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1. Introduction

In this survey we emphasize the importance of the p-Laplace operator as a
tool to prove basic properties of quasiregular mappings, as well as Liouville-
and Picard-type results for quasiregular mappings between given Riemannian
manifolds. Quasiregular mappings were introduced by Reshetnyak in the mid
sixties in a series of papers; see e.g. [36], [37], and [38]. An interest in studying
these mappings arises from a question about the existence of a geometric function
theory in real dimensions n ≥ 3 generalizing the theory of holomorphic functions
C → C.
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Definition 1.1. A continuous mapping f : U → R
n of a domain U ⊂ R

n is
called quasiregular (or a mapping of bounded distortion) if

(1) f ∈ W 1,n
loc (U ; Rn), and

(2) there exists a constant K ≥ 1 such that

|f ′(x)|n ≤ K Jf (x) for a.e. x ∈ U.

The condition (1) means that the coordinate functions of f belong to the
local Sobolev space W 1,n

loc (U) consisting of locally n-integrable functions whose
distributional (first) partial derivatives are also locally n-integrable. In Condi-
tion (2) f ′(x) denotes the formal derivative of f at x, i.e. the n × n matrix
(
Djfi(x)

)
defined by the partial derivatives of the coordinate functions fi of f .

Furthermore,

|f ′(x)| = max
|h|=1

|f ′(x)h|

is the operator norm of f ′(x) and Jf (x) = det f ′(x) is the Jacobian determinant
of f at x. They exist a.e. by (1). The smallest possible K in Condition (2) is
the outer dilatation KO(f) of f . If f is quasiregular, then

Jf (x) ≤ K ′ℓ(f ′(x))n a.e.

for some constant K ′ ≥ 1, where

ℓ(f ′(x)) = min
|h|=1

|f ′(x)h|.

The smallest possible K ′ is the inner dilatation KI(f) of f . It is easy to
see by linear algebra that KO(f) ≤ KI(f)n−1 and KI(f) ≤ KO(f)n−1. If
max{KO(f), KI(f)} ≤ K, f is called K-quasiregular .

To motivate the above definition, let us consider a holomorphic function
f : U → C, where U ⊂ C is an open set. We write f as a mapping f =
(u, v) : U → R

2, U ⊂ R
2,

f(x, y) =
(
u(x, y), v(x, y)

)
.

Then u and v are harmonic real-valued functions in U and they satisfy the
Cauchy-Riemann system of equations

{
D1u = D2v
D2u = −D1v,

whereD1 = ∂/∂x, D2 = ∂/∂y. For every (x, y) ∈ U , the differential f ′(x, y) : R
2 →

R
2 is a linear map whose matrix (with respect to the standard basis of the plane)

is
(
D1u D2u
D1v D2v

)

=

(
D1u D2u

−D2u D1u

)

.

Hence

(1.1) |f ′(x, y)|2 = det f ′(x, y).
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The first trial definition for mappings f : U → R
n of a domain U ⊂ R

n, sharing
some geometric and topological properties of holomorphic functions, could be
mappings satisfying a condition

(1.2) |f ′(x)|n = Jf (x), x ∈ U.

However, it has turned out that, in dimensions n ≥ 3, a mapping f : U → R
n

belonging to the Sobolev space W 1,n
loc (U ; Rn) and satisfying (1.2) for a.e. x ∈ U is

either constant or a restriction of a Möbius map. This is the so-called generalized
Liouville theorem due to Gehring [12] and Reshetnyak [38]; see also the thorough
discussion in [29].

Next candidate for the definition is obtained by replacing the equality (1.2)
by a weaker condition

(1.3) |f ′(x)|n ≤ K Jf (x) a.e. x ∈ U,

where K ≥ 1 is a constant. Note that Jf (x) ≤ |f ′(x)|n holds for a.e. x ∈ U . Now
there remains a question on the regularity assumption of such mapping f. Again
there is some rigidity in dimensions n ≥ 3. Indeed, if a mapping f satisfying
(1.3) is non-constant and smooth enough (more precisely, if f ∈ Ck, with k = 2
for n ≥ 4 and k = 3 for n = 3), then f is a local homeomorphism. Furthermore,
it then follows from a theorem of Zorich that such mapping f : R

n → R
n is

necessarily a homeomorphism, for n ≥ 3; see [47]. We would also like a class of
maps satisfying (1.3), with fixedK, to be closed under local uniform convergence.
In order to obtain a rich enough class of mappings, it is thus necessary to weaken
the regularity assumption from Ck-smoothness. See [15], [5], and [32] for recent
developments regarding smoothness and branching of quasiregular mappings.

The basic analytic and topological properties of quasiregular mappings are
listed in the following theorem by Reshetnyak; see [39], [41].

Theorem 1.2 (Reshetnyak’s theorem). Let U ⊂ R
n be a domain and let f : U →

R
n be quasiregular. Then

(1) f is differentiable a.e. and
(2) f is either constant or it is discrete, open, and sense-preserving.

Recall that a map g : X → Y between topological spaces X and Y is discrete
if the preimage g−1(y) of every y ∈ Y is a discrete subset of X and that g is open
if gU is open for every open U ⊂ X. We also remark that a continuous discrete
and open map g : X → Y is called a branched covering.

To say that f : U → R
n is sense-preserving means that the local degree

µ(y, f,D) is positive for all domains D ⋐ U and for all y ∈ fD \ f∂D. The
local degree is an integer that tells, roughly speaking, how many times f wraps
D around y. It can be defined, for example, by using cohomology groups with
compact support. For the basic properties of the local degree, we refer to [41,
Proposition I.4.4]; see also [11], [35], and [45]. For example, if f is differentiable
at x0 with Jf (x0) 6= 0, then µ(f(x0), f,D) = sign Jf (x0) for sufficiently small
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connected neighborhoods D of x0. Another useful property is the following ho-
motopy invariance: If f and g are homotopic via a homotopy ht, h0 = f, h1 = g,
such that y ∈ htD \ ht∂D for every t ∈ [0, 1], then µ(y, f,D) = µ(y, g,D).

y

f

D

fD

f∂D

The definition of quasiregular mappings extends easily to the case of continu-
ous mappings f : M → N, where M and N are connected oriented Riemannian
n-manifolds.

Definition 1.3. A continuous mapping f : M → N is quasiregular (or a mapping
of bounded distortion) if it belongs to the Sobolev space W 1,n

loc (M ;N) and there
exists a constant K ≥ 1 such that

(1.4) |Txf |
n ≤ KJf (x) for a.e. x ∈M.

Here again Txf : TxM → Tf(x)N is the formal differential (or the tangent
map) of f at x, |Txf | is the operator norm of Txf , and Jf (x) is the Jacobian
determinant of f at x uniquely defined by (f ∗volN)x = J(x, f)(volM)x almost
everywhere. Note that Txf can be defined for a.e. x by using partial derivatives
of local expressions of f at x. The geometric interpretation of (1.4) is that Txf
maps balls of TxM either to ellipsoids with controlled ratios of the semi-axes or
Txf is the constant linear map.

TxM

M N

Txf

f

Tf(x)N

We assume from now on that M and N are connected oriented Riemannian
n-manifolds.

2. A-harmonic functions

It is well-known that the composition u◦f of a holomorphic function f : U → C

and a harmonic function u : fU → R is a harmonic function in U . In other words,
holomorphic functions are harmonic morphisms. Quasiregular mappings have a
somewhat similar morphism property: If f : U → R

n is quasiregular and u is an
n-harmonic function in a neighborhood of fU , then u◦f is a so-called A-harmonic
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function in U . In this section we introduce the notion of A-harmonic functions
and recall some of their basic properties that are relevant for this survey.

We denote by 〈·, ·〉 the Riemannian metric of M . Recall that the gradient of
a smooth function u : M → R is the vector field ∇u such that

〈∇u(x), h〉 = du(x)h

for every x ∈M and h ∈ TxM.

The divergence of a smooth vector field V can be defined as a function
div V : M → R satisfying

LV ω = (div V )ω,

where ω = volM is the (Riemannian) volume form and

LV ω = lim
t→0

(αt)∗ω − ω

t

is the Lie derivative of ω with respect to V, and α is the flow of V.
V

x

αt(x)

α = flow of V

We say that a vector field ∇u ∈ L1
loc(M) is a weak gradient of u ∈ L1

loc(M) if

(2.1)

∫

M

〈∇u, V 〉 = −

∫

M

u div V

for all vector fields V ∈ C∞
0 (M). Conversely, a function div V ∈ L1

loc(M) is
a weak divergence of a (locally integrable) vector field V if (2.1) holds for all
u ∈ C∞

0 (M). Note that
∫

M
div Y = 0 if Y is a smooth vector field in M with

compact support.

We define the Sobolev space W 1,p(M) and its norm as

W 1,p(M) = {u ∈ Lp(M) : weak gradient ∇u ∈ Lp(M)}, 1 ≤ p <∞,

‖u‖1,p = ‖u‖p + ‖|∇u|‖p.

Let G ⊂ M be open. Suppose that for a.e. x ∈ G we are given a continuous
map

Ax : TxM → TxM

such that the map x 7→ Ax(X) is a measurable vector field whenever X is.
Suppose that there are constants 1 < p <∞ and 0 < α ≤ β <∞ such that

〈Ax(h), h〉 ≥ α|h|p

and

|Ax(h)| ≤ β|h|p−1
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for a.e. x ∈ G and for all h ∈ TxM. In addition, we assume that for a.e. x ∈ G

〈Ax(h) −Ax(k), h− k〉 > 0

whenever h 6= k, and

Ax(λh) = λ|λ|p−2Ax(h)

whenever λ ∈ R \ {0}.

A function u ∈ W 1,p
loc (G) is called a (weak) solution of the equation

(2.2) − divAx(∇u) = 0

in G if ∫

G

〈Ax(∇u),∇ϕ〉 = 0

for all ϕ ∈ C∞
0 (G). Continuous solutions of (2.2) are called A-harmonic functions

(of type p). By the fundamental work of Serrin [43], every solution of (2.2) has
a continuous representative. In the special case Ax(h) = |h|p−2h, A-harmonic
functions are called p-harmonic and, in particular, if p = 2, we obtain the usual
harmonic functions. The conformally invariant case p = n = the dimension of
M is important in the sequel. In this case p-harmonic functions are called, of
course, n-harmonic functions.

A function u ∈ W 1,p
loc (G) is a subsolution of (2.2) in G if

− divAx(∇u) ≤ 0

weakly in G, that is
∫

G

〈Ax(∇u),∇ϕ〉 ≤ 0

for all non-negative ϕ ∈ C∞
0 (G). A function v is called supersolution of (2.2) if

−v is a subsolution. The proofs of the following two basic estimates are straight-
forward once the appropriate test function is found. Therefore we just give the
test function and leave the details to readers.

Lemma 2.1 (Caccioppoli inequality). Let u be a positive solution of (2.2) (for
a given fixed p) in G and let v = uq/p, where q ∈ R \ {0, p− 1}. Then

(2.3)

∫

G

ηp|∇v|p ≤

(
β|q|

α|q − p+ 1|

)p ∫

G

vp|∇η|p

for every non-negative η ∈ C∞
0 (G).

Proof. Write κ = q − p+ 1 and use ϕ = uκηp as a test function.

Remark 2.2. In fact, the estimate (2.3) holds for positive supersolutions if
q < p− 1, q 6= 0, and for positive subsolutions if q > p− 1.

The excluded case q = 0 above corresponds to the following logarithmic Cac-
cioppoli inequality.
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Lemma 2.3 (Logarithmic Caccioppoli inequality). Let u be a positive superso-
lution of (2.2) (for a given fixed p) in G and let C ⊂ G be compact. Then

(2.4)

∫

C

|∇ log u|p ≤ c

∫

G

|∇η|p

for all η ∈ C∞
0 (G), with η|C ≥ 1, where c = c(p, β/α).

Proof. Choose ϕ = ηpu1−p as a test function.

These two lemmas together with the Sobolev and Poincaré inequalities are
used in proving Harnack’s inequality for non-negative A-harmonic functions by
the familiar Moser iteration scheme. In the following |A| denotes the volume of
a measurable set A ⊂M.

Theorem 2.4 (Harnack’s inequality). Let M be a complete Riemannian mani-
fold and suppose that there are positive constants R0, C, and τ ≥ 1 such that a
volume doubling property

(2.5) |B(x, 2r)| ≤ C |B(x, r)|

holds for all x ∈ M and 0 < r ≤ R0, and that M admits a weak (1, p)-Poincaré
inequality

(2.6)

∫

B

|v − vB| ≤ C r





∫

τB

|∇v|p





1/p

for all balls B = B(x, r) ⊂ M, with τB = B(x, τr) and 0 < r ≤ R0, and for all
functions v ∈ C∞(B). Then there is a constant c such that

(2.7) sup
B(x,r)

u ≤ c inf
B(x,r)

u

whenever u is a non-negative A-harmonic function in a ball B(x, 2r), with 0 <
r ≤ R0.

In particular, if the volume doubling condition (2.5) and the Poincaré inequal-
ity (2.6) hold globally, that is, without any bound on the radius r, we obtain a
global Harnack inequality. We refer to [18], [9], and [16] for proofs of the Harnack
inequality.

3. Morphism property and its consequences

The very first step in developing the theory of quasiregular mappings is to
prove, by direct computation, that quasiregular mappings have the morphism
property in a special case where the n-harmonic function is smooth enough.

Theorem 3.1. Let f : M → N be a quasiregular mapping (with a constant K)
and let u ∈ C2(N) be n-harmonic. Then v = u ◦ f is A-harmonic (of type n) in
M, with

(3.1) Ax(h) = 〈Gxh, h〉
n
2
−1Gxh,
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where Gx : TxM → TxM is given by

Gxh =

{

Jf (x)
2/nTxf

−1(Txf
−1)Th, if Jf (x) exists and is positive,

h, otherwise.

The constants α and β for A depend only on n and K.

Proof. Let us first write the proof formally and then discuss the steps in more
detail. In the sequel ω stands for the volume forms in M and N. Let V ∈ C1(M)
be the vector field V = |∇u|n−2∇u. Since u is n-harmonic and C2-smooth, we
have div V = 0. By Cartan’s formula we obtain

d(V yω) = d(V yω) + V y (dω) = LV ω = (div V )ω = 0

since dω = 0. Here Xy η is the contraction of a differential form η by a vector
field X. Thus, for instance, V yω is the (n− 1)-form

V yω(·, . . . , ·
︸ ︷︷ ︸

n−1

) = ω(V, ·, . . . , ·
︸ ︷︷ ︸

n−1

).

Hence

(3.2) df ∗(V yω) = f ∗d(V yω)
a.e.
= 0.

On the other hand, we have a.e. in M

(3.3) f ∗(V yω) = Wy f ∗ω = Wy (Jfω) = JfWyω,

where W is a vector field that will be specified later (roughly speaking, f∗W =
V ). We obtain

(3.4) d(JfWyω) = 0,

or equivalently

(3.5) div(JfW ) = 0

which can be written as

(3.6) divAx(∇v) = 0,

where A is as in the claim.

Some explanations are in order. When writing

f ∗d(V yω)
a.e.
= 0,

we mean that for a.e. x ∈ U and for all vectors v1, v2, . . . , vn ∈ TxM

f ∗d(V yω)(v1, v2, . . . , vn) = d(V yω)(f∗v1, f∗v2, . . . , f∗vn) = 0,

where f∗ = f∗,x = Txf is the tangent mapping of f at x. The equality on the

left-hand side of (3.2) holds in a weak sense since f ∈W 1,n
loc (M); see [39, p. 136].

This means that, for all n-forms η ∈ C∞
0 (M),

(3.7)

∫

M

〈f ∗d(V yω), η〉 =

∫

M

〈f ∗(V yω), δη〉,
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where δ is the codifferential. Consequently, equations (3.4)–(3.6) are to be inter-
preted in weak sense. In particular, combining (3.2), (3.3), and (3.7) we get

∫

M

〈JfWyω, δη〉 =

∫

M

〈f ∗(V yω), δη〉 =

∫

M

〈f ∗d(V yω), η〉 = 0

for all n-forms η ∈ C∞
0 (M), and so (3.4) holds in weak sense.

Let us next specify the vector fieldW. Let A = {x ∈M : Jf (x) = det f∗,x 6= 0}.
Hence f∗,x is invertible for all x ∈ A, and W = f−1

∗ V in A. In M \A, either Jf (x)
does not exist, which can happen only in a set of measure zero, or Jf (x) ≤ 0.
Quasiregularity of f, more precisely the distortion condition (1.4), implies that
f∗,x = Txf = 0 for almost every such x. Hence f∗,x = 0 for a.e. x ∈ M \ A.
Setting W = 0 in M \ A, we obtain

f ∗(V yω) = 0 = Wy f ∗ω

a.e. in M \ A. Hence f ∗(V yω) = Wy f ∗ω a.e. in M, and so (3.3) holds.

3.1. Sketch of the proof of Reshetnyak’s theorem. We shall use Theorem
3.1 to sketch the proof of Reshetnyak’s theorem in a way that uses analysis, in
particular, A-harmonic functions. First we recall some definitions concerning
p-capacity. If Ω ⊂ M is an open set and C ⊂ Ω is compact, then the p-capacity
of the pair (Ω, C) is

(3.8) capp(Ω, C) = inf
ϕ

∫

Ω

|∇ϕ|p,

where the infimum is taken over all functions ϕ ∈ C∞
0 (Ω), with ϕ|C ≥ 1. A

compact set C ⊂M is of p-capacity zero, denoted by cappC = 0, if capp(Ω, C) =
0 for all open sets Ω ⊃ C. Finally, a closed set F is of p-capacity zero, denoted
by capp F = 0, if cappC = 0 for all compact sets C ⊂ F. It is a well-known fact
that a closed set F ⊂ R

n containing a continuum C cannot be of n-capacity zero.
This can be seen by taking an open ball B containing C and any test function
ϕ ∈ C∞

0 (B), with ϕ|C = 1, and using a potential estimate

|ϕ(x) − ϕ(y)| ≤ c

(∫

B

|∇ϕ|

|x− z|n−1
dz +

∫

B

|∇ϕ|

|y − z|n−1
dz

)

, x, y ∈ B,

combined with a maximal function and covering arguments. Similarly, if C is
a continuum in a domain Ω and B is an open ball, with B̄ ⊂ Ω \ C, then
capn(C, B̄; Ω) > 0, where

capn(C, B̄; Ω) = inf
ϕ

∫

Ω

|∇ϕ|p > 0,

the infimum being taken over all functions ϕ ∈ C∞(Ω), with ϕ|C = 1 and
ϕ|B̄ = 0.
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f is light. Suppose then that U ⊂ R
n is a domain and that f : U → R

n is
a non-constant quasiregular mapping. We will show first that f is light which
means that, for all y ∈ R

n, the preimage f−1(y) is totally disconnected, i.e. each
component of f−1(y) is a point.

Fix y ∈ R
n and define u : R

n \ {y} → R by

u(x) = log
1

|x− y|
.

Then u is C∞ and n-harmonic in R
n \{y} by a direct computation. By Theorem

3.1, v = u ◦ f,

v(x) = log
1

|f(x) − y|
,

is A-harmonic in an open non-empty set U \ f−1(y) and v(x) → +∞ as x→ z ∈
f−1(y). We set v(z) = +∞ for z ∈ f−1(y).

To show that f is light we use the logarithmic Caccioppoli inequality (2.4).
Suppose that C ⊂ f−1(y) ∩ U is a continuum. Since f is non-constant and
continuous, there exists m > 1 such that the set Ω = {x ∈ U : v(x) > m} is an
open neighborhood of C and Ω̄ ⊂ U. We choose another neighborhood D of C
such that D̄ ⊂ Ω is compact. Now we observe that vi = min{v, i} is a positive
supersolution for all i > m. The logarithmic Caccioppoli inequality (2.4) then
implies that ∫

D

|∇ log vi|
n ≤ c capn(Ω, D̄) ≤ c <∞

uniformly in i. Hence |∇ log v| ∈ Ln(D). Choose an open ball B such that
B̄ ⊂ D \ f−1(y). We observed earlier that

capn(C, B̄;D) > 0

since C is a continuum. Let

MB = max
B̄

log v.

Now the idea is to use

min{1,max{0,
1

k
log

v

MB

}}

as a test function for capn(C, B̄;D) for every k ∈ N. We get a contradiction since

0 < capn(C, B̄;D) ≤ k−n‖∇ log v‖Lp(D) → 0

as k → ∞. Thus f−1(y) can not contain a continuum.

Differentiability a.e. Assume that f = (f1, . . . , fn) : U → R
n, U ⊂ R

n, is
quasiregular. Then coordinate functions fj are A-harmonic again by Theorem
3.1, since functions x = (x1, . . . , xn) 7→ xj are n-harmonic. Now there are at least
two ways to prove that f is differentiable almost everywhere. For instance, since
each fj is A-harmonic, one can show by employing reverse Hölder inequality

techniques that, in fact, f ∈ W 1,p
loc (U), with some p > n. This then implies

that f is differentiable a.e. in U ; see e.g. [3]. Another way is to conclude
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that f is monotone, i.e. each coordinate function fj is monotone, and therefore

differentiable a.e. since f ∈ W 1,n
loc (U); see [41]. The monotonicity of fj holds

since A-harmonic functions obey the maximum principle.

f is sense-preserving. Here one first shows that conditions f ∈ W 1,n
loc (U) and

Jf (x) ≥ 0 a.e. imply that f is weakly sense-preserving, i.e. µ(y, f,D) ≥ 0 for all
domains D ⋐ U and for all y ∈ fD \ f∂D. This step employs approximation of
f by smooth mappings. Pick then a domain D ⋐ U and y ∈ fD \ f∂D. Denote
by Y the y-component of R

n \ f∂D and write V = D ∩ f−1Y . Since f is light,
D \ f−1(y) is non-empty. Thus we can find a point x0 ∈ f−1(y) ∩ V. Next we
conclude that the set {x ∈ V : Jf (x) > 0} has positive measure. Otherwise, since
f is ACL and |f ′(x)| = 0 a.e. in V , f would be constant in a ball centered at
x0 contradicting the fact that f is light. Thus there is a point x in V where f is
differentiable and Jf (x) > 0. Now a homotopy argument, using the differential
of f at z, and µ(y, f,D) ≥ 0 imply that f is sensepreserving.

f is discrete and open. This part of the proof is purely topological. A sense-
preserving light mapping is discrete and open by Titus and Young; see e.g. [41].

Further properties of f . Once Reshetnyak’s theorem is established it is pos-
sible to prove further properties for quasiregular mappings. We collect these
properties to the following theorems and refer to the books [39] and [41] for the
proofs.

Theorem 3.2. Let f : M → N be a non-constant quasiregular map. Then

1. |fE| = 0 if and only if |E| = 0.
2. |Bf | = 0, where Bf is the branch set of f, i.e. the set of all x ∈ M where
f does not define a local homeomorphism.

3. Jf (x) > 0 a.e.
4. The integral transformation formula

∫

A

(h ◦ f)(x)Jf (x)dm(x) =

∫

N

h(y)N(y, f, A)dm(y)

holds for every measurable h : N → [0,+∞] and for every measurable A ⊂
M, where N(y, f, A) = card f−1(y) ∩ A.

5. If u ∈ W 1,n
loc

(N,R), then v = u ◦ f ∈W 1,n
loc

(M,R) and

∇v(x) = Txf
T∇u(f(x)) a.e.

Furthermore, we have a generalization of the morphism property.

Theorem 3.3. Let f : M → N be quasiregular and let u : N → R be an A-
harmonic function (or a subsolution or a supersolution, respectively) of type n.
Then v = u◦f is f#A-harmonic (a subsolution or a supersolution, respectively),
where

f#Ax(h) =

{

Jf (x)Txf
−1Af(x)(Txf

−1)Th), if Jf (x) exists and is positive,

|h|n−2h, otherwise.
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The ingredients of the proof of Theorem 3.3 include, for instance, the locality
of A-harmonicity, Theorem 3.2, and a method to ”push-forward” (test) functions;
see e.g. [16] and [41].

4. Modulus and capacity inequalities

Although the main emphasis of this survey is on the relation between quasireg-
ular mappings and p-harmonic functions, we want to introduce also the other
main tool in the theory of quasiregular mappings. Let 1 ≤ p < ∞ and let Γ
be a family of paths in M. We denote by F(Γ) the set of all Borel functions
̺ : M → [0,+∞] such that

∫

γ

̺ds ≥ 1

for all locally rectifiable path γ ∈ Γ. We call the functions in F(Γ) admissible
for Γ. The p-modulus of Γ is defined by

Mp(Γ) = inf
̺∈F(Γ)

∫

M

̺pdm.

There is a close connection between p-modulus and p-capacity. Indeed, suppose
that Ω ⊂ M is open and C ⊂ Ω is compact. Let Γ be the family of all paths in
Ω \ C connecting C and ∂Ω. Then

(4.1) capp(Ω, C) = Mp(Γ).

The inequality capp(Ω, C) ≥ Mp(Γ) follows easily since ̺ = |∇ϕ| is admissible
for Γ for each function ϕ as in (3.8). The other direction is harder and requires
an approximation argument; see [41, Proposition II.10.2].

If p = n = the dimension of M , we call Mn(Γ) the conformal modulus of Γ,
or simply the modulus of Γ. In that case Mn(Γ) is invariant under conformal
changes of the metric. In fact, Mn(Γ) can be interpreted as follows: Define a
new measurable Riemannian metric

〈〈·, ·〉〉 = ̺2〈·, ·〉.

Then, with respect to 〈〈·, ·〉〉, the length of γ has a lower bound

ℓ〈〈·,·〉〉(γ) =

∫

γ

̺ds ≥ 1

and the volume of M is given by

Vol〈〈·,·〉〉(M) =

∫

M

̺ndm.

Thus we are minimizing the volume of M under the constraint that paths in Γ
have length at least 1.

The importance of the conformal modulus for quasiregular mappings lies in
the following invariance properties; see [41, II.2.4, II.8.1]
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Theorem 4.1. Let f : M → N be a non-constant quasiregular mapping. Let
A ⊂ M be a Borel set with N(f,A) := supyN(y, f, A) < ∞, and let Γ be a
family of paths in A. Then

(4.2) Mn(Γ) ≤ KO(f)N(f,A)Mn(fΓ).

Theorem 4.2 (Poletsky’s inequality). Let f : M → N be a non-constant quasireg-
ular mapping and let Γ be a family of paths in M. Then

(4.3) Mn(fΓ) ≤ KI(f)Mn(Γ).

The proof of (4.2) is based on the change of variable formula for integrals
(Theorem 3.2 3.) and on Fuglede’s theorem. The estimate (4.3) in the converse
direction is more useful than (4.2) but also much harder to prove; see [41, p.
39–50].

As an application of the use of p-modulus and p-capacity, we prove a Harnack’s
inequality for positive A-harmonic functions of type p > n − 1. Assume that
Ω ⊂ M is a domain, D ⋐ Ω another domain, and C ⊂ D is compact. For
p > n− 1, we set

λp(C,D) = inf
E,F

Mp(Γ(E,F ;D)),

where E and F are continua joining C and Ω \D, and Γ(E,F ;D) is the family
of all paths joining E and F in D.

Theorem 4.3 (Harnack’s inequality, p > n− 1). Let Ω, D, and C be as above.
Let u be a positive A-harmonic function in Ω of type p > n− 1. Then

(4.4) log
MC

mC

≤ c0

(
capp(Ω, D̄)

λp(C,D)

)1/p

,

where
MC = max

x∈C
u(x), mC = min

x∈C
u(x),

and c0 = c0(p, β/α).

Ω

F D

E

Cγ

Proof. We may assume that MC > mC . Let ε > 0 be so small that MC − ε >
mC + ε. Then the sets {x : u(x) ≥ MC − ε} and {x : u(x) ≤ mC + ε} contain
continua E and F , respectively, that join C and Ω \D. Write

w =
log u− log(mC + ε)

log(MC − ε) − log(mC + ε)
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and observe that w ≥ 1 in E and w ≤ 0 in F. Therefore |∇w| is admissible for
Γ(E,F ;D) and hence

∫

D

|∇w|p ≥Mp(Γ(E,F ;D)) ≥ λp(C,D).

On the other hand,
∫

D

|∇ log u|pdm ≤ c(p, β/α) capp(Ω, D̄)

by the logarithmic Caccioppoli inequality (2.4), and

∇ log u =

(

log
MC − ε

mC + ε

)

∇w.

Hence

log
MC − ε

mC + ε
≤ c0

(
capp(Ω, D̄)

λp(C,D)

)1/p

and (4.4) follows by letting ε→ 0.

We can define λp(C,D) analogously for p ≤ n − 1, too. However, λp(C,D)
vanishes for p ≤ n − 1. Consequently, Theorem 4.3 is useful only for p > n− 1.
The idea of the proof is basically due to Granlund [13]. In the above form, (4.4)
appeared first time in [17]. In general, it is difficult to obtain an effective lower
bound for λp(C,D) together with an upper bound for capp(Ω, D̄). However, if
M = R

n and p = n, one obtains a global Harnack inequality by choosing C, D,
and Ω as concentric balls.

5. Liouville-type results for A-harmonic functions

We say that M is strong p-Liouville if M does not support non-constant
positive A-harmonic functions for any A of type p. We have already mentioned
that a global Harnack inequality

max
B(x,r)

u ≤ c min
B(x,r)

u

holds for non-negative A-harmonic functions onB(x, 2r) with a (Harnack-)constant
c independent of x, r, and u ifM is complete and admits a global volume doubling
condition and (1, p)-Poincaré’s inequality. It follows from the global Harnack in-
equality that such manifold M is strong p-Liouville.

Example 5.1. 1. LetM be complete with non-negative Ricci curvature. Then
it is well-known that M admits a global volume doubling property by the
Bishop-Gromov comparison theorem (see [2], [8]). Furthermore, Buser’s
isoperimetric inequality [6] implies that M also admits a (1, p)-Poincaré
inequality for every p ≥ 1. Hence M is strong p-Liouville.
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2. Let Hn be the Heisenberg group. We write elements of Hn as (z, t), where
z = (z1, . . . , zn) ∈ C

n and t ∈ R. Furthermore, we assume that Hn is
equipped with a left-invariant Riemannian metric in which the vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
,

Yj =
∂

∂yj
− 2xj

∂

∂t
,

T =
∂

∂t
,

j = 1, . . . , n, form an orthonormal frame. Harnack’s inequality for non-
negative A-harmonic functions on Hn was proved in [18] by using Jerison’s
version of Poincaré’s inequality. Jerison proved in [31] that (1,1)-Poincaré’s
inequality holds for the horizontal gradient

∇0u =
n∑

j=1

((Xju)Xj + (Yju)Yj)

and for balls in so-called Carnot-Carathéodory metric. Since the Lp-norm
of the Riemannian gradient is larger than that of the horizonal gradient,
we have (1,1)-Poincaré’s inequality for the Riemannian gradient as well
if geodesic balls are replaced by Carnot-Carathéodory balls or Heisenberg
balls BH(r) = {(z, t) ∈ Hn : (|z|4 + t2)1/4 < r} and their left-translations.

Classically, a Riemannian manifold M is called parabolic if it does not support
a positive Green’s function for the Laplace equation.

Definition 5.2. We say that a Riemannian manifold M is p-parabolic, with
1 < p <∞, if

capp(M,C) = 0

for all compact sets C ⊂M. Otherwise, we say that M is p-hyperbolic.

Example 5.3. 1. A compact Riemannian manifold is p-parabolic for all p ≥
1.

2. In the Euclidean space R
n we have precise formulas for p-capacities of balls:

capp(R
n, B̄(r)) =

{

c rn−p, if 1 ≤ p < n,

0, otherwise.

Hence R
n is p-parabolic if and only if p ≥ n.

3. If the Heisenberg group Hn is equipped with the left-invariant Riemannian
metric, we do not have precise formulas for capacities of balls. However,
for r ≥ 1,

capp(Hn, B̄H(r)) ≈ r2n+2−p

if 1 ≤ p < 2n + 2, and capp(Hn, B̄H(r)) = 0 if p ≥ 2n + 2. Hence Hn is
p-parabolic if and only if p ≥ 2n+ 2.
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4. Any complete Riemannian manifold M with finite volume Vol(M) < ∞
is p-parabolic for all p ≥ 1. This is easily seen by fixing a point o ∈ M
and taking a function ϕ ∈ C∞

0

(
B(o,R)

)
, with ϕ|B̄(o, r) = 1 and |∇ϕ| ≤

c/(R− r). We obtain an estimate

capp
(
B(o,R), B̄(o, r)

)
≤ cVol(M)/(R− r)p → 0

as R → ∞.
5. Let Mn be a Cartan-Hadamard n-manifold, i.e. a complete, simply con-

nected Riemannian manifold of non-positive sectional curvatures and di-
mension n. If sectional curvatures have a negative upper bound KM ≤
−a2 < 0, then M is p-hyperbolic for all p ≥ 1. This follows since Mn

satisfies an isoperimetric inequality

Vol(D) ≤
a

n− 1
Area(∂D)

for all domains D ⋐ M, with smooth boundary; see [46], [7]. Another
proof uses the Laplace comparison and Green’s formula. If p > 1, then
v(x) = exp(−δd(x, o)) is a positive supersolution of the p-Laplace equation
for some δ = δ(n, p) > 0 (see [20]). Hence the p-hyperbolicity of M also
follows from the theorem below for p > 1.

Theorem 5.4. Let M be a Riemannian manifold and 1 < p < ∞. Then the
following conditions are equivalent:

1. M is p-parabolic.
2. Mp(Γ∞) = 0, where Γ∞ is the family of all paths γ : [0,∞) →M such that
γ(t) → ∞ as t→ ∞.

3. Every non-negative supersolution of

(5.1) − divAx(∇u) = 0

on M is constant for all A of type p.
4. M does not support a positive Green’s function g(·, y) for (5.1) for any A

of type p and y ∈M.

Here γ(t) → ∞ means that γ(t) eventually leaves any compact set. For the
proof of Theorem 5.4 as well as for the discussion below we refer to [17].

Let us explain what is Green’s function for (5.1). We define it first in a
”regular” domain Ω ⋐ M, where regular means that the Dirichlet problem for
A-harmonic equation is solvable with continuous boundary data. For this notion,
see [16]. We need a concept of A-capacity. Let C ⊂ Ω be compact, and assume
for simplicity that Ω \ C is regular. Thus there exists a unique A-harmonic
function in Ω \C with continuous boundary values u = 0 on ∂Ω and u = 1 in C.
Call u the A-potential of (Ω, C). We define

capA(Ω, C) =

∫

Ω

〈Ax(∇u),∇u〉.

Then
capA(Ω, C) ≈ capp(Ω, C)
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and furthermore,

(5.2) capA(Ω1, C1) ≥ capA(Ω2, C2)

if C2 ⊂ C1 and/or Ω1 ⊂ Ω2. Note that this property is obvious for variational
capacities but capA is not necessary a variational capacity.

The definition of Green’s function, and in particular its uniqueness when p =
n, relies on the following observation.

Lemma 5.5. Let Ω ⋐ M be a domain and let C ⊂ Ω be compact such that Ω\C
is regular. Let u be the A-potential of (Ω, C). Then, for every 0 ≤ a < b ≤ 1,

capA({u > a}, {u ≥ b}) =
capA(Ω, C)

(b− a)p−1
.

Definition 5.6. Suppose that Ω ⋐ M is a regular domain and let y ∈ Ω. A
function g = g(·, y) is called a Green’s function for (5.1) in Ω if

1. g is positive and A-harmonic in Ω \ {y},
2. limx→z g(x) = 0 for all z ∈ ∂Ω,
3.

lim
x→y

g(x) = capA(Ω, {y})1/(1−p),

which we interpret to mean limx→y g(x) = ∞ if p ≤ n,
4. for all 0 ≤ a < b < capA(Ω, {y})1/(1−p),

capA({g > a}, {g ≥ b}) = (b− a)1/(1−p).

Theorem 5.7. Let Ω ⋐ M be a regular domain and y ∈ Ω. Then there exists a
Green’s function for (5.1) in Ω. Furthermore, it is unique at least if p ≥ n.

Monotonicity properties (5.2) of A-capacity and the so-called Loewner prop-
erty, i.e. capnC > 0 if C is a continuum, are crucial in proving the uniqueness
when p = n. Indeed, we can show that on sufficiently small spheres S(y, r)

|g(x, y) − capA(Ω, B̄(y, r))1/(1−n)| ≤ c, x ∈ S(y, r),

which then easily implies the uniqueness.

Next take an exhaustion of M by regular domains Ωi ⊂ Ωi+1 ⋐ M, M = ∪iΩi.
We can construct an increasing sequence of Green’s functions gi(·, y) on Ωi. Then
the limit is either identically +∞ or

g(·, y) := lim
i→∞

gi(·, y)

is a positive A-harmonic function on M \ {y}. In the latter case we call the limit
function g(·, y) a Green’s function for (5.1) on M.

We have the following list of Liouville-type properties of M (which may or
may not hold for M):

(1) M is p-parabolic.
(2) Every non-negative A-harmonic function on M is constant for every A of

type p. (Strong p-Liouville.)
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(3) Every bounded A-harmonic function on M is constant for every A of type
p. (p-Liouville.)

(4) Every A-harmonic function u on M with ∇u ∈ Lp(M) is constant for every
A of type p. (Dp-Liouville.)

We refer to [17] for the proof of the following general result, and to [18] and
[25] for studies concerning the converse directions.

Theorem 5.8.

(1) ⇒ (2) ⇒ (3) ⇒ (4).

Next we discuss the close connection between the volume growth and p-
parabolicity. Suppose that M is complete. Fix a point o ∈ M and write
V (t) = Vol

(
B(o, t)

)
.

Theorem 5.9. Let 1 < p <∞ and suppose that
∫ ∞ (

t

V (t)

)1/(p−1)

dt = ∞,

or ∫ ∞ dt

V ′(t)1/(p−1)
= ∞.

Then M is p-parabolic.

Proof. One can either construct a test function involving the integrals above, or
use a p-modulus estimate for separating (spherical) rings. More precisely, write
B(t) = B(o, t) and S(t) = S(o, t) = ∂B(o, t). For R > r > 0 and integers k ≥ 1,
we write ti = r + i(R− r)/k, i = 0, 1, . . . , k. Then, by a well-known property of
modulus,

Mp

(
Γ
(
S(r), S(R); B̄(R)

))1/(1−p)
≥

k−1∑

i=0

Mp

(
Γ

(
S(ti), S(ti+1); B̄(ti+1)

))1/(1−p)
;

see e.g. [41, II.1.5]. Here Γ
(
S(r), S(R); B̄(R)

)
is the family of all paths joining

S(r) and S(R) in B̄(R). For each i = 0, . . . , k − 1 we have an estimate

Mp

(
Γ

(
S(ti), S(ti+1); B̄(ti+1)

))
≤ (V (ti+1) − V (ti)) (ti+1 − ti)

−p.

Hence
(5.3)

Mp

(
Γ
(
S(r), S(R); B̄(R)

))1/(1−p)
≥

k−1∑

i=0

(
V (ti+1) − V (ti)

ti+1 − ti

)1/(1−p)

(ti+1 − ti).

Thus the right-hand side of (5.3) tends to the integral
∫ R

r

dt

V ′(t)1/(p−1)

as k → ∞. We obtain an estimate

Mp

(
Γ

(
S(r), S(R); B̄(R)

))
≤

(∫ R

r

dt

V ′(t)1/(p−1)

)1−p

.
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In particular, if
∫ ∞

r

dt

V ′(t)1/(p−1)
= ∞

for some r > 0, then M is p-parabolic.

The converse is not true in general. That is, M can be p-parabolic even if
∫ ∞ (

t

V (t)

)1/(p−1)

dt <∞

or ∫ ∞ dt

V ′(t)1/(p−1)
<∞;

see [44].

It is interesting to study when the converse is true. We refer to [19] for the
proofs of the following two theorems.

Theorem 5.10. Suppose that M is complete and admits a global doubling prop-
erty and global (1, p)-Poincaré inequality for 1 < p <∞. Then

(5.4) M is p-hyperbolic if and only if

∫ ∞ (
t

V (t)

)1/(p−1)

dt <∞.

In some cases, we can estimate Green’s functions:

Theorem 5.11. Suppose that M is complete and has non-negative Ricci curva-
ture everywhere. Let 1 < p <∞. Then

M is p-hyperbolic if and only if

∫ ∞ (
t

V (t)

)1/(p−1)

dt <∞.

Furthermore, we have estimates for Green’s functions for (5.1)

c−1

∫ ∞

2r

(
t

V (t)

)1/(p−1)

dt ≤ g(x, o) ≤ c

∫ ∞

2r

(
t

V (t)

)1/(p−1)

dt

for every x ∈ ∂M(r), where M(r) is the union of all unbounded components of
M \ B̄(o, r). The constant c depends only on n, p, α, and β.

Theorem 5.10 follows also from the following sharper result; see [21].

Theorem 5.12. Suppose that M is complete and that there exists a geodesic ray
γ : [0,∞) →M such that for all t > 0,

|B(γ(t), 2s)| ≤ c|B(γ(t), s)|,

whenever 0 < s ≤ t/4, and that

∫

Bγ(t)

|u− uBγ(t)|dm ≤ c






∫

2Bγ(t)

|∇u|pdm






1/p
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for all u ∈ C∞
(
2Bγ(t)

)
, where Bγ(t) = B(γ(t), t/8). Then M is p-hyperbolic if

∫ ∞ (
t

|B(γ(t), t/4)|

)1/(p−1)

dt <∞.

Theorem 5.12 can be applied to obtain the following.

Theorem 5.13. Let M be a complete Riemannian n-manifold whose Ricci curva-
ture is non-negative outside a compact set. Suppose that M has maximal volume
growth (V (t) ≈ rn). Then M is p-parabolic if and only if p ≥ n.

To our knowledge it is an open problem whether the equivalence (5.4) holds
for a complete Riemannian n-manifold whose Ricci curvature is non-negative
outside a compact set.

6. Liouville-type results for quasiregular mappings

Here we give applications of the above results on n-parabolicity and various
Liouville properties to the existence of non-constant quasiregular mappings be-
tween given Riemannian manifolds.

Let us start with the Gromov-Zorich ”global homeomorphism theorem” that
is a generalization of Zorich’s theorem we mentioned in the introduction; see [14],
[48].

Theorem 6.1. Suppose that M is n-parabolic, n = dimM ≥ 3, and that N is
simply connected. Let f : M → N be a locally homeomorphic quasiregular map.
Then f is injective and fM is n-parabolic.

Proof. We give here a very rough idea of the proof. First one observes that
fM is n-parabolic (see Theorem 6.2 below), and so N \ fM is of n-capacity
zero. Then one shows, again by using the n-parabolicity of M, that the set E
of all asymptotic limits of f is of zero capacity. Consequently, E is of Hausdorff
dimension zero. Recall that an asymptotic limit of f is a point y ∈ N such that
f
(
γ(t)

)
→ y as t → ∞ for some path γ ∈ Γ∞ in M. Removing E ∪ (N \ FM)

from N has no effect on the simply connectivity for dimensions n ≥ 3. That is,
fM \E remains simply connected. Thus one can extend uniquely any branch of
local inverses of f and obtain a homeomorphism g : fM \ E → g(fM \ E) such
that f ◦ g = id |(fM \E). Finally, g can be extended to E to obtain the inverse
of f.

In [22] we generalized the global homeomorphism theorem for mappings of
finite distortion under mild conditions on the distortion. See also [49] for a
related result for locally quasiconformal mappings.

Theorem 6.2. If N is n-hyperbolic and M is n-parabolic, then every quasiregular
mapping f : M → N is constant.
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Proof. Suppose that f : M → N is a non-constant quasiregular mapping. Then
fM ⊂ N is open. If fM 6= N, pick a point y ∈ ∂(N \ fM) and let g =
g(·, y) be the Green’s function on N for the n-Laplacian. Then g ◦ f is a non-
constant positive A-harmonic function on M which gives a contradiction with
the n-parabolicity of M and Theorem 5.8. If fM = N, let u be a non-constant
positive supersolution on N for the n-Laplacian. Then u ◦ f is a non-constant
supersolution on M for some A of type n which is again a contradiction.

Example 6.3. 1. If N is a Cartan-Hadamard manifold, with KN ≤ −a2 < 0,
then every quasiregular mapping f : R

n → N is constant.
2. Let Hn be the Heisenberg group with a left-invariant Riemannian metric,

then every quasiregular mapping f : R
2n+1 → Hn is constant.

Theorem 6.4. Suppose that M is strong n-Liouville while N is not. Then every
quasiregular map f : M → N is constant.

Proof. If N is not strong n-Liouville, then it is n-hyperbolic by Theorem 5.8.
Suppose that f : M → N is a non-constant quasiregular mapping. Then fM ⊂
N is open. If fM 6= N, choose a point y ∈ ∂(N \ fM) and let g = g(·, y)
be the Green’s function for n-Laplacian on N . Then g ◦ f is a non-constant
positive A-harmonic function, with A of type n. This is a contradiction. If
fM = N , we choose a non-constant positive n-harmonic function u on N and
get a contradiction as above.

Theorem 6.5. Let N be a Cartan-Hadamard n-manifold, with −b2 ≤ K ≤
−a2 < 0, and let M be a complete Riemannian n-manifold admitting a global
doubling property and a global (1, n)-Poincaré inequality. Then every quasiregular
mapping f : M → N is constant.

Proof. By [20], N admits non-constant positive n-harmonic functions. Hence
N is not strong n-Liouville. On the other hand, the assumptions on M imply
that a global Harnack’s inequality for positive A-harmonic functions of type n
holds on M. Thus M is strong n-Liouville, and the claim follows from Theorem
6.4.

Theorem 6.6 (”One-point Picard”). Suppose that N is n-hyperbolic and M is
strong n-Liouville. Then every quasiregular mapping f : M → N \ {y}, with
y ∈ N, is constant.

Proof. Suppose that f : M → N \ {y} is a non-constant quasiregular mapping.
Then ∂(N \ fM) 6= ∅. Choose a point z ∈ ∂(N \ fM), and let g = g(·, z) be the
Green’s function on N for the n-Laplacian. Then g ◦f is a non-constant positive
A-harmonic function for some A of type n leading to a contradiction.

7. Picard-type theorems

The classical big Picard theorem states that a holomorphic mapping of the
punctured unit disc {z ∈ C : 0 < |z| < 1} into the complex plane omitting two
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values has a meromorphic extension to the whole disc; see e.g. [1, Theorem 1-
14]. In [40] Rickman proved a counterpart of Picard’s theorem for quasiregular
mappings (Theorem 7.1) and its local version (Theorem 7.2) corresponding to
the big Picard theorem.

Theorem 7.1 ([40]). For each integer n ≥ 2 and each K ≥ 1 there exists
a positive integer q = q(n,K) such that if f : R

n → R
n \ {a1, . . . , aq} is K-

quasiregular and a1, . . . , aq are distinct points in R
n, then f is constant.

Theorem 7.2 ([40]). Let G = {x ∈ R
n : |x| > s} and let f : G → R

n \
{a1, . . . , aq} be a K-quasiregular mapping, where a1, . . . , aq are distinct points in
R
n and q = q(n,K) is the integer in Theorem 7.1. Then the limit lim|x|→∞ f(x)

exists.

In this section we consider corollaries and extensions of the big Picard theorem
for quasiregular mappings.

Although the short argument yielding Theorem 7.1 from Theorem 7.2 is well-
known, it seems that the following corollary employing the same argument has
gone unnoticed in the literature.

Corollary 7.3. Let K ≥ 1 and R > 0. Let f : R
n → R

n be a continuous mapping
omitting at least q = q(n,K) points, where q(n,K) is as in Theorem 7.1. Then
at least one of the following conditions fails:

(i) f |Rn \ B̄n(R) is K-quasiregular,
(ii) fBn(r) is open for some r > R.

Proof. Suppose towards a contradiction that both conditions (i) and (ii) hold.
By Theorem 7.2, the mapping f has a limit at the infinity. Hence we may
extend f to a continuous mapping R̄

n → R̄
n. Moreover, f is K-quasiregular

in R̄
n \ B̄n(R). By composing f with a Möbius mapping if necessary, we may

assume that f(∞) = ∞. Since f is a non-constant quasiregular mapping on
R̄
n \ B̄n(R), f |R̄n \ B̄n(R) is an open mapping. Hence fR̄

n is open in R̄
n, by (ii).

Since fR̄
n is both open and closed, fR̄

n = R̄
n and fR

n = R
n. This contradicts

the assumption that f omits q points. The claim follows.

In [23] the authors consider quasiregular mappings of the punctured unit ball
into a Riemannian manifold N . We say that N has at least q ends, if there exists
a compact set C ⊂ N such that N \ C has at least q components which are not
relatively compact. Such a component of N \C is called an end of M with respect
to C. Let E be the set of ends of N , that is, E ∈ E is an end of N with respect to
some compact set C ⊂ N . We compactify N with respect to its ends as follows.
There is a natural partial order in E induced by inclusion. We call a maximal
totally ordered subset of E an asymptotic end of N . The set of asymptotic ends
of N is denoted by ∂N and N̂ = N ∪ ∂N . We endow N̂ with a topology such
that the inclusion N ⊂ N̂ is an embedding and for every e ∈ ∂N sets E ∈ e
form a neighborhood basis at e. The main result is the following version of the
big Picard theorem.
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Theorem 7.4 ([23, Theorem 1.3]). For every K ≥ 1 there exists q = q(K,n)
such that every K-quasiregular mapping f : Bn\{0} → N has a limit limx→0 f(x)

in N̂ if N has at least q ends.

In the spirit of Corollary 7.3 we formulate the following consequence Theorem
7.4.

Corollary 7.5. Given n ≥ 2 and K ≥ 1 there exists q̃ = q̃(n,K) such that the
following holds. Suppose that M is compact, {z1, . . . , zk} ⊂M , where 1 ≤ k < q̃,
and that N has at least q̃ ends. Let f : M \ {z1, . . . , zk} → N be a continuous
mapping and let Ωi be a neighborhood of zi for every 1 ≤ i ≤ k. Then at least
one of the following conditions fails:

(i) f is K-quasiregular in Ωi \ {zi} for every i,
(ii) there exists a neighborhood Ω of M \ (Ω1 ∪ · · · ∪ Ωk) such that fΩ is open.

Proof. Suppose that both conditions are satisfied. For every 1 ≤ i ≤ k we
fix a 2-bilipschitz chart ϕi : Ui → ϕiUi at zi. We may assume that Ui ⊂ Ωi.
Every mapping f ◦ ϕ−1

i |ϕi(Ui \ zi) is 2nK-quasiregular, and therefore it has a
limit at ϕi(zi) by Theorem 7.4 if N has at least q(n, 2nK) ends. Hence f has

a limit at every point zi. We extend f to a continuous mapping f̂ : M → N̂ .
Denote M ′ = M \ {z1, . . . , zk}. Since f is an open mapping, ∂fM ′ ∩ fM ′ = ∅.
Furthermore, since M is compact,

fM ′ ⊂ f̂M = f̂M.

Hence ∂fM ′ ⊂ f̂M \ fM ′. Thus card(∂fM ′) ≤ card(f̂M \ fM ′) ≤ k and

N̂ = N = fM ′ = f̂M.

This is a contradiction, since

card(f̂M \ fM ′) ≤ k < q ≤ card(N̂ \ fM ′) = card(f̂M \ fM ′).

In [26] Holopainen and Rickman applied a method of Lewis ([33]) that relies on
Harnack’s inequality to prove the following general version of Picard’s theorem on
the number of omitted values of a quasiregular mapping. We say that a complete
Riemannian n-manifold M belongs to the class M(m,ϑ), where m : (0, 1) → N

and ϑ : (0,∞) → (0,∞) are given functions, if following two conditions hold:

(m) for each 0 < λ < 1 every ball of radius r in M can contain at most m(λ)
disjoint balls of radius λr, and

(ϑ) M admits a global Harnack’s inequality for non-negative A-harmonic func-
tions of type n with Harnack-constant ϑ(β/α), where α and β are the
constants of A.

Theorem 7.6 ([26]). Given n ≥ 2, K ≥ 1, m : (0, 1) → N, and ϑ : (0,∞) →
(0,∞) there exists q = q(n,K,m, ϑ) ≥ 2 such that the following holds. Suppose
that M belongs to the class M(m,ϑ) and that N has at least q ends. Then every
K-quasiregular mapping f : M → N is constant.
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Next we show that this theorem admits a local version. Suppose that M is
complete. We say that an asymptotic end e of M is of type E(m,ϑ) if there
exists E ∈ e such that

(Em) for each 0 < λ < 1 every ball of radius r in E can contain at most m(λ)
disjoint balls of radius λr, and

(Eϑ) E admits a uniform Harnack inequality for non-negative A-harmonic func-
tions of E of type n for balls B ⊂ E satisfying 4B ⊂ E. We also assume
that the Harnack constant ϑ depends only on β/α, where α and β are the
constants of A.

We also say that an asymptotic end e of M is p-parabolic (with p ≥ 1) if there
exists E ∈ e such that for every ε > 0 there exists E ′ ∈ e such that

Mp(Γ(E ′,M \ E;M)) < ε.

Furthermore, we say that an asymptotic end e of M is locally C-quasiconvex
if for every E ∈ e there exists E ′ ∈ e, E ′ ⊂ E, such that each pair of points
x, y ∈ E ′ can be joint by a path in E ′ of length at most Cd(x, y), where d is the
Riemannian distance of M .

Theorem 7.7. Let n ≥ 2, K ≥ 1, m : (0, 1) → N, and ϑ : (0,∞) → (0,∞).
Then there exists q = q(n,K,m, ϑ) such that the following holds. Suppose that
M is complete and e is an n-parabolic locally C-quasiconvex asymptotic end of
M of type E(m,ϑ), and that N has at least q ends. Let E ∈ e and f : E → N be
a K-quasiregular mapping. Then f has a limit at e.

Corollary 7.8. Let n ≥ 2, K ≥ 1, m : (0, 1) → N, and ϑ : (0,∞) → (0,∞).
Then there exists q = q(n,K,m, ϑ) such that the following holds. Suppose that
a complete Riemannian n-manifold M has asymptotic ends {e1, . . . , ek}, k < q,
of type E(m,ϑ) which are all n-parabolic and locally C-quasiconvex, and that N
has at least q ends. Let f : M → N be a continuous mapping and Ei ∈ ei for
every 1 ≤ i ≤ k. Then at least one of the following conditions fails:

(i) f is K-quasiregular in Ei for every i,
(ii) there exists a neighborhood Ω of M \ (E1 ∪ · · · ∪Ek) such that fΩ is open.

Proof. Suppose that both conditions hold. By Theorem 7.7, we may extend f
to a continuous mapping f̂ : M̂ → N̂ . Since M̂ is compact, we may follow the
proof of Corollary 7.5.

We need several lemmas in order to prove Theorem 7.7. Let us first recall
the definition of a Harnack function. Let M be a Riemannian manifold. A
continuous function u : M → R is called a Harnack function with constant θ if

M(h, x, r) := sup
B(x,r)

h ≤ θ inf
B(x,r)

h

holds in each ball B(x, r) whenever the function h is nonnegative in B(x, 2r),
has the form h = ±u + a for some a ∈ R, and B̄(x, 2r) ⊂ M is compact. The
original version of Lewis’ lemma is stated for Harnack functions. It is well known
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(see [16, 6.2]) that A-harmonic functions in the Euclidean setting are Harnack
functions with some θ depending only on n and on the constants p, α, and β of
A. In that case θ is called the Harnack constant of A.

Lemma 7.9. Let e be an n-parabolic locally C-quasiconvex asymptotic end of a
complete Riemannian n-manifold M . Suppose u : E → R, where E ∈ e, is a Har-
nack function with constant θ such that lim supx→e u(x) = ∞ and lim infx→e u(x) <
0. Then for every C0 > 0 there exists a ball B = B(x0, r0) ⊂ E such that

(1) B(x0, 100Cr0) ⊂ E,
(2) u(x0) = 0, and
(3) maxB u ≥ C0.

Proof. It is sufficient to modify the proof of [23, Lemma 2.1] as follows. Let
E ′ ∈ e be such that E ′ ⊂ E and E ′ is C-quasiconvex. Let F ′ ⊂M be a compact
set such that E ′ is a component of M \ F ′, fix o ∈ M , and let R0 > 0 be such
that F ′ ⊂ B̄(o,R0/2).

Fix k ∈ N such that given r > R0 and x, y ∈ ∂B(o, r)∩E ′ there exists k balls
Bi = B(xi, r/1000), 1 ≤ i ≤ k, in E such that

(1) x ∈ B1,
(2) y ∈ Bk,
(3) xi ∈ E ′ for every i, and
(4) Bi ∩Bi+1 6= ∅ for every i ∈ {1, . . . , k − 1}.

Indeed, since Bi∩B(o,R0/2) = ∅, we have Bi ⊂ E, and since E ′ is C-quasiconvex,
we may choose any k > 2000C. We may now apply the proof of [23, Lemma 5]
almost verbatim.

Lemma 7.10. Let e be an n-parabolic locally C-quasiconvex asymptotic end of a
complete Riemannian n-manifold M and E ∈ e. If f : E → N is a quasiregular
mapping such that fE is n-hyperbolic, then f has a limit in N̂ at e.

Proof. Suppose that fE is n-hyperbolic. We may assume thatE is C-quasiconvex.
If f has no limit at e, there exists a compact set F ⊂ N such that fE ′ ∩ F 6= ∅
for every E ′ ∈ e. Hence there exists a sequence (xk) such that xk → e and
f(xk) → z ∈ N as k → ∞. Let (yk) be another sequence such that yk → e as
k → ∞. We show that the hyperbolicity of fE yields f(yk) → z as k → ∞,
which is a contradiction.

For every k we fix a path αk : [0, 1] → E such that αk(0) = xk, αk(1) = yk,
and ℓ(αk) ≤ Cd(xk, yk). Then

capn(E, |αk|) → 0

as k → ∞. By Poletsky’s inequality (4.3) and (4.1),

capn(fE, f |αk|) ≤ KI(f) capn(E, |αk|)

for every k. Suppose that f(yk) 6→ z. Then, by passing to a subsequence
if necessary, we may assume that d(f(yk), z) ≥ δ > 0 for every k. Since
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d(f(αk(0)), f(αk(1))) ≥ δ/2 for large k, we have, by the n-hyperbolicity of fE,
that

capn(fE, f |αk|) ≥ ε > 0.

for every k. This is a contradiction.

The following lemma is a reformulation of [29, Lemma 19.3.2].

Lemma 7.11. Let E ⊂ M , let u : E → R be a non-constant Harnack function
with constant θ, and let α : [a, b] → E be a path. If ℓ(α) ≤ k dist(|α|, u−1(0) ∪
M \ E), then u has a constant sign on |α|. Furthermore,

max
|α|

u ≤ θk min
|α|

u

if u is positive on |α|, and

max
|α|

u ≤ θ−k min
|α|

u

if u is negative on |α|.

Proof. Since |α| is connected, every non-vanishing function on |α| has constant
sign. We may assume without loss of generality that u is positive on |α|. Let
a = a0 < a1 < . . . < ak = b be a partition of [a, b] such that ℓ(α|[ai, ai+1]) =
ℓ(α)/k for every i = 0, 1, . . . , k − 1. For every i fix xi ∈ α([ai, ai+1]) such that
ℓ(α|[ai, xi]) = ℓ(α|[xi, ai+1]). Then α([ai, ai+1]) ⊂ B̄(xi, ℓ(α)/(2k)). Further-
more, B(xi, ℓ(α)/k) ⊂ E and B(xi, ℓ(α)/k) ∩ u−1(0) = ∅. Since α(ai+1) ∈
B̄(xi, ℓ(α)/(2k)) ∩ B̄(xi+1, ℓ(α)/(2k)) for every i = 1, . . . , k − 1, a repeated use
of Harnack’s inequality yields max|α| u ≤ θk min|α| u.

Lemma 7.12 (Lewis’ lemma). Let M , e, E, and u be as in Theorem 7.7. Then
for every C0 > 0 there exists a ball B = B(x0, r0) ⊂ E such that

(1) 6B ⊂ E,
(2) u(x0) = 0, and
(3) C0 ≤ max6B u ≤ θ6 maxB u.

Proof. Let C0 > 0 and B(x0, R) be as in Lemma 7.9. Let Z = u−1(0) and
ZR = Z ∩ B̄(x0, 41R). For each x ∈ ZR we set rx = R − d(x, x0)/41 and
Bx = B(x, rx). Then F =

⋃

x∈ZR
B̄x is compact and x 7→ maxB̄x

u is continuous.
Let a ∈ ZR be a point of maximum for this function. Thus

max
B̄(a,ra)

u ≥ max
B̄(x0,R)

u ≥ C0.

As in [29, Lemma 19.4.1], we have that

dist(Z, B̄(a, 6ra) \ F ) ≥
5ra
6
.

Let y0 ∈ B̄(a, 6ra) be such that

u(y0) = max
B̄(a,6ra)

u ≥ C0 > 0.



p-Laplace operator, quasiregular mappings, and Picard-type theorems 143

If y0 ∈ F , then, by the maximal property of ball B(a, ra),

max
B̄(a,6ra)

u = u(y0) ≤ max
F

u = max
B̄(a,ra)

u ≤ θ6 max
B̄(a,ra)

u.

If y0 6∈ F , let y1 ∈ F∩B̄(a, 6ra) be nearest to y0 in length metric. As B̄(a, ra) ⊂ F
it follows that

d(y0, y1) ≤ dist(y0, B̄(a, ra)) ≤ 6ra − ra = 5ra.

Let α : [0, 1] → E be a path of minimal length such that α(0) = y0 and α(1) = y1.
Then α[0, 1) ∩ F = ∅. Hence

dist(Z, |α|) ≥
5ra
6
.

Thus ℓ(α) ≤ Cd(y0, y1) ≤ 6C dist(Z, |α|). By Lemma 7.11,

u(y0) ≤ max
|α|

u ≤ θ6C min
|α|

u ≤ θ6Cu(y1) ≤ θ6C max
F

u = θ6C max
B̄(a,ra)

u.

Lemma 7.13 ([24],[26]). Let N be an n-parabolic Riemannian manifold. Suppose
that C ⊂ N is compact such that N has q ends V1, . . . , Vq with respect to C. Then
there exist n-harmonic functions vj, j = 2, . . . , q, and a positive constant κ such
that

|vj| ≤ κ in C,(7.1)

|vj − vi| ≤ 2κ in V1,(7.2)

sup
V1

vj = ∞,(7.3)

inf
Vj

vj = −∞,(7.4)

vj is bounded in Vk for k 6= 1, j,(7.5)

if vj(x) > κ, then x ∈ V1,(7.6)

if vj(x) < −κ then x ∈ Vj.(7.7)

Proof of Theorem 7.7. Suppose that a K-quasiregular mapping f : E → N
has no limit at e. By Lemma 7.10, N is n-parabolic. Let C ⊂ N be a compact
set such that N has q ends V1, . . . , Vq with respect to C. For every j = 2, . . . , q
let us fix an n-harmonic function vj with properties (7.1) - (7.7) given in Lemma
7.13. For every j = 2, . . . , q we set uj = vj ◦f . Then functions uj are A-harmonic
in E. Next we show that

(7.8) lim sup
x→e

uj(x) = +∞ and lim inf
x→e

uj(x) = −∞,

and hence they satisfy the assumptions of Lemma 7.9. This can be seen by
observing that the sets {x ∈ N : vj(x) > c} and {x ∈ N : vj(x) < −c} are non-
empty and open for every c > 0 and j = 2, . . . , q. By Lemma 7.10, f(E \ F )
intersects these sets for every compact F ⊂ M , and therefore (7.8) follows. By
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Lemma 7.12 there are sequences xi ∈ E and ri ∈ (0,∞), i ∈ N, such that
u2(xi) = 0, B(xi, 3ri) ⊂ E,

M(u2, xi, 3ri) ≤ θ6M(u2, xi, ri/2),

andM(u2, xi, ri/2) → ∞ as i→ ∞. Let us fix an index i such thatM(u2, xi, ri/2) ≥
4θκ, where θ > 1 is the Harnack constant of A and κ is the constant in Lemma
7.13. We write x = xi and r = ri. By (7.6), f

(
B(x, r/2)

)
∩ V1 6= ∅. Thus, by

(7.2), we have

(7.9) M(u2, x, s) − 2κ ≤M(uj, x, s) ≤M(u2, x, s) + 2κ

whenever s ≥ r/2. Next we conclude by using Harnack’s inequality that

(7.10) M(uj, x, r) ≤ (θ − 1)M(−uj, x, 2r)

for all j. Let us first show that uj(z) = 0 for some z ∈ B(x, r). Suppose on
the contrary, that uj > 0 in B(x, r). Then uj(y) ≤ θuj(x) for all y ∈ B(x, r/2)
by Harnack’s inequality. Since M(u2, x, r/2) ≥ 4θκ, there exists y ∈ B(x, r/2)
such that uj(y) > 2θκ by (7.9). Thus uj(x) > 2κ, and so x ∈ V1. By (7.2),
u2(x) ≥ uj(x)− 2κ > 0 contradicting the assumption u2(x) = 0. Therefore there
exists z ∈ B(x, r) such that uj(z) = 0. Thus infB(x,r) uj ≤ 0. Inequality (7.10)
follows now from the calculation

M(uj, x, r) = sup
B(x,r)

uj = sup
B(x,r)

(

uj − inf
B(x,2r)

uj

)

+ inf
B(x,2r)

uj

≤ θ inf
B(x,r)

(

uj − inf
B(x,2r)

uj

)

+ inf
B(x,2r)

uj

= θ inf
B(x,r)

uj + (1 − θ) inf
B(x,2r)

uj

≤ −(θ − 1) inf
B(x,2r)

uj = (θ − 1) sup
B(x,2r)

(−uj)

= (θ − 1)M(−uj, x, 2r),

since uj − infB(x,2r) uj ≥ 0 in B(x, 2r).

Inequalities (7.9) and (7.10), and the assumptionM(u2, x, r/2) ≥ 4θκ together
yield the inequality

(7.11) M(u2, x, r) ≤ θM(−uj, x, 2r).

Indeed,

M(u2, x, r) ≤ M(uj, x, r) + θ−1M(u2, x, r)

≤ (θ − 1)M(−uj, x, 2r) + θ−1M(u2, x, r),

which is equivalent to (7.11). We fix zj ∈ B̄(x, 2r) such that

(7.12) M(−uj, x, 2r) = −uj(zj).

The well-known oscillation estimate (see e.g. [16, 6.6])

osc
B(y,ρ)

uj ≤ c(ρ/r)γ osc
B(y,r)

uj
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together with [24, Lemma 4.2] and (7.9) imply that

(7.13) osc
B(zj ,ρ)

uj ≤ c1(ρ/r)
γM(u2, x, 3r)

for ρ ∈ (0, r). See [24, (5.5)] for details. Thus

max
B̄(zj ,ρ)

uj = osc
B(zj ,ρ)

uj + min
B̄(zj ,ρ)

uj

≤ c1(ρ/r)
γM(u2, x, 3r) + uj(zj)

≤ c1(ρ/r)
γM(u2, x, 3r) − θ−1M(u2, x, r),

by (7.13), (7.12), and (7.11). Since M(u2, x, 3r) ≤ θ6M(u2, x, r), we obtain

c1(ρ/r)
γM(u2, x, 3r) ≤ (2θ)−1M(u2, x, r)

by choosing ρ = (2θ7c1)
−1/γr. Hence

max
B̄(zj ,ρ)

uj ≤ −(2θ)−1M(u2, x, r) ≤ −2κ.

By (7.7), we conclude that f
(
B(zj, ρ)

)
⊂ Vj and hence the balls B(zj, ρ) are

disjoint. Since B(zj, ρ) ⊂ B(x, 3r), there can be at most m(ρ/3r) of them.
Hence q has an upper bound that depends only on n, K, ϑ, and m.

8. Quasiregular mappings, p-harmonic forms, and de

Rham cohomology

The use of n-harmonic functions in studying Liouville-type theorems for quasireg-
ular mappings f : M → N is restricted to the case, where N is non-compact. The
reason for this restriction is simple: a compact Riemannian manifold does not
carry non-constant p-harmonic functions. Therefore, in the case of a compact
target manifold, we have to use p-harmonic forms. In this final section we discuss
briefly p-harmonic and A-harmonic forms and their connections to quasiregular
mappings. For detailed discussions on A-harmonic forms, see e.g. [27], [28], [29],
[30], and [42]. For the connection of A-harmonic forms to quasiregular mappings,
see e.g. [4], [29], and [34].

The Riemannian metric of M induces an inner product to the exterior bundle
∧ℓ T ∗M for every ℓ ∈ {1, . . . , n}, see e.g. [29, 9.6] for details. We denote this
inner product by 〈·, ·〉 and the corresponding norm by | · |. As usual, sections of

the bundle
∧ℓ T ∗M are called ℓ-forms. The Lp-space of measurable ℓ-forms is

denoted by Lp(
∧ℓM) and the Lp-norm is defined by

‖ξ‖p =

(∫

M

|ξ|pdx

)1/p

.

The local Lp-spaces of ℓ-forms are denoted by Lploc(
∧ℓM). The space of C∞-

smooth ℓ-forms on M is denoted by C∞(
∧ℓM), and the space of compactly

supported C∞-smooth ℓ-forms by C∞
0 (

∧ℓM).
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Let ℓ ∈ {1, . . . , n−1} and p > 1. Let A :
∧ℓ T ∗M →

∧ℓ T ∗M be a measurable
bundle map such that there exists positive constants a and b satisfying

〈A(ξ) −A(ζ), ξ − ζ〉 ≥ a(|ξ| + |ζ|)p−2|ξ − ζ|2,(8.1)

|A(ξ) −A(ζ)| ≤ b(|ξ| + |ζ|)p−2|ξ − ζ|, and(8.2)

A(tξ) = t|t|p−2A(ξ)(8.3)

for all ξ, ζ ∈
∧ℓ T ∗

xM , t ∈ R, and for almost every x ∈ M . We also assume that

x 7→ Ax(ω) is a measurable ℓ-form for every measurable ℓ-form ω : M →
∧ℓ T ∗M .

We say that an ℓ-form ξ is A-harmonic (of type p) on M if ξ is a weakly closed

continuous form in W d,p
loc (

∧ℓM) and satisfies equality

δ(A(ξ)) = 0

weakly, that is, ∫

M

〈A(ξ), dϕ〉 = 0

for all ϕ ∈ C∞
0 (

∧ℓ−1M). Here W d,p
loc (

∧ℓM) is the partial Sobolev space of

ℓ-forms. A form ω ∈ Lploc(
∧ℓM) is in the space W d,p

loc (
∧ℓM) if the distribu-

tional exterior derivative dω exists and dω ∈ Lploc(
∧ℓ+1M). The global space

W d,p(
∧ℓM) is defined similarly. A form ω ∈ W d,p

loc (
∧ℓM) is weakly closed if

dω = 0 and weakly exact if ω = dτ for some τ ∈ W d,p
loc (

∧ℓ−1M).

Apart from minor differences between conditions (8.1)-(8.3) and the corre-
sponding conditions in Section 2, we can say that A-harmonic functions corre-
spond to A-harmonic weakly exact 1-forms.

Let f : M → N be a quasiregular mapping. Since f is almost everywhere

differentiable, we may define the pull-back f ∗ξ of the form ξ ∈ L
n/ℓ
loc (

∧ℓN) by

(f ∗ξ)x = (Txf)∗ξf(x).

By the quasiregularity of f , f ∗ξ ∈ L
n/ℓ
loc (

∧ℓM). Furthermore, d(f ∗ξ) = f ∗(dξ)

if ξ ∈ W
1,n/ℓ
loc (

∧ℓN). Hence f ∗ξ ∈ W
1,n/ℓ
loc (

∧ℓM) for ξ ∈ W
1,n/ℓ
loc (

∧ℓM). The
quasiregularity of f also yields that the pull-back f ∗ξ of an (n/ℓ)-harmonic ℓ-form

is A-harmonic. Similarly to the case of A-harmonic functions, A :
∧ℓ T ∗M →

∧ℓ T ∗M is defined by
A(η) = 〈G∗η, η〉(n/ℓ)−2G∗η,

where
Gx = Jf (x)

2/n(Txf)−1
(
(Txf)−1

)T
a.e. .

Recently in [4] Bonk and Heinonen studied cohomology of quasiregularly el-
liptic manifolds using p-harmonic forms. A connected Riemannian manifold is
called K-quasiregularly elliptic if it receives a non-constant K-quasiregular map-
ping from R

n. The main result of [4] is the following theorem.

Theorem 8.1 ([4, Theorem 1.1]). Given n ≥ 2 and K ≥ 1 there exists a constant
C = C(n,K) > 1 such that dimH∗(N) ≤ C for every K-quasiregularly elliptic
closed n-manifold N .
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As the Picard-type theorem 7.6, also this theorem has a local counterpart.

Theorem 8.2 ([34, Theorem 2]). Given n ≥ 2 and K ≥ 1 there exists a constant
C ′ = C ′(n,K) > 1 such that every K-quasiregular mapping f : Bn\{0} → N has
a limit at origin if N is closed, connected, and oriented Riemannian n-manifold
with dimH∗(N) ≥ C ′.

We close this section with a sketch of the proof of Theorem 8.2. The following
theorem on exact A-harmonic forms is essential in the proof. For details, see
[34].

Theorem 8.3. Let n ≥ 3 and let η be a weakly exact A-harmonic ℓ-form, ℓ ∈
{2, . . . , n− 1}, on R

n \ B̄n such that

(8.4)

∫

Rn\B̄n(2)

|η|n/ℓ = ∞.

Then there exists γ = γ(n, a, b) > 0 such that

(8.5) lim inf
r→∞

1

rγ

∫

Bn(r)\B̄n(2)

|η|n/ℓ > 0.

Here a and b are as in (8.1) and (8.2).

Sketch of the proof of Theorem 8.2. Let us first consider some exceptions.
For Riemannian surfaces the result is classical and follows from the uniformiza-
tion theorem and the measurable Riemann mapping theorem, see [34, Theorem
3]. For n ≥ 3 we may give a bound for the first cohomology using a well-known
result of Varopoulos on the fundamental group and n-hyperbolicity. For details,
see [34, Theorem 4]. Hence we may restrict our discussion to dimensions n ≥ 3
and to cohomology dimensions ℓ ≥ 2.

Let n ≥ 3 and 2 ≤ ℓ ≤ n − 1, and suppose that f : Bn \ {0} → N does not
have a limit at the origin. Without changing the notation we precompose f with
a sense-preserving Möbius mapping σ such that σ(Rn \ B̄n) = Bn \ {0}. Let us
now show that dimHℓ(N) is bounded from above by a constant depending only
on n and K. We fix p-harmonic ℓ-forms ξi generating Hℓ(N), with p = n/ℓ. This
can be done by a result of Scott [42]. Furthermore, we may assume that forms
ξi are uniformly separated and uniformly bounded in Lp, that is, ‖ξi − ξj‖p ≥ 1
and ‖ξi‖p = 1 for every i and j.

A local version [34, Theorem 6] of the value distribution result of Mattila and
Rickman yields that

(8.6)

∫

Bn(r)\Bn(2)

|f ∗ξ|n/ℓ ∼

∫

Bn(r)\Bn(2)

Jf

for large radii r. Using Theorem 8.3 and a decomposition technique due to
Rickman, we find a radius R and a decomposition of the annulus Bn(R) \Bn(2)
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into domains quasiconformally equivalent to Bn in such a way that we have a
quasiregular embedding ψ : Bn → R

n \ B̄n(2) with properties

(8.7)

∫

ψBn(1/2)

Jf &

(∫

Bn(R)\Bn(2)

Jf

)1/4

and

(8.8)

∫

ψBn

Jf .

∫

Bn(R)\Bn(2)

Jf .

Combining (8.6) with (8.7) and (8.8), we have that forms ϕ∗f ∗ξi are uniformly
bounded in Lp(Bn) and uniformly separated in Lp(Bn(1/2)). By compactness,
the number of forms is bounded by a constant depending on data.

Remark 8.4. The use of A-harmonic forms in the proof of Theorem 8.2 is very
similar to their use in the proof of Theorem 8.1. Also Theorem 8.3 corresponds
to a theorem of Bonk and Heinonen ([4, Theorem 1.11]).
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