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A Note on a Minimum Area Problem for Non-Vanishing

Functions

Roger W. Barnard, Clint Richardson, Alex Yu. Solynin

Abstract. We find the minimal area covered by the image of the unit disk
for nonvanishing univalent functions normalized by the conditions f(0) =
1, f ′(0) = α. We discuss two different approaches, each of which contributes
to the complete solution of the problem. The first approach reduces the prob-
lem, via symmetrization, to the class of typically real functions, where we can
employ the well known integral representation to obtain the solution upon
prior knowledge about the extremal function. The second approach, requiring
smoothness assumptions, leads, via some variational formulas, to a boundary
value problem for analytic functions, which admits an explicit solution.

Keywords. Symmetrization, Minimal Area Problem.

2000 MSC. 30C70.

Contents

1. Introduction 1

2. Outline of Our Method 4

3. The Iceberg Problem 6

References 8

1. Introduction

Let D = {z : |z| < 1} and Ap =

{
f analytic in D :

∫

D

|f(z)|p dA = ||f ||pAp < ∞
}

,

the Bergman space of analytic functions in D.

Recently, Aharanov, Beneteau, Khavinson, and Shapiro [2] considered a gen-
eral minimization problem on Ap

inf{||f ||Ap : f ∈ Ap, ℓi(f) = ci, i = 1, . . . , n}
where ℓi are bounded linear functionals on Ap, p > 1. They proved several general
results about this problem.
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As we know, in recent years tremendous progress has been achieved in the
study of Bergman spaces. For a detailed account of this progress, we refer to the
recent monograph by Peter Duren and Alex Schuster, Bergman Spaces, [7].

Aharanov, Beneteau, Khavinson, and Shapiro [2] also mentioned that to ob-
tain a complete solution of a particular problem, one often needs additional
information which does not follow from their methods.

A particular example is the following open problem:

inf

{∫

D

|f |2 dA : f 6= 0 in D, f(0) = 1, f ′(0) = α

}

This is a “typical” extremal problem on the class of non-vanishing analytic
functions. The nonlinearity of the class is the obvious obstacle here.

But, we have a method which allows us to solve some problems similar to this
one.

Let

Nα = {f : f is univalent, and non-vanishing on D,

f(z) = 1 + a1(f)z + . . . ,

normalized by a1(f) = α }
The area of the image f(D) is given by

D(f) =

∫

D

|f ′|2 dA = π

∞∑

n=1

n|an(f)|2.

Thus
D(f) ≥ πα2,

with equality iff f(z) = 1 + αz.

Since this map f is in Nα, 0 < α ≤ 1, Koebe’s 1/4 Theorem implies Nα = ∅
for α > 4. So the nontrivial range is 1 < α < 4 .

For the non-trivial range, the minimal area problem for Nα is solved by

Theorem 1.1. For 1 < α < 4, let f ∈ Nα. Then

D(f) ≥παa2

(
a +

√
a2 − 1

)2 (
αa2 − 2

√
a2 − 1

(
a +

√
a2 − 1

))
(1.1)

where a = a(α) is the solution to

1

α
= a2

[
1 −

√
a2 − a(a +

√
a2 − a)3 log

(
(a +

√
a2 − 1)4/16a2(a2 − 1)

)]
,(1.2)

which is unique in the interval 1 < α < ∞.

Equality in (1.1) holds iff f = fα defined by

fα(z) =

∫ z

−1

−β
√

ξ2 − a2

(
ξ +

√
ξ2 + 1

)2 (
a
√

ξ2 − 1 + ξ
√

a2 − 1
)

dz

z
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Figure 1. The graph of A(α).
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Figure 2. The extremal domain Dα = fα(D) for α = 3.

with ξ = ia
2

1−z√
z

and β = αa2
(
a +

√
a2 + 1

)
.

For 0 < α < 4, let

A(α) = min
f∈Nα

D(f)

denote the minimal area covered by the images of functions in the class Nα. Note
A(α) is convex and increasing. This can be proven from the formulas, geometry,
and variational arguments. See Figure 1.
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2. Outline of Our Method

First consider the minimal area problem on Tα, the typically real nonvanishing
functions (not necessarily univalent). Use the linear structure of Tα and refor-
mulate to show uniqueness and get simple “sufficient conditions” for extremality
corresponding to linearized functions. This gives

Theorem 2.1. For 1 < α < 4, let f ∈ Tα. Then (1.1) holds with the same cases

of equality.

The technique of this proof was developed earlier in [1]. What is missing is
how to construct the extremal function!

Next. Assuming sufficient smoothness, we can apply a variant of Julia’s Vari-
ational Formula in [5]. This leads to boundary conditions for an extremal analytic
function. To obtain this “conditional” solution requires a priori smoothness.

Next, to achieve the “required smoothness,” we exploit geometric control of
the mapping radius and apply standard symmetrization techniques to obtain the
sufficient initial Jordan rectifiability as in [4].

Then we can apply earlier smoothing variations developed by Barnard and
Solynin in [5] giving “required smoothness.”

Thus the “conditional” proof becomes a true proof. We then verify that
the function recovered from the first step satisfies the sufficient conditions of
extremality which also leads then to a complete solution of the problem.

For a first step on Tα, we renormalize so that

f(0) = 1, f ′(0) = α.

Subordination implies 0 < α ≤ 4. Since Tα is compact and convex, the mini-
mizer exists and is unique. The uniqueness follows by letting f1 and f2 be two
minimizers. Then

D((f1 + f2)/2) =
1

4

∫

D

|f ′
1
+ f ′

2
|2 dσ(2.1)

≤ 1

2

(∫

D

|f ′
1
|2 dσ +

∫

D

|f ′
2
|2 dσ

)

=
1

2
(D(f1) + D(f2)) ,

with equality iff f ′
1
≡ f ′

2
.

We note here that the uniqueness obtained here is fortunate, since uniqueness
is in general not obtained when variational and approximation methods are used.

Reformulating the problem using the linearity of Tα, we use the following
lemma from [1, 3]

Lemma 2.2. For f ′
α continuous on D, fα minimizes D(f) on Tα iff fα minimizes

L(f) = ℜ
∫

D

f ′
α(z)f ′(z) dσ

on Tα.
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Proof. See Lemma 1 of [3].

Lemma 2.3. If f ′
α is continuous on D, then

L(f) =

∫ π

0

Kα(t)dµf (t),

where

Kα(t) =
2πα

sin t
ℑ

{
eitf ′(eit)

}
.

Proof. See [3].

Proof of Theorem 2.1 for Tα. For Dα = fα(D), first show (0, 1] ⊂ Dα by
considering

f̃(z) = 1 − 1

τ
+

fα(τz)

τ

for τ < 1 and compare D(f̃) with D(fα). Then fα(−1) = 0 since fα is not
identically 0 and fα ∈ Tα.

Thus with Lemmas 2.2 and 2.3, fα minimizes D(f) on Tα iff fα minimizes
L(f) under the constraints

2

∫ π

0

dµf = 1

∫ π

0

sec2

(
t

2

)
dµf =

2

α

Now we can use well known results to show fα is extremal iff Kα satisfies

Kα(t) = λ0 + λ1 sec2

(
t

2

)
∀ t ∈ Supp (µfα

)

Kα(t) ≥ λ0 + λ1 sec2

(
t

2

)
∀ t /∈ Supp (µfα

),

where λ0, λ1 are real constants.

Long computations, see [3], show our fα gives Kα that satisfies these condi-
tions!

Next we characterize the geometry of extremal domains for Nα.

Lemma 2.4. 1. ∀α, 1 < α < 4, an extremal fα minimizing D(f) exists in

Nα.

2. If fα is extremal, then fα(D) is bounded, starlike with respect to 1, and

circularly symmetric with respect to rays

ℓτ = {z = x + iy : y = 0, x ≥ τ,∀ τ, 0 ≤ τ ≤ 1}.
3. The min area A(α) := D(fα) for 1 < α < 4.

Proof. Apply circular and radial symmetrizations, then polarizations similar to
arguments in [5].
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Figure 3. The free (Lfr) and non-free (Lnf ) portions of the boundary.

Now combine Theorem 2.1 and Lemma 2.2 to see that if fα is extremal in Nα,
then since fα ∈ Tα, Theorem 2.1 implies Theorem 1.1.

Next we show how the extremal fα in Nα can be recovered from its boundary
values.

Lemma 2.5. Let fα be extremal for Nα. Then f ′ is continuous on D and |f ′| ≡
β ≥ α ∀ z ∈ ℓfr. See Figure 2.

Proof. Apply the deep “two point variation techniques” from [5] twice giving
f ′ these properties on ℓfr. Then use the Julia-Wolff Theorem and boundary
behavior properties from Pommerenke [6], giving f ′ these properties everywhere.

Lemma 2.6. If fα is extremal, ϕ(z) = log(zf ′
α(z)) maps as described in Figure 2,

with

q1(z) =
i(1 − z)

2 sin(
ϕ

0

2
)
√

z

ϕ2(ξ) = ci

∫ ξ

0

t2 − b2

(t2 − a2)
√

1 − t2
dt + s.

Long computations are used to show monotonicity, then we use line integral
formulae to compute the area as in [4].

3. The Iceberg Problem

A related problem is known as the Iceberg Problem: Given a fixed volume
above the water, how deep can the iceberg go? See Figure 3.

This problem can be modeled by supposing a slice III is a continuum in C and
E = {III : cap III = 1, area [III ∩ UHP] = α}.
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Figure 4. The mapping ϕ(z) = log(zf ′
α(z)).
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Figure 5. The Iceberg Problem.

We anticipate using similar arguments to those in this paper to find

h = min
III∈E

min{ℑz : z ∈ III}.
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