence geodesic) quasihyperbolization.

We call the geodesics in (Ω, k) quasihyperbolic geodesics ; see §2.D. Note that
when ρ is a Koebe density on Ω, the identity map (Ω, k) → (Ωρ, kρ) is bilips-
chitz and we find that quasihyperbolic geodesics in Ω are quasihyperbolic quasi-
geodesics in Ωρ; that is, a geodesic in (Ω, k) will be a quasigeodesic in (Ωρ, kρ)
(the quasihyperbolization of Ωρ).

We remind the reader of the following basic estimates for quasihyperbolic
distance, first established by Gehring and Palka [GP76, Lemma 2.1]:

k(x, y) ≥ log

(

1 +
ℓ(x, y)

d(x) ∧ d(y)

)

≥ j(x, y) = log

(

1 +
|x− y|

d(x) ∧ d(y)

)

≥

∣

∣

∣

∣

log
d(x)

d(y)

∣

∣

∣

∣

.

See also [BHK01, (2.3),(2.4)]. The first inequality above is a special case of the
more general (and easily proved) inequality,

ℓk(γ) ≥ log

(

1 +
ℓ(γ)

d(x) ∧ d(y)

)

which holds for any rectifiable curve γ with endpoints x, y.

An immediate consequence of the above inequalities is that the identity map
(Ω, k) → (Ω, d) is continuous; indeed,

Bk(x;R) ⊂ (eR − 1)B(x) for all x ∈ Ω and all R > 0,

where Bk(x;R) denotes the R-ball centered at x in (Ω, k). It is important to
know when this map will be a homeomorphism (which, according to [BHK01,
Lemma A.4, p.92], will be the case if and only if the identity map (Ω, ℓ) → (Ω, d)
is a homeomorphism). The following provides quantitative information concern-
ing this question; it is easy to verify via simple estimates for the quasihyperbolic
lengths of the ‘promised short arcs’.
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2.12. Lemma. Suppose that (Ω, d) is a locally a-quasiconvex abstract domain.
Then for all x ∈ Ω and all R > 0,

τB(x) ⊂ Bk(x;R) provided 0 ≤ τ ≤ min{λ,R/[a(1 +R)]}.

As an exercise, the reader can check that for a domain in Rn, |x − y| ≤
[d(x) + d(y)]/2 =⇒ k(x, y) ≤ 2. Thus (2/3)B(x) ⊂ Bk(x; 2).

The Harnack inequality (H), as stated in §2.G, only requires that ρ be es-
sentially constant on Whitney type balls. We can do the usual chaining type
arguments to see that such a density ρ will satisfy a Harnack type inequality on
much bigger sets, of course with a change in the Harnack constant. Here is a
useful example of this phenomena.

2.13. Lemma. Let ρ be a Harnack density on an abstract domain (Ω, d). If
x, y ∈ Ω satisfy k(x, y) ≤ K, then 1/H1 ≤ ρ(y)/ρ(x) ≤ H1, where H1 =
H1(K,Hρ, λ).

We conclude this subsection with a covering lemma for quasihyperbolic geodesics.

2.14. Lemma. Suppose that (Ω, d) is a locally a-quasiconvex abstract domain.
Let γ be a quasihyperbolic geodesic segment or ray in Ω with endpoint x0. Let
x0, x1, x2, . . . be successive points along γ with k(xi, xi−1) = K ≤ log(1 + τ)
where τ = min{λ, 1/2a}. Then the balls Bi = τB(xi) cover γ and have bounded
overlap:

∑

χBi
≤ Cχ∪Bi

, where C = 1 + 4/K.

2.I. Modulus and Capacity. For p ≥ 1 we define the p-modulus of a family
Γ of curves in a metric measure space (X, d, µ) by

modp Γ := inf

∫

ρp dµ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] satisfying
∫

γ
ρ ds ≥ 1 for all locally rectifiable curves γ ∈ Γ. Then the p-modulus of a pair

of disjoint compact sets E,F ⊂ X is

modp(E,F ;X) := modp Γ(E,F ;X)

where Γ(E,F ;X) is the family of all curves joining the sets E,F in X. We also
let Γr(E,F ;X) be the subfamily of Γ(E,F ;X) consisting of the rectifiable paths
joining E,F .

An important property is that under fairly general circumstances, modp(E,F ;X)
agrees with the p-capacity of the pair E, F . There is extensive literature regard-
ing these “capacity equals modulus” results; for a start, see [HK98, Proposi-
tion 2.17].

For the reader’s convenience, we cite the following modulus estimates. First
we have the standard Long Curves Estimate; see [HK98, 3.15].

2.15. Fact. Let x ∈ X and suppose that the upper mass condition µ[B(x;R)] ≤
MRp holds for some R > 0. Let Γ be a family of curves in B(x;R) and suppose
that each γ ∈ Γ has arclength ℓ(γ) ≥ L > 0. Then

modp Γ ≤ L−pµ[B(x;R)] ≤M(R/L)p.
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Next we record the Spherical Ring Estimate; see [HK98, 3.14, p.17].

2.16. Fact. Let x ∈ X, 0 < 2r ≤ R, and suppose that the upper mass condition
µ[B(x; t)] ≤Mtp holds for all 0 < t < r +R. Then

modp(B̄(x; r), X \B(x;R);X) ≤ C (log(R/r))1−p ,

where C = 2p+1M/ log 2.

Finally, we require the following Basic Modulus Estimate; see [BKR98, Lemma
3.2].

2.17. Fact. Let (X, d, µ) be a metric measure space. Assume that ρ is a metric-
density on X whose associated measure (2.7) satisfies the Ahlfors volume growth
condition (A) at some point x ∈ E ⊂ X. Suppose that L > λ ≥ diamρE,
and that Γ is some family of curves γ in X each having one endpoint in E and
satisfying ℓρ(γ) ≥ L. Then

modQ Γ ≤ C (log (1 + L/λ))1−Q ,

where C = 2Q+1A/ log 2.

2.18. Corollary. Let (X, d, µ) be a metric measure space. Assume that for
some point x ∈ E ⊂ X, the upper mass condition µ[B(x; r)] ≤ MrQ holds for
all r > 0. Suppose that Γ is a family of curves γ in X each having one endpoint
in E and satisfying ℓ(γ) ≥ L > diamE. Then

modQ Γ ≤ C (log (1 + L/ diamE))1−Q ,

where C = 2Q+1M/ log 2.

In Euclidean space Rn, the n-modulus is also called the conformal modulus and
simply denoted by mod(·). Below we state some well-known geometric estimates
for the conformal modulus mod(E,F ; Ω). Here and elsewhere in these notes,

∆(E,F ) := dist(E,F )/min{diam(E), diam(F )}

is the relative distance between the pair E, F of nondegenerate disjoint continua.

2.19. Facts. Let E,F be disjoint compact sets in Rn.

(a) If E,F are separated by the spherical ring B(x; s) \ B̄(x; t), then

mod(E,F ; Rn) ≤ ωn−1 (log(s/t))1−n .

(b) If E ∩ S(x; r) 6= ∅ 6= F ∩ S(x; r) for all t < r < s, then

mod(E,F ) ≥ σn log(s/t).

(c) If both E and F are connected, then

σn log(1 + 1/∆(E,F )) ≤ mod(E,F ; Rn) ≤ Ωn(1 + 1/∆(E,F ))n.

(d) (Comparison Principle) If A,B,E, F ⊂ Ω with A,B also compacta, then

mod(E,F ; Ω) ≥ 3−n min{mod(E,A; Ω),mod(F,B; Ω), I},

where I = inf{mod(α, β; Ω) | α ∈ Γr(E,A; Ω), β ∈ Γr(F,B; Ω)}.
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(e) (Teichmüller Estimate) If E,F are both connected, then for all x, y ∈ E
and z, w ∈ F

mod(E,F ; Rn) ≥ τ

(

|x− z||y − w|

|x− y||z − w|

)

where τ(r) is the capacity of the Teichmüller ring

Rn \ {−1 ≤ x1 ≤ 0 or x1 ≥ r};

i.e, τ(r) = mod([−e1, 0], [re1,∞]; Rn).
(f) There exists λ = λ(n) ∈ [6, 5e(n−1)/2) such that when E, F are both con-

nected and ∆(E,F ) ≥ 1,

21−nωn−1[log(λ∆(E,F ))]1−n ≤ mod(E,F ; Rn) ≤ ωn−1[log(∆(E,F ))]1−n.

(g) (Carleman Inequality) For E ⊂ Ω,

mod(E, ∂Ω; Ω) ≥ nn−1ωn−1 (log(|Ω|/|E|))1−n .

Here σn and ωn−1, Ωn are the spherical cap constant and the measures of the
(n− 1)-sphere, n-ball respectively.

Most of these estimates can be found in [Väi71] or [Vuo88]. Lemma 2.5 in
[BH06] gives a precise formula for mod(E,F ; Rn) in the case when E,F are
disjoint closed balls.

2.J. Ahlfors Regular and Loewner Spaces. A metric measure space (X, d, µ)
is Ahlfors Q-regular provided there exists a finite constant M = Mµ such that
for all x ∈ X and all 0 < r ≤ diam Ω,

M−1rQ ≤ µ[B(x; r)] ≤M rQ.

The positive real number Q will then be the Hausdorff dimension of (X, d),
and the Q-dimensional Hausdorff measure HQ on X will also satisfy the above
inequalities (possibly with a change in the constant M). A metric space (X, d)
is Ahlfors Q-regular if (X, d,HQ) is Ahlfors Q-regular. We use the adjectives
upper or lower to indicate that only one of these inequalities is in force, and—in
the abstract domain setting—add the adjective locally to mean that the required
inequality holds (or, inequalities hold) for Whitney balls (i.e., for radii 0 < r ≤
λd(x)).

There is an interesting result which gives upper estimates for the Assouad
dimension of subsets of Ahlfors regular spaces. See [BHR01, 3.12], [DS97, 5.8],
[Luu98, 5.2].

2.20. Fact. Suppose X is an Ahlfors Q-regular space and let M ⊂ X. Then
dimAM < Q if and only if M is porous in X; the constants depend only on each
other and the HQ-regularity constant.

The notion of a Loewner space was introduced by Heinonen and Koskela in
their study [HK98] of quasiconformal mappings of metric spaces; Heinonen’s
recent monograph [Hei01] renders an enlightening account of these ideas. A
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path-connected metric measure space (X, d, µ) is a Q-Loewner space, Q > 1,
provided the Loewner control function

ϕ(t) := inf{modQ(E,F ;X) : ∆(E,F ) ≤ t}

is strictly positive for all t > 0; here E, F are non-degenerate disjoint continua
in Ω and

∆(E,F ) := dist(E,F )/min{diam(E), diam(F )}

is the relative size of the pair E, F . Note that we always have Q ≥ dimH(Ω) ≥ 1.

When (Ω, d, µ) is an n-Loewner space with Ω ⊂ Rn a domain and d, µ are
Euclidean distance and Lebesgue n-measure respectively, we simply call Ω a
Loewner domain. This is a generalization of Väisälä’s notion of a broad domain
(which he introduced in his analysis [Väi89, 2.15] of space domains QC equivalent
to a ball, and also used in his study [NV91, 3.8] of John disks), which in turn
is an analog of the quasiextremal distance domains first studied by Gehring and
Martio [GM85].

We call Ω ( Rn a ψ-QED domain if ψ : [0,∞) → [0,∞) is a homeomorphism
and for all disjoint continua E, F in Ω,

mod(E,F ; Ω) ≥ ψ(mod(E,F ; Rn)).

Clearly, ψ(t) ≤ t is a necessary restriction on such ψ. Also, every ψ-QED domain
is Loewner. The typical nonlinear functions ψ that arise in the literature have the
form ψp,M(t) = M−1 min{tp, t1/p} with p,M ≥ 1, a condition we call M -QEDp,
or simply M -QED when p = 1.

The most important, and original, inequalities of this form are the M-QED
conditions corresponding to ψ(t) = t/M for some constant M ≥ 1. This
idea was introduced by Gehring and Martio who called such regions quasiex-
tremal distance domains. The terminology arises from the fact that the quantity
mod(E,F ; Ω)1/(1−n) is the extremal distance between E and F in Ω. When we
speak of a QED domain or a QED condition, we always mean anM -QED domain
or an M -QED condition for some M ≥ 1.

As in [HK96] we can consider the location of the continua E, F as well as
looking at special types of continua. In particular we can relax the ψ-QED
inequality by requiring it to hold only for all disjoint closed balls (or just closed
Whitney balls) to get the class ψ-QEDb (or ψ-QEDwb, respectively). Precise
definitions can be found in [BH06].

Every a-uniform domain in Rn is M -QED for some M = M(a, n); this follows
easily from Jones’ extension result for Sobolev spaces [Jon81, Theorem 1]. Also,
it is trivially true that

QED =⇒ ψ − QED =⇒ ψ − QEDb =⇒ ψ − QEDwb.

The converse of the middle implication fails; see[HK96, Example 4.1] and [BH06,
Example 4.2]. According to [BH06, Theorem 3.3], the last implication is re-
versible modulo a quantitative change in ψ. In addition, we always have

ψ − QED ⇐⇒ Loewner =⇒ QEDwb =⇒ ψ − QEDwb ⇐⇒ Loewnerwb
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where the last condition means that the Loewner condition is assumed only
for Whitney balls. Examples 4.2 and 4.3 in [BH06] illustrate that in general
the converses of the middle two implications fail to hold. The first equivalence
is established in [BH06, Theorem 1.3]. It remains open as to whether or not
Loewner domains (i.e. ψ-QED domains) are always QED.

2.K. Slice Conditions. There are various so-called slice conditions each de-
signed to handle their own specific problem. The ideas here are due to Buckley
et al. and his exposition [Buc03] is the place to begin reading about this topic.
He and his many co-authors have utilized an assortment of slice conditions to
investigate all kinds of different problems.

A non-empty bounded open set S ⊂ X is called a C-slice separating x, y
provided

∀ α ∈ Γ(x, y) : ℓ(α ∩ S) ≥ diam(S)/C

and

C−1B(x) ∩ S = ∅ = S ∩ C−1B(y) .

A set of C-slices for x, y ∈ X is a collection S of pairwise disjoint C-slices
separating x, y in X. One can show (see [BS03, (2.1)]) that the cardinality of
any such set S of C-slices separating x, y is always bounded by #S ≤ C2k(x, y).
We are interested in knowing when we can reverse this inequality. Since there
may be no C-slices separating x, y, we consider the quantity

dws(x, y) = dws(x, y;C) = dX
ws(x, y;C) := 1 + sup #S

where the supremum is taken over all S which are sets of C-slices in X separating
x, y, and #S denotes the cardinality of S.

We call (X, d) a weak C-slice space provided for all x, y ∈ X,

k(x, y) ≤ C dws(x, y;C),

Thus in these spaces dws(x, y) ≃ k(x, y), at least when k(x, y) ≥ 2. The weak
slice condition was introduced in [BO99, Section 5]; see also [BS03], [Buc03],
[Buc04]. When the weak C-slice space (X, d) is a domain Ω ( Rn, we call Ω a
weak C-slice domain.

The following rather technical lemma is quite useful for obtaining an up-
per bound for the cardinality of a set of slices; in weak slice spaces it provides
an upper bound for quasihyperbolic distances. It is the case α = 0 of [BS03,
Lemma 2.17].

2.21. Lemma. Let Γ be a 1-rectifiable subset of a rectifiably connected metric
space (X, d). Suppose ϕ : Γ → [ε,∞) (with ε > 0) and S is a collection of
disjoint non-empty bounded subsets of X. Suppose also that there exist positive
constants b, c such that

(a) ∀S ∈ S : ℓ(S ∩ Γ) ≥ c diam(S) ,
(b) ∀S ∈ S , ∀z ∈ S ∩ Γ : ϕ(z) ≤ diam(S) ,



102 D.A.Herron IWQCMA05

(c) ∀t > 0 : ℓ(ϕ−1(0, t]) ≤ b t .

Then the cardinality of S is at most #S ≤ 2(b/c) log2(4ℓ(Γ)/cε).

3. Uniform Spaces

Roughly speaking, a space is uniform provided points in it can be joined by so-
called bounded turning twisted double cone arcs, i.e. paths which are not too long
and which stay away from the regions boundary. Uniform domains in Euclidean
space were first studied by John [Joh61] and Martio and Sarvas [MS79] who
proved injectivity and approximation results for them. They are well recognized
as being the ‘nice’ domains for quasiconformal function theory as well as many
other areas of geometric analysis (e.g., potential theory); see [Geh87] and [Väi88].
Every (bounded) Lipschitz domain is uniform, but generic uniform domains may
very well have fractal boundary. Recently, uniform subdomains of the Heisenberg
groups, as well as more general Carnot groups, have become a focus of study;
see [CT95], [CGN00], [Gre01].

3.A. Euclidean Setting. When our uniform space (see the definition given
below in §3.B) (Ω, d) is a domain Ω ⊂ Rn with Euclidean distance, we simply
call Ω a uniform domain. Every plane uniform domain is a quasicircle domain
(each of its boundary components is either a point or a quasicircle), and a finitely
connected plane domain is uniform if and only if it is a quasicircle domain. How-
ever, the plane punctured at the integers is not uniform. Such nice topological
information is not true for uniform domains in higher dimensions. For example,
a ball with a radius removed is uniform; this is not true when n = 2.

For domains in Rn we can consider uniformity both with respect to the Eu-
clidean distance and with respect to the induced length metric also. The latter
class of domains are usually called inner uniform; cf. [Väi98]. For example, a slit
disk in the plane is not uniform (with respect to Euclidean distance) but it is an
inner uniform domain. On the other hand, an infinite strip, or the inside of an
infinite cylinder in space, is not uniform nor inner uniform. The region between
two parallel planes is not uniform nor inner uniform. Every quasiball is uniform.

3.B. Measure Metric Space Setting. Following [BHK01], a uniform space is
an abstract domain (so, a non-complete, locally complete, rectifiably connected
metric space) (Ω, d) with the property that there is some constant a ≥ 1 such
that each pair of points can be joined by an a-uniform arc. A rectifiable arc γ
joining x, y in Ω is an a-uniform arc provided

ℓ(γ) ≤ a|x− y|

and
min{ℓ(γ[x, z]), ℓ(γ[y, z])} ≤ a d(z) for all z ∈ γ.

Here ℓ(γ) is the arclength of γ and γ[x, z] denotes the subarc of γ between x, z.
The second inequality above ensures that Ω contains the twisted double cone
∪{B(z; ℓ(z)/a) : z ∈ γ} where ℓ(z) denotes the left-hand-side of this inequality;
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the first inequality asserts that this twisted double cone is not too ‘crooked’.
Consequently, we call γ a double a-cone arc if it satisfies the second inequality
above (the phrases cigar arc and corkscrew are also used).

3.C. Basic Information. An important, and characteristic, property of uni-
form spaces is that quasihyperbolic geodesics are uniform arcs. (See [GO79,
Theorems 1,2] for domains in Euclidean space and [BHK01, Theorem 2.10] for
general metric spaces.) Slight alterations to the proof of [BHK01, Theorem 2.10]
yield the following generalization of this property.

3.1. Fact. In an a-uniform space, quasihyperbolic c-quasigeodesics are b-uniform
arcs where b = b(a, c).

In general, quasihyperbolic geodesics may not exist; see [Väi99, 3.5] for an
example due to P. Alestalo. However, one can still show that quasihyperbolically
short arcs are uniform arcs. One can prove that boundary points in a locally
compact uniform space can be joined by quasihyperbolic geodesics, and these
geodesics are still uniform arcs.

Another crucial piece of information is a characterization of uniformity due
to Gehring and Osgood [GO79, Theorems 1,2]; Bonk, Heinonen, and Koskela
[BHK01, Lemma 2.13] verified the necessity of this condition for the metric space
setting, while the Gehring-Osgood argument can be modified to establish the
sufficiency. Recalling the basic estimates for quasihyperbolic distance, we see that
uniform spaces are precisely those abstract domains in which the quasihyperbolic
distance is bilipschitz equivalent to the j distance. See also Theorem 6.1.

3.2. Fact. An abstract domain is a-uniform if and only if k(x, y) ≤ b j(x, y) for
all points x, y. The constants a and b depend only on each other.

We conclude this subsection with a useful fact regarding bounded uniform
spaces; see [Her06, Lemmas 2.12,2.13].

3.3. Lemma. Let ρ be a Harnack Koebe density on a bounded a-uniform space
(Ω, d). Suppose that Ωρ is bounded and that quasihyperbolic geodesics in Ω are
double a-cone arcs in Ωρ. Then for any positive constant C,

diamρ[CB(z)] ≃ dρ(z) for all z ∈ Ω,

where the constant depends only on C,Hρ, Kρ, a, λ and the quantity q given in
the proof.

4. Gromov Hyperbolicity

Good sources for information concerning Gromov hyperbolicity include [BHK01],
[BBI01], [BS00], [BH99], [Bon96] and especially the references mentioned in these
works. Väisälä has an especially nice treatment [Väi05a] of Gromov hyperbolicity
for spaces which are not assumed to be geodesic nor proper. Note however that
Bonk and Schramm have demonstrated that every Gromov δ-hyperbolic metric
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space can be isometrically embedded into some complete geodesic δ-hyperbolic
space; see [BS00, Theorem 4.1].

Hästö [Häs06] has an intriguing result giving a striking contrast between the
hyperbolicity of (Ω, j) versus that of (Ω, j̃) for Ω ( Rn: the latter space is
always Gromov hyperbolic whereas the former is Gromov hyperbolic precisely
when Ω has exactly one boundary point. This is quite surprising as these spaces
are bilipschitz equivalent (indeed, j̃ ≤ j ≤ 2j̃). It is known that for intrinsic
spaces, so also for geodesic spaces, Gromov hyperbolicity is preserved under
(L,C)-quasiisometries. In particular, Hästö’s result illustrates the failure of this
property in the non-intrinsic setting.

4.A. Thin Triangles Definition. A geodesic metric space is Gromov hyper-
bolic if its geodesic triangles are δ-thin for some δ > 0, which means that each
point on the edge of any geodesic triangle is within distance δ of some point on
one of the other two edges. That is, if [x, y]∪ [y, z]∪ [z, x] is a geodesic triangle,
then for all u ∈ [x, y], dist(u, [x, z] ∪ [y, z]) ≤ δ. (Recall that [x, y] denotes some
arbitrary, but fixed, geodesic joining x, y.)

There is a more general definition which applies to non-geodesic spaces. It is
based on the Gromov product

(x|y)w :=
1

2
(|x− w| + |y − w| − |x− y|) for points x, y, w in the space .

The Gromov product is useful even in geodesic spaces; it can be extended to the
Gromov boundary and then used to define a canonical conformal gauge there.

Roughly speaking, all simply connected manifolds with negative curvature are
Gromov hyperbolic; e.g., every CAT(κ) space with κ < 0. For a specific example,
consider any bounded strictly pseudoconvex domain Ω (with sufficiently smooth
boundary) in complex n-space together with any of the classical hyperbolic dis-
tances h; a result of Balogh and Bonk [BB00] asserts that (Ω, h) is a Gromov
hyperbolic space (with ∂GΩ = ∂Ω, the Euclidean boundary, and canonical con-
formal gauge determined by the Carnot-Carathéodory distance on ∂Ω).

4.B. Gromov Boundary. The Gromov boundary ∂GH of a proper geodesic
Gromov hyperbolic metric space (H, h) is defined as the set of equivalence classes
of geodesic rays, with two such rays being equivalent if they have finite Hausdorff
distance. That is, ∂GH is the geodesic boundary of H; see §2.D. An alterna-
tive description can be given in terms of (equivalent) sequences which converge at
infinity ; in particular, this allows us to extend the Gromov product to the bound-
ary (cf. [Väi05a, 5.7] or [BH99, pp. 431-436]). This in turn yields a canonically
defined conformal gauge on the Gromov boundary generated by the quasimetrics

qw,ε(ξ, η) = exp[−ε(ξ|η)w] for points ξ, η ∈ ∂GH.

For 0 < ε < ε(δ) = log 2/(4δ), each quasimetric qε is bilipschitz equivalent to an
honest metric on the boundary, and all these metric spaces are QS equivalent to
each other; in particular they all generate the same topology on ∂GH, and ∂GH
is compact. See Fact 2.1, [BH99, Proposition 3.21, pp.435-436], [BHK01, p.18].
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4.C. Connection with Uniform Spaces. Bonk, Heinonen and Koskela estab-
lished the following fundamental connection between uniform spaces and Gromov
hyperbolicity; see [BHK01, Proposition 2.8, Theorem 3.6]

4.1. Fact. The quasihyperbolization (Ω, k) of a locally compact a-uniform space
(Ω, d) is proper, geodesic and δ-hyperbolic where δ = δ(a) = 10000a8. When
(Ω, d) is bounded, (Ω, k) is roughly κ-starlike with κ = 5000a8.

In fact they also prove that the Gromov boundary ∂GΩ ‘is’ the boundary ∂̇Ω of
Ω in the one-point extension Ω̇ of Ω; see [BHK01, Proposition 3.12]. Moreover, in
the bounded case, the canonical gauge on ∂GΩ is naturally quasisymmetrically
equivalent to the conformal gauge determined by d on ∂Ω. See [Väi05b] for
similar results in the Banach space setting.

5. Uniformization

The celebrated Riemann Mapping Theorem asserts that every simply con-
nected proper subdomain of the plane can be mapped conformally onto the
unit disk, and hence supports a bounded conformal uniformizing metric-density,
namely, ρ = |f ′| where f is the Riemann map. Koebe proved a similar result for
finitely connected plane domains: any one of these can always be conformally
mapped onto a circle domain (meaning that each boundary component is either
a point or a circle).

In space, every conformal map is (the restriction of) a Möbius transformation,
and thus the only space regions conformally equivalent to a ball are balls and
half-spaces. The problem of determining which space domains are QC equivalent
to a ball has been investigated for more than four decades by now (see [GV65]),
and the most significant result (that I know of) is Väisälä’s characterization in
[Väi89] describing the cylindrical domains (Ω = D × R ⊂ R3) which are QC
equivalent to B3.

5.A. Uniformization Problem. Here we consider the metric space analog of
the Riemann Mapping Problem. We seek to characterize the abstract domains
which can be quasiconformally deformed into a uniform space. We ask the ques-
tion: What are necessary and sufficient conditions for an abstract domain to
support a conformal uniformizing metric-density? Theorem A provides an initial
answer.

5.B. BHK Uniformization. Bonk, Heinonen and Koskela developed a uni-
formization theory, which they call dampening , valid for proper geodesic Gromov
hyperbolic spaces. Their theory produces the following; see [BHK01, Proposition
4.5, Chapter 5]. (They established far more than we mention here:-)

5.1. Fact. Let (H, h) be an unbounded proper geodesic Gromov δ-hyperbolic
space. Fix a base point w ∈ H. For ε > 0 define ρε(x) = exp[−εh(x,w)] and let
Hε = (H, dε) where dε = hρε

. Then:
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(a) The geodesics in H are double a-cone arcs in Hε with a = a(ε, δ) = e1+8εδ.
(b) There is a constant ε0 = ε0(δ) such that for all ε ∈ (0, ε0],

∀x, y ∈ H ,∀ geodesics [x, y] : ℓε[x, y] ≤ 20 dε(x, y);

here ℓε = ℓρε
.

In fact, Hε is always bounded, and thus when ε ≤ ε0 we see that (H, h) has
been deformed, or dampened, (via the natural metric-density ρε) to a bounded
20-uniform space Hε.

We briefly describe their theory in the special case which concerns us.

We consider a locally compact abstract domain (Ω, d) with the property that
the identity map (Ω, ℓ) → (Ω, d) is a homeomorphism (so the identity (Ω, k) →
(Ω, d) is also a homeomorphism) and such that its quasihyperbolization (Ω, k)
is a Gromov hyperbolic space. According to Fact 5.1, the space (Ω, k) admits a
uniformizing density of the form

ρε(x) := exp[−εk(x,w)];

here w ∈ Ω is a fixed base point and ε > 0 a sufficiently small parameter. More
precisely, when (Ω, k) is δ-hyperbolic and 0 < ε < ε(δ), the quasihyperbolic
geodesics in Ω are 20-uniform arcs in (Ω, dε). (A careful check of BHK shows
that ε(δ) = [42(5 + 192δ + 1920δ2)]−1 ≤ (300 max{1, δ})−2. :-) Here dε stands
for the distance function obtained by conformally deforming k via the metric-
density ρε. Since k was obtained from the original distance function d via the
quasihyperbolic density 1/d, Ωε = (Ω, dε) is a conformal deformation of (Ω, d)
via the metric-density

πε(x) := ρε(x)/d(x) = d(x)−1 exp(−εk(x,w)) ;

again, πε will be a uniformizing density when 0 < ε < ε(δ) = (300 max{1, δ})−2.

In order to determine when πε will be a Harnack or Koebe density, we need
the following information concerning ρε (see [BHK01, (4.4),(4.6),(4.17)]):

e−εk(x,y) ≤
ρε(x)

ρε(y)
≤ eεk(x,y),(5.2)

ρε(x)

eε
≤ dε(x) ≤ (2eεκ − 1)

ρε(x)

ε
.(5.3)

The first set of inequalities (5.2) hold for all points x, y ∈ Ω and all ε > 0. They
guarantee that the identity map (Ω, k) → (Ω, dε) is locally bilipschitz, so (Ω, dε)
is locally compact and rectifiably connected. On the other hand, Ωε = (Ω, dε) is
non-complete, so we can form Ω̄ε, put ∂εΩ = Ω̄ε \Ω and let dε(x) = distε(x, ∂εΩ).
(See [BHK01, pp.27-28]). We find that the leftmost inequality in (5.3) holds for
all x ∈ Ω and any ε > 0. However, in order to obtain the rightmost inequality
in (5.3), we must further require that (Ω, k) be roughly κ-starlike.

Now using (5.2), and obvious inequalities for 1/d, we deduce that

e−2R ≤ e−(ε+1)R ≤
πε(y)

πε(x)
≤ e(ε+1)R ≤ e2R
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for all points x, y with k(x, y) ≤ R. According to Lemma 2.12, when (Ω, d) is
locally a-quasiconvex we have

τB(x) ⊂ Bk(x;R) provided 0 < τ ≤ min{λ,R/[a(1 +R)]}.

Taking R = a (say) and τ = min{λ, 1/2a} we find that for all x ∈ Ω and all
y ∈ τB(x),

e−2a ≤ e−(ε+1)a ≤
πε(y)

πε(x)
≤ e(ε+1)a ≤ e2a;

that is, πε is a Harnack density with constants H = e2a and τ which are inde-
pendent of ε.

Finally, since Ωε is non-complete, we can ask whether or not πε is a Koebe
density. Since πε(x) = ρε(x)/d(x), we see from (5.3) that πε will be a Koebe
density, with constant K = (2eεκ − 1)/ε (assuming εe ≤ 1), provided (Ω, k) is
roughly κ-starlike (and (Ω, d) uniformly locally quasiconvex).

These conditions describing when πε will be a Harnack or Koebe density do
not require that (Ω, k) be Gromov hyperbolic. We record the above information
for later reference; see also Lemma 2.8 and Corollary 5.8. Note too that (Ω, dε)
is bounded with diamε Ωε ≤ 2/ε.

5.4. Lemma. Let (Ω, d) be a locally a-quasiconvex abstract domain and fix a
base point w ∈ Ω. Then for any ε > 0,

πε(x) = ρε(x)/d(x) = d(x)−1 exp(−εk(x,w))

is a Harnack density with constant H = e2a. If in addition (Ω, k) is roughly κ-
starlike, then πε is also a Koebe density, with constant K = max{εe, (2eεκ−1)/ε}.

The above, in conjunction with Lemma 2.11 and Proposition 5.6(b), provides
a one-to-one correspondence between conformal metric-densities on Ω and the
same on Ωε. Here is a precise statement of this.

5.5. Corollary. Suppose (Ω, d, µ) is an abstract domain having bounded geom-
etry and a Gromov hyperbolic roughly starlike quasihyperbolization (Ω, k). Let
Ωε = (Ω, dε, µε) be the deformation of Ω via the density πε defined just above.
If σ is a conformal density on Ωε, then its pull-back ρ = σ πε is a conformal
density on Ω, and conversely if ρ is a conformal density on Ω, then its push-
forward σ = ρ π−1

ε is a conformal density on Ωε. In both cases Ωρ = (Ωε)σ, and
the metric-density parameters depend only on each other and the data associated
with Ω.

5.C. Bounded Geometry and its Consequences. Recall our definition that
an abstract domain (Ω, d, µ) is a locally complete, rectifiably connected, non-
complete metric measure space; these are our standing metric hypotheses. We
say that (Ω, d, µ) has bounded Q-geometry , Q > 1, provided it is both locally
upper Ahlfors Q-regular (see §2.J) and weakly locally Q-Loewner ; this latter
condition means that there exists a positive constant m such that for all x ∈ Ω,
and all non-degenerate disjoint continua E, F in λB(x),

∆(E,F ) ≤ 16 =⇒ mod Q(E,F ; Ω) ≥ m.
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Any space Ω with the property that Whitney balls λB(x) (with a fixed parame-
ter) are uniformly bilipschitz equivalent to Euclidean balls (in a fixed dimension)
is easily seen to have bounded geometry. Other examples include Riemann-
ian manifolds with Ricci bounded geometry as well as the exotic examples of
Bourdon-Pajot and Laakso for any Q > 1; see [BHK01, Exs.9.7, p.86] and the
references mentioned there. (Note that by Proposition 5.6, (Ω, d, µ) has bounded
geometry if and only if its quasihyperbolization satisfies the condition studied in
[BHK01, Chpt.9].)

The first part of bounded Q-geometry is a necessary condition for Ω to support
any conformal density (at least when Ω is locally quasiconvex). The second part
of bounded Q-geometry, the weak local Loewner criterion, can also be described
in terms of Poincaré inequalities as explained in [BHK01, Proposition 9.4] and
[HK98, §5]; it ensures that there are plenty of curves available (e.g., it gives local
quasiconvexity). However, to substantiate this existence of many curves requires
the use of certain modulus estimates (see Facts 2.15,2.16), and these estimates
in turn require an upper mass condition.

The Loewner part of bounded Q-geometry also performs an essential role in
two other places. First, it is a key player in the proof of Proposition 2.9, which
is the crucial ingredient in the proof of (d) implies (e) in Theorem D. Second,
for uniform Loewner spaces with appropriately ‘thick’ boundaries, the Koebe
condition for a metric-density follows from the Harnack and Ahlfors condition;
this fact is utilized in the proof of Theorem C.

Bounded geometry provides a number of essential properties for our underlying
space.

5.6. Proposition. Let (Ω, d, µ) be an abstract domain having bounded Q-
geometry (with constants M,m, λ). Then:

(a) µ is locally Ahlfors Q-regular.
(b) Ω is locally quasiconvex with constants which depend only on Q,M,m, λ.
(c) Ω is locally Q-Loewner with a control function ψ and parameters κ, ε0 which

depend only on the data Q,M,m, λ associated with Ω.

Here is a useful consequence of the above.

5.7. Corollary. Let ρ be a Harnack Koebe density on an abstract domain
(Ω, d, µ) having bounded Q-geometry. Then Ωρ is locally Ahlfors Q-regular and
locally Q-Loewner with parameters and a control function which depend only on
the data associated with ρ and Ω.

Note that if Ωρ above is also uniform, then it would be globally Loewner by
[BHK01, Theorem 6.4]. We record the following consequence of this observation.

5.8. Corollary. Let (Ω, d, µ) be an abstract domain having bounded Q-geometry
(with constants M,m) and a Gromov δ-hyperbolic roughly κ-starlike quasihy-
perbolization (Ω, k). Then any BHK-uniformization Ωε = (Ω, dε, µε) of Ω is a
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bounded locally Ahlfors Q-regular locally Q-Loewner space (hence of bounded Q-
geometry), and even Q-Loewner when ε < ε(δ). Here the various parameters and
control functions depend only on δ, κ,Q,M,m, λ, ε.

5.D. Lifts and Metric Doubling Measures. Here we discuss the ideas be-
hind Theorem C and briefly outline the proof. Recall the notion of a metric
doubling measure discussed near the end of §2.F.

We define the lift ρν of ν via the formula

(5.9) ρν(x) :=
ν(Σx)

1/P

d(x)
;

here ν is a P -dimensional metric doubling measure on ∂GΩ and, for some fixed
base point w ∈ Ω, the shadow of a point x ∈ Ω is

Σx := {ζ ∈ ∂GΩ : k(x, [w, ζ)) ≤ R}.

It is not hard to see that there are constants R = R(δ, κ, ε) and C = C(δ, κ, ε)
such that

(5.10) Sx := ∂εΩ ∩ 2Bε(x) ⊂ Σx ⊂ ∂εΩ ∩ CBε(x);

of course we are using the natural identification of ∂GΩ with ∂εΩ. Employing
(5.10), the doubling property of ν, and the fact that πε is Koebe, it is straight-
forward to verify that the push-forward of ρν (as defined in (5.9)) via the uni-
formizing density πε gives a density on Ωε which is bilipschitz equivalent to the
density defined via the formula

ρ(x) :=
ν(Sx)

1/P

dε(x)
where Sx := ∂εΩ ∩ 2Bε(x).

Theorem C now follows from Corollary 5.5 once we verify that ρ is a Borel
Harnack Ahlfors Koebe doubling metric-density on Ωε. (⌣̈) The first two of
these are easy. The Koebe property follows from Theorem E once we know the
Ahlfors volume growth property. To see that Theorem E can be applied, we
first use Fact 2.2 along with Theorem F to see that the Whitney ball modulus
property holds.

To establish the Ahlfors property we need the doubling property. This in turn
requires the following ‘quasihyperbolic doubling’ result.

5.11. Proposition. Let (Ω, d, µ) be a locally a-quasiconvex locally Ahlfors Q-
regular abstract domain. Then its quasihyperbolization (Ω, k) is locally doubling
in the sense that if Σ ⊂ Ω is a set of points satisfying

0 < t ≤ k(x, y) ≤ T <∞ for all x, y ∈ Σ, x 6= y,

then the cardinality of Σ is bounded by

#Σ ≤ 2M28Q(2M224Q)8aT/λt.

Here M is the local regularity constant and λ the Whitney ball constant.
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Here is an interesting application of Theorems C and D which provides a char-
acterization of doubling conformal densities in terms of metric doubling measures.
We say that a metric-density ρ on Ω is induced by a metric doubling measure ν
on ∂GΩ if there exists a constant C ≥ 1 such that

C−1ρν(x) ≤ ρ(x) ≤ Cρν(x) for µ-a.e. x ∈ Ω.

5.12. Theorem. Assume the basic minimal hypotheses, that the Gromov bound-
ary of Ω is uniformly perfect, and P < Q. A metric-density ρ on Ω is a doubling
conformal density, with (∂ρΩ, dρ) Ahlfors P -regular, if and only if ρ is induced
by some P -dimensional metric doubling measure on ∂GΩ.

5.E. Volume Growth Problem. Here we briefly outline the proof of Theo-
rem A. Recall that this result provides our answer to the problem of deciding
when there exists a uniformizing conformal density (so, in particular, the asso-
ciated measure (2.7) should have Ahlfors regular volume growth). The necessity
in this result follows from Fact 4.1 along with Fact 2.20. The real work involved
is in establishing the sufficiency.

The first major step is to prove Theorem D. Following [BHR01], we say that
a metric-density ρ, on a uniform space (Ω, d, µ), is doubling provided µρ is a
doubling measure on (Ω, d); i.e., there exists a constant D = Dρ such that for all
x ∈ Ω,

(D) µρ[B(x; 2r)] ≤ Dµρ[B(x; r)] for all r > 0.

When Ω is not uniform, the above doubling condition may fail to hold even if ρ
is ‘nice’; e.g., consider ρ = |f ′| on Ω = {x + iy : |y| < 1} in the complex plane,
where f is a conformal homeomorphism of Ω onto the unit disk. To compensate
for this we employ the following definition: a conformal density ρ, on an abstract
domain (Ω, d, µ) with Gromov hyperbolic quasihyperbolization, is doubling if its
push-forward is doubling on some BHK-uniformization Ωε of Ω. (Since all such
spaces Ωε are QS equivalent, and doubling measures can be defined for conformal
gauges, there is no ambiguity here. See §2.C for a discussion of conformal gauges,
and also the very last paragraph of §2.F.)

Notice that the doubling condition (D) uses d-balls but µρ-measure and thus
interweaves the measure properties of the deformed space with the metric prop-
erties of the original (or uniformized) space.

Our proof of Theorem D requires the Gehring-Hayman Inequality (Theo-
rem B), Corollary 2.10, and the following two results. First we give a necessary
condition for a metric-density to be doubling.

5.13. Proposition. Let ρ be a Harnack density on an a-uniform locally Ahlfors
Q-regular space (Ω, d, µ) (with constants H,M, λ). Suppose that ρ is also doubling
on Ω (with constant D). Then quasihyperbolic geodesics in Ω are double c-cone
arcs in Ωρ where c = c(D,H,M,Q, a, λ). If in addition Ω is bounded, then so is
Ωρ and ∂Ω ⊂ ∂ρΩ, with equality holding when Ω is also locally Q-Loewner.

Next we state a sufficient condition for a metric-density to be doubling.
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5.14. Proposition. Let ρ be a conformal density on an a-uniform locally
lower Ahlfors Q-regular space (Ω, d, µ) (with constants H,A,K,M, λ). Sup-
pose that quasihyperbolic geodesics in Ω are double c-cone arcs in Ωρ. Then
Ωρ is Ahlfors Q-regular with a parameter which depends only on c and the data
H,A,K,M,Q, a, λ associated with ρ and Ω. If in addition Ω and Ωρ are both
bounded, then ρ is doubling on Ω with a parameter which depends only on the
aforementioned data and the quantity q given in the proof of Lemma 3.3.

The second major step in the proof of Theorem A is to establish Theorem C.
Its proof is outlined above in §5.D. That done, we use Theorem C to obtain a
doubling conformal density, which by Theorem D is also bounded and uniformiz-
ing.

6. Characterizations of Uniform Spaces

Here we mention a number of characterizations for uniform spaces and uni-
form domains. In [Väi88] Väisälä provides a complete description of the various
possible twisted double cone conditions (which he calls length cigars, diameter
cigars, distance cigars, and Möbius cigars). The work [Mar80] of Martio should
also be mentioned.

6.A. Metric Characterizations. We have already mentioned that uniform
spaces are precisely the abstract domains in which the quasihyperbolic metric is
bilipschitz equivalent to the so-called j metric; see Fact 3.2.

It turns out that the following seemingly weaker quasihyperbolic metric con-
dition also characterizes uniform spaces. For uniform subdomains of Banach
spaces this result is due to Väisälä [Väi91, 6.16, 6.17]. Here we write

r(x, y) :=
|x− y|

d(x) ∧ d(y)

to denote the so-called relative distance between x, y. See [BH07] for the following
version.

6.1. Theorem. A locally quasiconvex abstract domain is uniform if and only if
there is a homeomorphism ϑ : [0,∞) → [0,∞) satisfying lim supt→∞ ϑ(t)/t < 1,
and such that for all points x, y, k(x, y) ≤ ϑ (r(x, y)). The uniformity constant
depends only on ϑ, and conversely in an a-uniform space, one can always take
ϑ(t) = b log(1 + t) with b = b(a).

6.B. Gromov Boundary Characterizations. We call Ω ( Rn a Gromov
domain if its quasihyperbolization (Ω, k) is Gromov hyperbolic. Bonk, Heinonen
and Koskela corroborated the following [BHK01, Proposition 7.12].

6.2. Fact. A Gromov domain in Euclidean space is uniform if and only if it is
linearly locally connected.

They utilized the above to establish the following [BHK01, Theorem 7.11].
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6.3. Fact. A (bounded) Gromov domain in Euclidean space is uniform if and
only if the canonical gauge on the Gromov boundary is quasisymmetrically equiv-
alent to the Euclidean gauge on the Euclidean boundary.

The careful reader will recognize that the Bonk-Heinonen-Koskela results were
established for regions on the sphere (i.e., using the spherical metric). Results
of Balogh and Buckley [BB06] are useful in this regard.

Väisälä has recently proven a Banach space analog of the above result; see
[Väi05b]. Along with providing a dimension free version of this result, he also
considers arbitrary domains (not just bounded) and replaces QS equivalence with
QM equivalence. In addition, he provides an example of a Gromov hyperbolic
domain which is LLC but not uniform.

6.C. Characterizations using QC Maps. It is evident that bilipschitz ho-
meomorphisms map uniform spaces to uniform spaces. This also holds true for
QS and QM maps of uniform domains in Euclidean space and in Banach spaces
[Väi99, Theorem 10.22], but not in the general metric space setting, and not for
QC maps. On the other hand, according to [BKR98, 2.4], the average derivative
of a quasiconformal map f : Bn → Ω ⊂ Rn is a conformal metric density on Bn

(a uniform n-Loewner n-regular space). Thus we can appeal to Theorem D and
read off a number of conditions which characterize when Ω will be uniform.

6.D. Capacity Conditions. It is known that given 0 < λ ≤ 1/2, there exists
a constant c = c(λ, n) > 0 such that

∀ x, y ∈ Ω : k(x, y) ≥ 2 =⇒ mod(λB̄(x), λB̄(y);D) ≥ c/k(x, y)n−1;

this is valid for any proper subdomain Ω of Rn. To prove it, one starts by us-
ing Lemma 2.14 to select an appropriate cover of any quasihyperbolic geodesic
joining x, y, and then a standard application of the Poincaré inequality applied
to adjacent balls leads to the asserted inequality. See the proof of [HK96, Theo-
rem 6.1].

Let C > 0 and 0 < λ ≤ 1/2. A proper subdomain Ω of Rn is a (C, λ)-k-cap
domain provided

∀ x, y ∈ D : k(x, y) ≥ 2 =⇒ mod(λB̄(x), λB̄(y);D) ≤ C/k(x, y)n−1.

Thus in a k-cap domain D, we have mod(λB̄(x), λB̄(y);D) ≃ k(x, y)1−n for
points with k(x, y) ≥ 2, with constants of comparison dependent only on λ, n,
and the k-cap parameter.

This is the two-sided version of a condition introduced by Buckley in [Buc04] to
study quasiconformal images of domains which satisfy a quasihyperbolic bound-
ary condition. As explained on p.26 of that paper, a (C, λ)-k-cap condition
implies a (C ′, λ′)-k-cap condition for some C ′ = C ′(C, λ, λ′, n). We mainly con-
sider the case λ = 1/2, and refer to a (C, 1/2)-k-cap domain simply as a C-k-cap
domain.
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Every uniform domain in Rn is a k-cap domain, and the class of k-cap do-
mains is invariant under quasiconformal mappings (with a quantitative change
of parameter C). For proofs of these statements see [Buc04].

Recently we established the following characterization for uniform domains in
Euclidean space; see [BH06, Theorem 3.5].

6.4. Theorem. A proper subdomain of Rn is uniform if and only if it is both
QEDwb and a k-cap domain.

This result is quantitative.

6.E. LLC and Slice Conditions. By utilizing certain slice conditions, Balogh
and Buckley [BB03] established a number of geometric characterizations for Gro-
mov hyperbolic spaces. Here we mention the following new characterization of
uniform spaces; see [BH07]

6.5. Theorem. An abstract domain is uniform and LEC if and only if it is
quasiconvex, LLC2 with respect to arcs, and satisfies a weak slice condition.

These implications are quantitative.

We have modified the usual LLC conditions (see §2.E) by requiring that the
points in question be joinable by rectifiable arcs (rather than just by continua).
Every uniform domain in Rn is LLC. In fact every uniform space is quasiconvex
and thus LLC1 with respect to arcs. However, uniform spaces need not be LLC2;
e.g., an ‘asterik’ type space (the disjoint union of a point and a bunch of line
segments or rays, with its intrinsic length distance) may be uniform but not
LLC2. We say that a locally complete metric space is locally externally connected,
abbreviated LEC, provided there is a constant c ≥ 1 such that the (LLC2)
condition holds for all points x ∈ Ω and all r ∈ (0, d(x)/c).
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Montréal, Montréal, Quebec, 1982.

[Geh87] , Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.-
Verein 89 (1987), 88–103.

[GH62] F.W. Gehring and W.K. Hayman, An inequality in the theory of conformal mapping,
J. Math. Pures Appl. 41 (1962), no. 9, 353–361.

[GM85] F.W. Gehring and O. Martio, Quasiextremal distance domains and extension of qua-
siconformal mappings, J. Analyse Math. 45 (1985), 181–206.

[GO79] F.W. Gehring and B.G. Osgood, Uniform domains and the quasi-hyperbolic metric,
J. Analyse Math. 36 (1979), 50–74.

[GP76] F.W. Gehring and B.P. Palka, Quasiconformally homogeneous domains, J. Analyse
Math. 30 (1976), 172–199.
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