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1. Overview

These lecture notes consist of three parts: In the first part the basic theory
of Möbius mappings is reviewed. Particular emphasis will be given to concrete
calculations within the context of a single mapping in Euclidean space. Although
this presentation is perhaps not the most elegant one possible, it has the advan-
tage that it does a good job in preparing us for the isometry questions that come
up later. For a more detailed exposition of the basics of Möbius mappings see
e.g. [2, 31].
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The latter two parts deal with the problem of characterizing isometries of two
metrics which have turned out to be very important in the theory of quasicon-
formal mappings, namely, the jG and the quasihyperbolic metric. Specifically, in
the second part we deal with the jG metric — this part is based on joint work
with Z. Ibragimov and H. Lindén [18] in Computational Methods and Function
Theory. The third part reproduces parts of my recent manuscript [15], which
deals with isometries of the quasihyperbolic metric.

Characterizing isometries of a metric can in some sense be thought of as solving
a (system of) functional equation(s): we know that

df(G)(f(x), f(y)) = dG(x, y)

for all x, y ∈ G and we want to determine f . However, the fact that we have at
our disposal a continuum of functional equations implies that the methods used
to approach this problem are somewhat different than those usually found when
dealing with functional equations. Thus our methods will often be based on
some geometric considerations: we will employ geodesics (locally and globally),
intrinsic curvature, as well as limiting behavior of the metric in infinitesimal
regions more generally.

Many other properties of these and related metrics have also been studied. A
review of some of these results is presented in the chapter by H. Lindén in these
notes.

2. Möbius mappings

We denote by Rn = Rn∪{∞} the one-point compactification of Rn, so its open
balls are the open balls of Rn, complements of closed balls in Rn and half-spaces.
If D ⊂ Rn we denote by ∂D and D its boundary and closure, respectively, all
with respect to Rn. By Bn(x, r) and Sn−1(x, r) we denote the open ball centered
at x ∈ Rn with radius r > 0, and its boundary, respectively. For x ∈ D ( Rn we
denote δ(x) = d(x, ∂D) = min{|x − z| : z ∈ ∂D}. By [x, y], (x, y] we denote the
closed and half-open segment between x and y, respectively.

The (absolute) cross-ratio of four distinct points is defined by

|a, b, c, d| =
|a − c| |b − d|

|a − b| |c − d|
,

with the understanding that |∞−x|
|∞−y|

= 1 for all x, y ∈ Rn. A homeomorphism

f : Rn → Rn is a Möbius mapping if

|f(a), f(b), f(c), f(d)| = |a, b, c, d|

for every quadruple of distinct points a, b, c, d ∈ Rn. A mapping of a subdomain
of Rn is Möbius, if it is a restriction of a Möbius mapping defined on Rn.

Although the previous definition is very compact and brings out one important
aspect of Möbius mappings, it does not tell us what the behavior of a Möbius
mapping is in terms of geometry. However, it is not so difficult to get some
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results in this direction: Let us regard three points a, b, c as fixed and a fourth
point x as variable. Then the cross-ratio equation reads

|a − c|

|a − b|

|b − x|

|c − x|
=

|a′ − c′|

|a′ − b′|

|b′ − x′|

|c′ − x′|
,

where a′ is the image of a under the Möbius mapping. We can rewrite this as

|b − x|

|c − x|
= C

|b′ − x′|

|c′ − x′|
,

where C is a constant not depending on x. However, for fixed b, c and C > 0
the set {

x ∈ Rn :
|b − x|

|c − x|
= C

}

is a sphere. Thus the previous equation implies that the Möbius mapping maps
spheres to spheres. The converse of this statement is also true, see [4].

It is also possible to take a more constructive approach to Möbius mappings.
Let us first of all make the trivial observation that a mapping which preserves
Euclidean distances is Möbius. Second, we note that mappings preserving ra-
tios of Euclidean distances (so-called similarity mappings) are Möbius. These
mappings are:

• translations;
• reflections;
• rotations; and
• dilatations.

Are there any other Möbius mappings?

From the definition it is clear that the set of Möbius mappings is closed under
composition (in fact, the set is a group under composition). Thus we may employ
a very useful trick in trying to identify any other Möbius mappings, namely, we
normalize by mappings that we already know are Möbius. This means that we
consider the mapping g = s1◦f ◦s2, where f is our original Möbius mapping and
s1 and s2 are similarities. Suppose first that f is such that f(∞) = ∞. Inserting
d = ∞ in the definition implies that

|a − c|

|a − b|
= |a, b, c,∞| = |f(a), f(b), f(c),∞| =

|f(a) − f(c)|

|f(a) − f(b)|
,

so f is a similarity. Otherwise there exists a finite point a such that f(a) = ∞.
By an auxiliary similarity we may assume that a = 0 (i.e. we choose s2(x) = x+a
above). Similarly, f(∞) = b 6= ∞, and if we choose s1(x) = x − b, then g is a
Möbius mapping which swaps 0 and ∞. Using this in the equation gives

|b|

|c|
= |∞, b, c, 0| = |0, g(b), g(c),∞| =

|g(c)|

|g(b)|
.

From this we see that |x| |g(x)| is a constant. By another similarity we may
assume that this constant equals 1, so that |g(x)| = |x|−1 for every x ∈ Rn. To
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get a grip of the non-radial action of g we use the equation inserting 0 and ∞ in
other places:

|b − d|

|d|
= |∞, b, 0, d| = |0, g(b),∞, g(d)| =

|g(b) − g(d)|

|g(b)|

. Using the previous formula for |g(b)| this gives

(2.1) |g(b) − g(d)| =
|b − d|

|b| |d|
,

which is a central formula for calculating how a Möbius mapping affects distances.
We can rewrite (2.1) as

|g(b) − g(d)|2

|g(b)| |g(d)|
=

|b − d|2

|b| |d|
.

Using the cosine formula

|b − d|2 = |b|2 + |d|2 − 2|b| |d| cos
(
b̂0d

)
,

where b̂0d stands for the angle between the vectors b−0 and d−0, and similarly
for |g(b)−g(d)|2 we see that g preserves angles at the origin and lines through the
origin. Thus, up to additional normalization by a reflection and/or a rotation,
we see that g(x) = x |x|−2.

A Möbius mapping which swaps ∞ and with a point of Rn and which maps
every line through this point to itself is called an inversion. Note that every
inversion is an involution, i.e. it is its own inverse. The point which is mapped to
∞ is called the center of inversion. We have shown that every inversion equals
x 7→ x |x|−2, up to similarity. In particular, every Möbius mapping can be written
as s ◦ i, where s is a similarity and i is an inversion or the identity.

Now that we have identified the Möbius mappings we can proceed to show
the following basic property: given two ordered triples of distinct points in Rn,
(a, b, c) and (a′, b′, c′), there exists a Möbius map f with f(a) = a′, f(b) = b′ and
f(c) = c′. It is clearly sufficient to show this claim in the case when a′, b′ and c′

are the vertices of an equilateral triangle. Let us first find a point x such that

|a − c|

|a − b|

|b − x|

|c − x|
=

|b − c|

|a − b|

|a − x|

|c − x|
= 1.

The easiest way to see that such a point x exists is to use an inversion i with
center a. Then the equations to satisfy become

|i(b) − z|

|i(c) − z|
=

|i(b) − i(c)|

|i(c) − z|
= 1.

We see that the first fraction describes a hyperplane which is the perpendicular
bisector of the segment [i(b), i(c)] and the second fraction the sphere with center
i(c) and radius |i(b) − i(c)|. Since these objects clearly intersect, we can find a
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suitable z, and then our x is given by i(z). Let ı̃ be an inversion with center x.
The choice of x implies that

|̃ı(a) − ı̃(c)|

|̃ı(a) − ı̃(b)|
=

|̃ı(b) − ı̃(c)|

|̃ı(a) − ı̃(b)|
= 1,

so
(
ı̃(a), ı̃(b), ı̃(c)

)
are the vertices of an equilateral triangle. These can be

mapped to the given points (a′, b′, c′) by a similarity transform s, so our final
Möbius map is then s ◦ ı̃.

3. The jG metric

This section reproduces parts of the article [18] on isometries of some relative
metrics. The term “relative metric” implies that the metric is evaluated in
a proper subdomain of Rn relative to its boundary. More precisely, we want
the metric to blow up towards the boundary of the domain, i.e., we want the
boundary to be at infinity intrinsically.

Let D ( Rn be a domain containing the points x and y. The well-known
distance ratio metric is defined by

jD(x, y) = log

(
1 +

|x − y|

min{δ(x), δ(y)}

)
,

where δ(·) = dist( · , ∂D) denotes distance to the boundary. It was used, for in-
stance, by Gehring and Osgood [11] to characterize uniform domains (namely, in
such domains the jD metric is quasiconvex). Note that this metric has sometimes
been called simply “the relative metric”, and will be used in this meaning.

To see how these metrics fit into a larger framework we recall the concept of
an inner metric. Let d be a metric in D and γ be a path in D (i.e. a continuous
mapping from an interval I to D). The length (or, more explicitly, d-length) of
γ is defined as

d(γ) = sup
k−1∑

i=1

d
(
γ(ti), γ(ti+1)

)
,

where the supremum is taken over k and all increasing sequences (ti)
k
i=1 of points

in I. Then the inner or intrinsic metric of d is defined by

d̃(x, y) = inf
γ

d(γ),

where the infimum is taken over all paths γ connecting x and y in D (note
that this need not be finite, unless D is rectifiably connected). It is clear that

d(x, y) ≤ d̃(x, y) and that d(γ) = d̃(γ) for any metric and path. The theory of
length-metrics, including in particular intrinsic metrics, is presented e.g. in [5, 6].

Suppose now that D ⊂ Rn and d is a metric in D. If

d̄(x) = lim
y→x

d(x, y)

|x − y|
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exists for all x ∈ D and is continuous, then we can express the inner metric of d
by

d̃(x, y) = inf
γ

∫

γ

d̄(z) |dz|,

where |dz| represents integration with respect to d-arclength, and the infimum

is taken over rectifiable curves with end points x and y. In this case d̃ is called a
conformal metric. We easily see that the inner metric of jD is the quasihyperbolic
metric,

j̃D(x, y) = kD(x, y) = inf
γ

∫

γ

|dz|

d(z, ∂D)
.

Length-metrics are interesting from a geometric point of view, but for getting
explicit estimates they are often of little use. The role of point-distance functions,
like the jD metric, is that they share features with their inner metrics, but are
much more explicit.

In this paper we want to consider not only the jD metric, but all metrics
which resemble them in the very small and very large scale. The small scale
equivalence implies that the metrics have the same inner metrics, whereas the
large scale equivalence allows us to get a hold of the boundary behavior and thus
start unraveling the isometry story.

Remark 3.1. Note that jD is really families of metrics, namely for every domain
D we have one metric. We will continue to use this convention when talking about
this and other metrics in this paper.

Definition 3.2. We say that d is a j-type metric if the following three conditions
hold on every domain D ( Rn:

1. dD is a metric on D.
2. For each y ∈ D and for each sequence (xi) with jD(xi, y) → 0 we have

lim
i→∞

dD(xi, y)

jD(xi, y)
= 1.

3. For each y ∈ D and for each sequence (xi) with jD(xi, y) → ∞ we have

lim
i→∞

(
dD(xi, y) − jD(xi, y)

)
= 0.

The fact that y can be any interior point in (2) means that being a j-type
metric is quite a strong condition; for instance, if d and f ◦ d are j-type metrics,
then f = id (Corollary 3.12).

It seems to be quite difficult to construct other natural metrics of j-type. The
main purpose of our more abstract treatment is to highlight the features that
are crucial, which in turn indicates that these techniques might be relevant also
for handling the isometries of the corresponding inner metrics.

In this part we characterize the isometries of j-type metrics. We start by
collecting some basic properties of these metrics. In Section 3.1 we solve the
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isometry problem for j-type metrics using a boundary rigidity result, and in
Section 3.2 we list some additional properties whose proofs can be found in [18].

The following result is more or less restatements of the definition. However,
it directly implies that we may restrict our focus very much without losing any
isometries.

Proposition 3.3. If d is a j-type, then

lim
y→∂D\{∞}

(
dD(x, y) − log

|x − y|

δ(y)

)
= 0 and lim

y→x

dD(x, y)

|x − y|
=

1

δ(x)

for every x ∈ D. The inner metric of a j-type metrics is the quasihyperbolic

metric kD. In particular, every isometry of a j-type metric is an isometry of kD.

Every isometry of kD is a conformal mapping [29, Theorem 2.6]. Hence we
conclude:

Corollary 3.4. Every isometry of a j or δ-type metric is conformal. In partic-

ular, if n ≥ 3, then such an isometry is Möbius.

We plunge right into the main result of this section, a characterization of the
isometries of j-type metrics. In Section 3.2 we derive some miscellaneous results,
which give a clearer picture of j-type metrics.

3.1. Isometries of j-type metrics. The proof of the following theorem is
partly based on ideas from [17]. Incidentally, it is possible to give a much simpler
proof for the particular case of the jD metric itself, since in this case we can cancel
the logarithm and the 1+ terms. Thus f is a jD isometry if and only if

|x − y|

min{δ(x), δ(y)}
=

|f(x) − f(y)|

min{δ′(f(x)), δ′(f(y))}
,

where, as usual, δ′ denotes the distance to the boundary in the image domain
f(D). The reader is challenged to find the very short argument which shows that
this implies that the isometry is a similarity.

In the general case of j-type metrics we have less information about the metric,
so we have to look at what happens at the boundary. In this case we can
nevertheless prove the following theorem, whose proof is reproduced from [18].

Theorem 3.5. Let d be a j-type metric, D ( Rn and f : D → Rn be a d-
isometry. Then either

1. f is a similarity, or

2. D = Rn \ {a} and, up to similarity, f is an inversion in a sphere centered

at a.

Proof. Denote D′ = f(D) and δ′(x) = d(x, ∂f(D)). Fix z ∈ ∂D \ {∞} and let
(zi) be a sequence of points in D tending to z. We first assume that there exists
a subsequence, which we also denote by (zi), such that

(
f(zi)

)
converges to some
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point w1 ∈ Rn. Since d is a j-type metric we see, using Proposition 3.3 for the
third equality, that for every x ∈ D we have that

0 = lim
i→∞

(
dD′(f(x), f(zi)) − dD(x, zi)

)

= lim
i→∞

(
dD′(f(x), f(zi)) − log

1

δ′(f(zi))

)
− lim

i→∞

(
dD(x, zi) − log

1

δ(zi)

)
+

+ lim
i→∞

log
δ(zi)

δ′(f(zi))

= log
|f(x) − w1|

|x − z|
+ lim

i→∞
log

δ(zi)

δ′(f(zi))
.

Taking exponentials gives

(3.6) lim
i→∞

δ′(f(zi))

δ(zi)
=

|f(x) − w1|

|x − z|
< ∞.

Suppose now that (ẑi) is a second sequence of points in D tending to z, but
that this time f(ẑi) → w2 ∈ Rn \ {w1}. Using x = ẑj for every j = 1, 2, . . . in
(3.6) gives

lim
i→∞

δ′(f(zi))

δ(zi)
=

|f(ẑj) − w1|

|ẑj − z|
→ ∞

as j → ∞, which is a contradiction. In other words, f(ẑi) → w1 for every
sequence of points (ẑi) → z, so we may extend f continuously to D by defining
f(z) = limi→∞ f(zi). Therefore we conclude from (3.6), since the left-hand side
of this equation does not depend on x, that

|f(x) − f(z)| = hf (z)|x − z|

for some function hf : ∂D → (0,∞). This means that for z, w ∈ ∂D we have

hf (z)|w − z| = |f(w) − f(z)| = hf (w)|w − z|,

so hf is in fact a constant. Therefore f acts as a similarity, say g, on the boundary.
We then extend f to all of Rn by setting f(x) = g(x) outside the original domain
of definition. Then it is clear that

(3.7) |f(x) − f(z)| = hf |x − z|

for every point x ∈ Rn, i.e. the sphere Sn−1(z, r) is mapped to Sn−1(f(z), hfr).
This clearly implies that the conformal mapping is Möbius, and a Möbius map-
ping satisfying (3.7) is a similarity.

We still have one assumption to consider. In the beginning of the proof we
assumed that we can find a boundary point z and a sequence (zi) of points in
D tending to z such that f(zi) tends to a finite limit. So we suppose now that
no such sequence can be found, i.e. that for every sequence (zi) of points in D
tending to a boundary point z the sequence

(
f(zi)

)
tends to ∞. As before we
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conclude that

0 = lim
i→∞

(
dD′(f(x), f(zi)) − dD(x, zi)

)

= lim
i→∞

(
jD′(f(x), f(zi)) − jD(x, zi)

)

= lim
i→∞

log

(
|f(x) − f(zi)|

min{δ′(f(zi)), δ′(f(x))}

δ(zi)

|x − z|

)
.

So it follows that

lim
i→∞

|f(x) − f(zi)|δ(zi)

min{δ′(f(zi)), δ′(f(x))}
= |x − z|.

Since f(zi) → ∞, we see that we can replace |f(x)−f(zi)| by |f(zi)| in the above
formula. Since the right-hand-side depends on x (which lies in an open set) we
see that the left-hand-side must do so, too, hence we have to choose the second
term in the minimum. Taking this into account we have

gf (z) = lim
i→∞

|f(zi)| δ(zi) = |x − z| δ′(f(x)),

where gf : ∂D → (0,∞). Suppose that D has at least two finite boundary points,
and let a, b ∈ ∂D be such that the open segment (a, b) is contained in D. Now
if we first consider x (in the previous equation) to be the mid-point x of (a, b),
then we conclude that

gf (a) = |x − a| δ′(f(x)) = |x − b| δ′(f(x)) = gf (b).

But if we take some other point on the segment, then we get gf (a) 6= gf (b), a
contradiction. So only the case when D has a single boundary point remains to
consider. Then we have

lim
i→∞

|f(zi)| |zi − a| = |x − a| |f(x) − b|

(for D = Rn \ {a} and D′ = Rn \ {b}) and we directly see that x 7→ f(x) + b− a
is an inversion, which concludes the proof.

Corollary 3.8. Let d be a similarity invariant j-type metric and let D ( Rn.

Then f : D → Rn is a d-isometry if and only if

1. f is a similarity, or

2. D = Rn \ {a} and, up to similarity, f is the inversion in a sphere centered

at a.

Proof. The previous proposition established that every d-isometry is of the given
kind. If f is a similarity, then it is an isometry by assumption. So it remains
(after normalization) to consider the case D = Rn \ {0}. In this case we see that

similarity invariance implies that dD(x, y) depends only on max
{

|x|
|y|

, |y|
|x|

}
and the

angle x̂0y. On the other hand, an inversion in a sphere about the origin swaps
|x|/|y| and |y|/|x| and leaves x̂0y invariant, so we see that it is an isometry.
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3.2. Other properties of j-type metrics. We said before that every j-type
metric has an upper bound in terms of the quasihyperbolic metric. Surprisingly,
it is also possible to get a universal lower bound by a metric, the so-called half-

apollonian metric [19]. For a domain D ( Rn this metric is defined by

ηD(x, y) = sup
z∈∂D

∣∣∣∣ log
|x − z|

|y − z|

∣∣∣∣.

The metric ηD is similarity invariant, and every Möbius mapping is bilipschitz.

The proofs of the following results can be found in [18].

Proposition 3.9. For every j-type metric d and every D ( Rn we have dD ≥ ηD.

Using the previous proposition and the quasihyperbolic upper bound we can
squeeze in j-type metrics to get the exact value on some subset of the domain:

Corollary 3.10. Let w ∈ D and z ∈ ∂D ∩ Sn−1(w, δ(w)). Then dD(x, y) =
jD(x, y) for every x, y ∈ [w, z).

The following is easily checked by a direct computation using the definition of
the j-metric, but also follows from Corollary 3.10 and the fact that line segments
are also geodesic rays for the ηD-metric ([19, Example 3.4]).

Corollary 3.11. Let w ∈ D and z ∈ ∂D ∩ Sn−1(w, δ(w)). Then [w, z) is a

geodesic ray for the j-type metric d, i.e. for every x, ξ, y ∈ [w, z) in this order we

have

dD(x, y) = dD(x, ξ) + dD(ξ, y).

In general, if we have a metric d and a subadditive function f : [0,∞) → [0,∞)
for which f(x) = 0 if and only if x = 0, then f ◦ d is also a metric. It turns out
that the conditions for begin a j-type metric are so rigid, that this transformation
is never possible in this context:

Corollary 3.12. Let d be a j-type metric and fD : [0,∞) → [0,∞) be a family

of arbitrary functions. If f ◦ d is a j-type metric, then fD = id for all relevant

D.

4. The quasihyperbolic metric

The remainder of this article is reproduced with minor modifications from
[15].

Let D ( R2 be an open set and denote δ(x) = d(x, ∂D), the distance to the
boundary. The quasihyperbolic metric in D is the conformal metric with the
density δ(x)−1, in other words, the metric is given by

kD(x, y) = inf
γ

∫

γ

ds(z)

δ(z)
,

where the infimum is taken over paths γ connecting x and y in D and ds repre-
sents integration with respect to arc-length.
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The quasihyperbolic metric was first introduced in the seventies, and since
then it has found innumerable applications, especially in the theory of quasicon-
formal mappings, see, e.g. [11, 12, 22, 28, 29]; new connections are still being
made, for instance P. Jones and S. Smirnov [24] recently gave a criterion for re-
movability of a set in the domain of definition of a Sobolev space in terms of the
integrability of the quasihyperbolic metric, see also [25], and Z. Balogh and S.
Buckley [1] used the metric in a geometric characterization of Gromov hyperbolic
spaces.

Despite the prominence of the quasihyperbolic metric, there have been almost
no investigations of its geometry. Three exceptions are the papers by G. Martin
[28] and Martin and B. Osgood [29], the second of which was the main motivation
for the approach presented in this paper, and the thesis by H. Lindén [27]. Part of
the reason for this lack of geometrical investigations is probably that the density
of the quasihyperbolic metric is not differentiable in the entire domain, which
places the metric outside the standard framework of Riemanian metrics.

At least two modifications of the quasihyperbolic metric have been proposed
which do not suffer from this problem. J. Ferrand [10] suggested replacing the
density δ−1 by

σD(x) = sup
a,b∈∂D

|a − b|

|a − x| |b − x|
.

Note that δ(x)−1 ≤ σD(x) ≤ 2δ(x)−1, so the Ferrand metric and the quasihyper-
bolic metric are bilipschitz equivalent. Moreover, the Ferrand metric is Möbius
invariant, whereas the quasihyperbolic metric is only Möbius quasi-invariant. A
second variant was proposed more recently by R. Kulkarni and U. Pinkall [26],
see also [23]. The K–P metric is defined by the density

µD(x) = inf
{ 2r

(r − |x − z|)2
: x ∈ B(z, r) ⊂ D

}
.

Equivalently, the infimum is taken over the hyperbolic densities of x in balls
contained in D. This density satisfies the same estimate as Ferrand’s density,
i.e. δ(x)−1 ≤ µD(x) ≤ 2δ(x)−1, and the K–P metric is also Möbius invariant.
Although the Ferrand and K–P metrics are in some sense better behaved than
the quasihyperbolic metric, they suffer from the short-coming that it is very
difficult to get a grip even of the density, even in simple domains.

Despite this, D. Herron, Z. Ibragimov and D. Minda [21] recently managed to
solve the isometry problem of the K–P metric in most cases. By the isometry
problem of the metric d we mean characterizing mappings f : D → R2 with

dD(x, y) = df(D)(f(x), f(y))

for all x, y ∈ D. Notice that in some sense we are here dealing with two dif-
ferent metrics, due to the dependence on the domain. Hence the usual way of
approaching the isometry problem is by looking at some intrinsic features of the
metric which are then preserved under the isometry. Since irregularities (e.g.
cusps) in the domain often lead to more distinctive features, this implies that
the problem is often easier for more complicated domains.
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The work by Herron, Ibragimov and Minda [21] bears out this heuristic – they
were able to show that all isometries of the K–P metric are Möbius mappings
except in simply and doubly connected domains. Their proof is based on studying
the curvature of the metric. For the quasihyperbolic metric, formulae for the
curvature were worked out already in [29] (see Section 4.2, below), and were
used in that paper to prove that all the isometries of the disc are similarity
mappings. These will be our main tool in this paper. The other source of the
ideas used below are the papers [16, 17, 18, 19] on isometries of some other
similarity and Möbius invariant metrics.

There are three steps in characterizing quasihyperbolic isometries:

1. show that they are conformal;
2. show that they are Möbius; and
3. show that they are similarities.

The first step has been carried out by Martin and Osgood [29, Theorem 2.6] for
completely arbitrary domains, so there is no more work to do there. In Section 4.3
we will use the results from [29] on the curvature of the quasihyperbolic metric,
and some new ideas to prove that the conformal isometries are Möbius (second
step). For this we need to assume that the boundary of the domain is at least
C3-smooth. In Section 4.1 we will work on the third step – we show that Möbius
isometries are similarities provided the boundary is C1. In Section 4.2 we study
the Gaussian curvature of the quasihyperbolic metric, and the gradient of the
curvature.

Additional notation. We employ some additional conventions in this section:
We tacitly identify R2 with C, and speak about real and imaginary axes, etc.
We will often work with a mapping f : D → R2. In such cases we will use a
prime to denote quantities on the image side, e.g. x′ = f(x), D′ = f(D) and
δ′(x) = d(x, ∂D′), and so on.

4.1. Isometries which are Möbius. Let D be a domain and ζ ∈ ∂D. We say
that ζ is circularly accessible, if there exists a disc B ⊂ D such that ζ ∈ ∂B.

Lemma 4.1. Let D ( R2 be a Jordan domain with circularly accessible bound-

ary, and let f : D → R2 be a quasihyperbolic isometry which is also Möbius.

Then, up to composition by similarity mappings, f is the identity or the inver-

sion in a circle centered at a boundary point.

Proof. Assume that f is not a similarity. Since f is a Möbius map, it is an
inversion, up to similarities, which are always isometries of the quasihyperbolic
metric. Thus it suffices to consider the case when f is an inversion in a unit
sphere. Let us denote the center of this sphere by w.

Suppose first that w 6∈ D and let ζ ∈ ∂D be the closest boundary point to w.
For simplicity we normalize the situation so that ζ lies on the positive real axis
and w = 0. Since ζ is circularly accessible, we find a disc B(z, r) ⊂ D which
contains ζ in its closure. Since ζ is the closest boundary point to w, we see that
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z has to lie on the positive real axis, as well. Let x and y be points satisfying

ζ < x < y ≤ ζ(ζ+2r)
ζ+r

. The right-hand inequality ensures that ζ is the closest

boundary point to [x, y], and that ζ ′ is the closest boundary point to [x′, y′].
Thus we find that

kD(x, y) = log
|x − ζ|

|y − ζ|
and kD′(x′, y′) = log

|x′ − ζ ′|

|y′ − ζ ′|
.

Since f is the inversion in the unit sphere, we have

|x′ − ζ ′| =
|x − ζ|

|x| |ζ|
,

and similarly for y. Then the equation exp kD(x, y) = exp kD′(x′, y′) gives us

|x − ζ|

|y − ζ|
=

|x − ζ|

|x| |ζ|

|y| |ζ|

|y − ζ|
,

i.e. |x| = |y|. This contradiction shows that w ∈ D. Since f maps D into R2, it
is clear that w 6∈ D, so it follows that w is a boundary point.

We call D a Ck domain, if ∂D is locally the graph of a Ck function. Note that
if D is a C1 domain, then certainly every boundary point is circularly accessible.

Proposition 4.2. Let D ( R2 be a C1 domain, and let f : D → R2 be a quasi-

hyperbolic isometry which is also Möbius. If D is not a half-plane, then f is a

similarity.

Proof. We assume that f is not a similarity map. By the previous lemma we
see that there is no loss of generality in considering only the case when f is
the inversion centered at a boundary point. For simplicity of exposition, we
normalize so that the origin is this center.

Let ζ be a boundary point of D distinct from 0 and let u be the inward
pointing unit normal at ζ. For all sufficiently small t > 0, the point xt = ζ + tu
lies in D and its closest boundary point is ζ. For such s < t, we have

kD(xt, xs) = log
t

s
.

To estimate the distance of the image points, we use the inequality

jD′(x′, y′) = log

(
1 +

|x′ − y′|

min{δ′(x′), δ′(y′)}

)
≤ kD′(x′, y′),

which is always valid (since kD′ is the inner metric of jD′ , e.g. [12, Lemma 2.1]).
We also need the formula

|x′ − y′| =
|x − y|

|x| |y|
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for the length distortion of an inversion. Using these facts and the estimate
δ′(x′) ≤ |x′ − ζ ′|, we derive the inequality

kD′(x′, y′) ≥ log
(
1 +

|x′ − y′|

min{δ′(x′), δ′(y′)}

)

≥ log
(
1 +

|x − y|/(|x| |y|)

min{|x′ − ζ ′|, |y′ − ζ ′|}

)

= log
(
1 +

|x − y| |ζ|

|x| |y| min{|x − ζ|/|x|, |y − ζ|/|y|}

)

= log
(
1 +

|x − y| |ζ|

min{|y| |x − ζ|, |x| |y − ζ|}

)
.

Applying this inequality to the points xt and xs as defined before, we have

kD′(x′
t, x

′
s) ≥ log

(
1 +

(t − s) |ζ|

min{t |xs|, s |xt|}

)
.

Let us choose t = 2s. Since |x2s| and |xs| both tend to |ζ| as s → 0, we see that
the second term in the minimum is smaller. Since the inversion is supposed to be
an isometry, we can use the formula for kD(xt, xs) from before with the previous
inequality to conclude that

log
2s

s
≥ log

(
1 +

(2s − s) |ζ|

s |x2s|

)
.

Taking the exponential function gives |x2s| ≥ |ζ|. Since xs = ζ + su, this implies
that 〈ζ − 0, u〉 ≥ 0 as s → 0, where 〈, 〉 denotes the scalar product.

Applying the same argument, but starting with points on the image side, we
conclude that the opposite inequality is also valid. (There is actually a slight
asymmetry here: the domain D′ need not have circularly accessible boundary
at the origin. However, it is clear that this does not affect the argument so
far.) Thus it follows that 〈ζ − 0, u〉 = 0 for all boundary points. But since the
boundary is assumed to be C1, this implies that the domain is a half-plane.

From [29, Theorem 2.8] we know that if f : D → R2 is a quasihyperbolic isom-
etry, then f is conformal in D. In dimensions three and higher every conformal
mapping is Möbius. It is easy to see that the proofs in this section work also in
the higher dimensional case. Therefore, we have proved the following result:

Corollary 4.3. Let D be a C1 domains in Rn, n ≥ 3, which is not a half-space.

Then every quasihyperbolic isometry is a similarity mapping.

Example 4.4. Note that if we do not assume C1 boundary, then there are some
further domains with non-trivial isometries: the punctured planes R2 \ {a} and
sector domains (i.e. domains whose boundary consists of two rays). In both
cases inversions centered at the distinguished boundary point (a or the vertex
of the sector). The previous proposition strongly suggests that these are all the
examples.
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4.2. Curvature of the quasihyperbolic metric. Let D be a domain in R2.
We call a disc B ⊂ D maximal, if it is not contained in any other disc contained
in D. The set consisting of the centers of all maximal discs in D is called the
medial axis of D and denoted by MA(D). The medial axis and differentiability
properties of the distance-to-the-boundary function have been studied e.g. in
[7, 8, 9].

In a general domain the Gaussian curvature of the quasihyperbolic metric is
not defined, since the distance-to-the-boundary function is not C2. M. Heins
[20] considered this situation for a quite general class of metric, and defined the
notions of upper and lower curvature. Martin and Osgood worked with these
curvatures in the context of the quasihyperbolic metric, see [29, Section 3] for
details. However, if our domain is sufficiently regular (say C2), and we are
considering points not on the medial axis, then the upper and lower curvature
agree, and define the curvature. In this case the curvature of kD is given by

KD(z) = −δ(z)2△ log δ(z),

[20, (1.3)] or [29, (3.1)]. On the medial axis this formula does not make sense,
but the upper and lower curvatures still agree, and both equal −∞, by [29,
Corollary 3.12].

The next lemma is a specialization of Lemma 3.5, [29] to the case there the
upper and lower curvatures agree.

Lemma 4.5 (Lemma 3.5, [29]). Let G and G̃ be C2 domains such that B(z, r) ⊂
G ∩ G̃ and ζ ∈ (∂G) ∩ (∂G̃) ∩ (∂B(z, r)). If there is a neighborhood U of ζ such

that G ∩ U ⊂ G̃ ∩ U and d(z, ∂G̃ \ U) > d(z, ∂G̃), then KG(z) ≤ KG̃(z).

Using this lemma we can derive the following very plausible statement, which
says that the Gaussian curvature of the quasihyperbolic metric depends only on
the curvature of the boundary at the closest boundary point. We sill need some
more notation.

Let B be a disc with ζ ∈ (∂B)∩ (∂D). Then we call B the osculating disc at
ζ if ∂B and ∂D have second order contact at ζ. Let D be at least a C2 domain.
Then there exists an osculating disc at every boundary point ζ. If this disc has
radius r, then we define Rζ to be r if the disc lies in the direction of the interior of
D, and −r otherwise. Note that the function ζ 7→ 1/Rζ is Ck−2 in a Ck domain,
k ≥ 2.

Proposition 4.6. Let D ( R2 be a C2 domain and z ∈ D \MA(D) have closest

boundary point ζ ∈ ∂D. Then

KD(z) = −
Rζ

Rζ − δ(z)
= −

1

1 − δ(z)/Rζ

.

If z lies on the medial axis, then KD(z) = −∞.

Proof. The medial axis consists of points equidistant to two or more nearest
boundary points, and of centers of osculating circles. For the former, the claim
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that KD(z) = −∞ follows from [29, Corollary 3.12]. So we assume that z has a
unique nearest boundary point, ζ.

We suppose further that Rζ > 0, the other case begin similar. Let B(w,Rζ)
be the osculating disc at ζ. We define

Bt = B(w + w−ζ

Rζ
t, Rζ + t),

and note that ∂Bt contains ζ for all t > −Rζ . We have the formula

KB(0,r)(x) = −
r

|x|
= −

r

r − d(x, ∂B(0, r))

for the curvature of the quasihyperbolic metric in a ball [29, Lemma 3.7], so we
can calculate KBt

(z) explicitly.

Using the previous lemma with G = D and G̃ = Bt for t > 0 gives KD(z) ≤
KBt

(z). If z is the center of B0, then right-hand-side of this inequality tends
to −∞ as t → 0, which completes the proof of the claim regarding the medial
axis. So we assume that z is not the center of B0, and then we can apply the
Lemma 4.5 with G = Bt for t < 0 (sufficiently close to 0) and G̃ = D to get
KBt

(z) ≤ KD(z). Thus we have

KB−t
(z) ≤ KD(z) ≤ KBt

(z)

for small t > 0. Since KBt
is continuous in t, we get KD(z) = KB0

(z) as we let
t → 0. The proof is completed by applying the aforementioned formula for the
curvature to the ball B0 = B(w,Rζ).

Let f : D → R2 be a C1 mapping. By ∇f we denote the gradient of f ,
i.e. the vector (∂1f, ∂2f), and by ∇̃f(z) we denote δ(z)∇f(z). The reason for
multiplying by δ(x) is that

δ(y) = lim
x→y

|x − y|

kD(x, y)
,

so that the ∇̃ operator is more natural in the setting where the quasihyperbolic
but not the Euclidean distance is preserved (see (4.9), below).

We next present an explicit formula for ∇̃KD. For this need a mapping which
associates to every point in D \ MA(D) its closest boundary point. We call this
mapping ζ = ζ(z).

Lemma 4.7. Let D ( R2 be a C3 domain. Then

∇̃KD(z) = (KD(z) + 1)
[
KD(z)∇δ(z) − (KD(z) + 1)∇Rζ(z)

]

for every z off the medial axis, where all differentiation is with respect to the

variable z.

Proof. We use the formula from Proposition 4.6. Thus

∇KD(z) = −∇
1

1 − δ(z)/Rζ

= KD(z)2∇
δ(z)

Rζ

=
KD(z)2

R2
ζ

(Rζ∇δ(z) − δ(z)∇Rζ),
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where we understand ζ as a function of z. Note that Rζ and δ are C1, since D
is C3 and we are not on the medial axis. From Proposition 4.6 we also get

δ(z)

Rζ

=
KD(z) + 1

KD(z)
.

Thus we continue the equation by

∇̃KD(z) = KD(z)2 δ(z)

Rζ

(
∇δ(z) −

δ(z)

Rζ

∇Rζ

)

= (KD(z) + 1)
(
KD(z)∇δ(z) − (KD(z) + 1)∇Rζ

)
.

We next show that |∇̃K| is an intrinsic quantity of the quasihyperbolic metric.

Lemma 4.8. Let D be a C3 domain. If f : D → R2 is a quasihyperbolic isometry,

then |∇̃KD(z)| = |∇̃Kf(D)(f(z))| for every z ∈ D.

Proof. We know that f is conformal. For a unit vector u we find that

〈
∇̃KD(z), u

〉
= lim

ε→0

KD(z + εu) −KD(z)

kD(z + εu, z)

= lim
ε→0

Kf(D)(f(z + εu)) −Kf(D)(f(z))

kf(D)(f(z + εu), f(z))
.

(4.9)

Next we note that f(z +εu) = f(z)+εf ′(z)u+O(ε2). Here f ′(z)u is understood

as complex multiplication. Let us define another unit vector ũ = f ′(z)
|f ′(z)|

u. Then

we continue the previous equation by

〈
∇̃KD(z), u

〉
= lim

ε→0

Kf(D)(f(z) + εf ′(z)u) −Kf(D)(f(z))

kf(D)(f(z) + εf ′(z)u, f(z))

= lim
ε→0

ε|f ′(z)|〈∇Kf(D)(f(z)), ũ〉

ε|f ′(z)|δ′(f(z))−1

=
〈
∇̃Kf(D)(f(z)), ũ

〉
.

Since u was an arbitrary unit vector, we see that |∇̃KD(z)| = |∇̃Kf(D)(f(z))|.

4.3. Isometries of the quasihyperbolic metric. We know that similarities
are always quasihyperbolic isometries, and we want to show that in most cases
these are the only ones. In view of the results in Section 4.1, it suffices for us to
show that a quasihyperbolic isometry is a Möbius mapping, so this will be what
we aim at in the proofs of this section.

A curve γ in D is a (quasihyperbolic) geodesic if

kD(x, y) = kD(x, z) + kD(z, y)

for all x, z, y ∈ γ in this order. It is clear from this definition that geodesics are
preserved by isometries. A geodesic ray is a geodesic which is isometric to R+.
For every z ∈ D we easily find one geodesic ray, namely [z, ζ(z)), which also
happens to be a Euclidean line segment. The idea is to show that this geodesic
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is somehow special (from a quasihyperbolic point-of-view), so that it would map
to a geodesic ray of the same kind.

Lemma 4.10. Let D ( R2 be a C2 domain with a boundary point ξ such that

1/Rξ = 0. Then every isometry f : D → R2 of the quasihyperbolic metric is

Möbius.

Proof. Let B ⊂ D be a non-maximal disc whose boundary contains ξ and let
z denote the center of B. By Proposition 4.6 we find that KD ≡ −1 on the
segment γ = [z, ξ). Thus Kf(D) ≡ −1 on γ′, so 1/R′

ζ′(z′) = 0 for every point z′

on this curve. We consider two cases: either ζ ′(z′) is just a single point for all
z′ ∈ γ′, or it sweeps out a non-degenerate subcurve of the boundary ∂D′ as z′

varies over γ′. (There is no third possibility, since ζ ′ is a continuous function on
γ′.) In the single-point case we see that γ′ has to be a line segment, since the
boundary does not have corners. In this case we find that

kD(x, y) =
∣∣ log |x−ξ|

|y−ξ|

∣∣ and kD′(x′, y′) =
∣∣ log |x′−ξ′|

|y′−ξ′|

∣∣,
where ξ′ is the closest boundary point to the every point on γ′. But this easily
implies that f is Möbius on γ. Since f is conformal it follows by uniqueness of
analytic extension that f is a Möbius mapping on all of D.

So we consider the second case, that ζ ′(z′) sweeps out a non-degenerate sub-
curve of the boundary ∂D′. Since the curvature of the boundary at all these
points is zero, it follows that the piece of the boundary is a line segment, L′.

Let U ′ ⊂ D′ be an open set such that (∂U ′) ∩ (∂D′) = L′ and the nearest
boundary point of every point in U ′ lies in L′. Then the geometry of the quasi-
hyperbolic metric in U is the same as in a half-plane, in particular KD′ ≡ −1
on U ′. Then KD ≡ −1 on U = f−1(U ′), so it follows that (∂U) ∩ (∂D) = L, for
some line segment L. So it follows that f |U is the restriction of a quasihyper-
bolic isometry of the half-plane. But these are only the Möbius mappings. Then
we again conclude from the uniqueness of analytic extension that f is a Möbius
mapping on all of D.

Let us call a domain strictly concave, if its complement is strictly convex.

Corollary 4.11. Let D ( R2 be a C2 domain which is not a half-plane, strictly

convex or strictly concave. Then every quasihyperbolic isometry is a similarity

mapping.

Proof. Suppose that 1/Rζ 6= 0 for all boundary points. Since 1/Rζ is continuous
by assumption, this implies that it is either everywhere positive, or everywhere
negative. In these cases we have a strictly convex and strictly concave domain,
respectively, which was ruled out by assumption. So we find some point at which
1/Rζ = 0. Then it follows from Lemma 4.10 that the isometry is Möbius and
from Lemma 4.2 that it is a similarity.

So we are left with only two types of domains that we cannot handle: strictly
convex and strictly concave ones. As usual when working with isometries, the
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nicest domains turn out to be the most difficult. Unfortunately, we need to
assume more regularity of the boundary in order to take care of these cases.

Theorem 4.12. Let D ( R2 be a C3 domain, which is not a half-plane. Then

every isometry f : D → R2 of the quasihyperbolic metric is a similarity mapping.

Proof. In view of Corollary 4.11, we may restrict ourselves to the case when
KD(z) 6= −1 for all z ∈ D. Let z ∈ D \ MA(D) and ζ be its nearest boundary
point. We note that ∇δ(z) and ∇Rζ are perpendicular – first of all, ∇δ(z) is
parallel to z − ζ; second, Rζ is a constant in the direction of z − ζ, since ζ is the
closest boundary point to all points on this line (near z).

If D is bounded, then it is clear that Rζ has a critical point. If D is unbounded,
then we note that 1/Rζ cannot have any other limit than 0 at ∞ (although a
limit need not exist, of course). Thus we see that Rζ has a critical point in the
unbounded case as well. Let ζ be a critical point of ξ 7→ Rξ and fix a point z ∈ D
with KD(z) 6= −∞ whose nearest boundary point is ζ. Of course, ∇Rζ = 0 at
the critical point ζ. Then it follows from Lemma 4.7 that

∇̃KD(z) = (KD(z) + 1)KD(z)∇δ(z).

Since the curvature is intrinsic to the metric, we have KD′(z′) = KD(z). Also,
|∇̃KD′(z′)| = |∇̃KD(z)| by Lemma 4.8, so we have
∣∣(KD(z) + 1)KD(z)∇δ(z)

∣∣ =
∣∣(KD(z) + 1)

[
KD(z)∇δ′(z′)− (KD(z) + 1)∇R′

ζ′(z′)

]∣∣.
We know that KD(z) 6= −1 and that ∇δ′(z′) and ∇R′

ζ′(z′) are orthogonal. Thus
the previous equation simplifies to

(
KD(z)|∇δ(z)|

)2
=

(
KD(z)|∇δ′(z′)|

)2
+

(
(KD(z) + 1)

∣∣∇R′
ζ′(z′)

∣∣)2
.

Since |∇δ| = 1 off the medial axis for every domain, this equation implies that
∇Rζ′ = 0.

So for our point z, ∇KD(z) and ∇KD′(z′) point to the nearest boundary
point of z and z′, respectively. Let γ = [z, ζ). Note that γ is a geodesic of the
quasihyperbolic metric. Also, ∇KD(z) and γ are parallel at z. Now γ is mapped
to some geodesic ray γ′, and since f is a conformal mapping, γ′ is parallel to
∇KD′(z′) at z′. But [z′, ζ ′) is a geodesic parallel to ∇KD′(z′) at z′, and since
geodesics are unique (when the density is C2, i.e. except possibly on the medial
axis) we see that γ′ = [z′, ζ ′).

So we have shown that f([z, ζ)) = [z′, ζ ′). Moreover, we have

kD(x, y) =
∣∣∣ log |x−ζ|

|y−ζ|

∣∣∣ and kD′(x′, y′) =
∣∣∣ log |x′−ζ′|

|y′−ζ′|

∣∣∣
for x, y ∈ [z, ζ). Thus we see that f is just a similarity on [z, ζ). But f is a
conformal map, so this implies that f is a similarity in all of D.
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