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1. Preliminary

In this section, we prepare basic tools to understand the universal Teichmüller space.

The material is more or less standard, but for convenience, an expository account will

be given without proofs. The most convenient reference for overall topics is perhaps the

recently published handbook [61].

1.1. Quasiconformal mappings. A homeomorhism f of a plane domain D onto an-

other domain D′ is called a quasiconformal map if f has locally square integrable partial

derivatives (in the sense of distribution) and satisfies the inequality

|fz̄| ≤ k|fz|
almost everywhere in D, where k is a constant with 0 ≤ k < 1,

fz = 1
2
(fx − ify), fz̄ = 1

2
(fx + ify)

and

fx =
∂f

∂x
, fy =

∂f

∂y
.

It turns out that f preserves sets of (2-dimensional) Lebesgue measure zero and, in par-

ticular, fz 6= 0 a.e. Thus the quotient µ = fz̄/fz is well defined as a Borel measurable

function on D and satisfies ‖µ‖∞ ≤ k < 1. This function is sometimes called the complex

dilatation of f and denoted by µf . More specifically, f is also called a K-quasiconformal

map, where K = (1 + k)/(1− k). The minimal K = (1 + ‖µ‖∞)/(1− ‖µ‖∞) is called the

maximal dilatation of f and denoted by K(f). It is known that a 1-quasiconformal map is

conformal (i.e., biholomorphic) and vice versa. The composition of a K1-quasiconformal

map and a K2-quasiconformal map is K1K2-quasiconformal map and the inverse map of

a K-quasiconformal map is also K-quasiconformal. In particular, K-quasiconformality is
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preserved under composition with conformal maps. Therefore, K-quasiconformality and,

hence, quasiconformality can be defined for homeomorphisms between Riemann surfaces.

In particular, we can argue quasiconformality of a homeomorphism of the Riemann sphere

Ĉ = C ∪ {∞}.
More precise information about compositions of quasiconformal maps will be needed

later. Let f : Ω → Ω′ and g : Ω → Ω′′ be quasiconformal maps. Then the complex

dilatation of g ◦ f−1 is given by

(1.1.1) (µg◦f−1 ◦ f)
fz

fz

=
µg − µf

1 − µf · µg

.

In particular, we obtain the following lemma.

Lemma 1.1.2. Let f : Ω → Ω′ and g : Ω → Ω′′ be quasiconformal maps. Then g ◦ f−1 is

conformal on Ω′ if and only if µf = µg a.e. in Ω.

Fundamental in the theory of quasiconformal maps is the following existence and

uniqueness theorem.

Theorem 1.1.3 (The measurable Riemann mapping theorem). For any measurable

function µ on C with ‖µ‖∞ < 1, there exists a unique quasiconformal map f : C → C

such that f(0) = 0, f(1) = 1 and fz̄ = µfz a.e. in C.

For the proof of the theorem and for more information about quasiconformal maps,

the reader should consult the books [3] and [69] as well as the paper [4] by Ahlfors and

Bers. See also the article “Beltrami Equation”, by Srebro and Yakubov, in [61, vol. 2] for

the recent development.

We denote by Belt(D) the open unit ball of the space L∞(D) for a domain (or, more

generally, a measurable set) D. An element µ of Belt(D) is called a Beltrami coefficient

on D. For a Beltrami coefficient µ on C, the function f given in the measurable Riemann

mapping theorem will be denoted by fµ throughout the present survey.

Let µ be a Beltrami coefficient on the outside D
∗ of the unit disk. We extend µ to

µ∗ ∈ Belt(C) by setting µ∗(z) = µ(1/z̄) for z ∈ D. Let f be a quasiconformal auto-

morphism of Ĉ fixing 1,−1,−i with µf = µ∗. Since f(z) and 1/f(1/z̄) both have the

same complex dilatation µ∗ and satisfy the same normalization condition, they must be

equal by uniqueness part of the measurable Riemann mapping theorem. In particular,

|f(z)|2 = 1 for z ∈ ∂D, and consequently, f maps D
∗ onto itself. We define wµ : Ĉ → Ĉ

by wµ = f. Recall that wµ fixes 1,−1 and −i.
The following fact was observed by Ahlfors and Bers [4].
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Theorem 1.1.4. Let µt be a family of Beltrami coefficients on C holomorphically param-

eterized over a complex manifold X. Then the map t 7→ fµt(z) is holomorphic on X for a

fixed z ∈ C.

We do not explain the meaning of “holomorphically parameterized” here. It is, however,

sufficient practically to know that (tµ + ν)/(1 + tν̄µ) is a family of Beltrami coefficients

holomorphically parameterized over the unit disk |t| < 1, where µ, ν ∈ Belt(C).

1.2. Hyperbolic Riemann surfaces. A connected complex manifold of complex di-

mension one is called a Riemann surface. The Poincaré-Koebe uniformization theorem

tells us that every Riemann surface R admits an analytic universal covering projection

p of the unit disk D = {z ∈ C : |z| < 1} onto R except for the case when R is confor-

mally equivalent to the Riemann sphere Ĉ, the complex plane C, the punctured complex

plane C
∗ = C \ {0} or a complex torus (a smooth elliptic curve). Those non-exceptional

Riemann surfaces are called hyperbolic.

The group of analytic automorphisms of R is denoted by Aut(R). The group of disk

automorphisms Aut(D) is identified with PSU(1, 1) and isomorphic to PSL(2,R) through

the Möbius transformation M : H = {z : Im z > 0} → D defined by M(z) = (z−i)/(z+i).
Thus Aut(D) inherits a structure of real Lie group. A subgroup Γ of Aut(D) is called

Fuchsian if Γ is discrete. It is known that Γ is discrete if and only if Γ acts on D properly

discontinuously. Note also that Γ is torsion-free if and only if Γ acts on D without fixed

points. The covering transformation group Γ = {γ ∈ Aut(D) : p ◦ γ = p} is a torsion-

free Fuchsian group and will be called the Fuchsian model of R. Conversely, for a given

torsion-free Fuchsian group Γ the quotient space D/Γ has natural complex structure so

that the projection D → D/Γ becomes an analytic universal covering. In this way, the

theory of hyperbolic Riemann surfaces can be translated into that of torsion-free Fuchsian
groups.

Since the Poincaré metric ρD(z)|dz| = |dz|/(1−|z|2) is invariant under the pull-back by

analytic automorphisms of D, it projects to a smooth metric, denoted by ρR = ρR(w)|dw|,
on the hyperbolic Riemann surface R via p. The metric ρR is called the hyperbolic metric

of R. Thus ρR is characterized by the relation ρD = p∗(ρR) = ρR(p(z))|p′(z)||dz|.
Note that ρR has constant Gaussian curvature −4, in other words, ∆ log ρR = 4ρ2

R.

The Schwarz-Pick lemma implies the contraction property f ∗ρS ≤ ρR for a holomorphic

map f : R → S between hyperbolic Riemann surfaces R and S, where equality holds at

some (hence every) point in R iff f is a covering projection of R onto S.

1.3. Quadratic differentials. Let H(D) be the set of analytic functions on the unit

disk D and let n be a non-negative integer. For a Fuchsian group Γ, a function ϕ ∈ H(D)

is said to be automorphic for Γ (with weight −2n) if ϕ satisfies the functional equation
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(ϕ ◦ γ)(γ′)n = ϕ for every γ ∈ Γ, that is to say, ϕ(z)dzn is an invariant n-form for Γ. The

set of automorphic functions for Γ with weight −2n will be denoted by Hn(D,Γ).

An element ϕ of Hn(D,Γ) for a torsion-free Fuchsian group Γ projects to a holomorphic

n-form q = q(w)dwn on R = D/Γ so that p∗nq = ϕ(z)dzn, where p∗nq means the pull-back

q(p(w))(p′(w))n of the n-form q by the canonical projection p : D → D/Γ.

We now define two norms for ϕ ∈ Hn(D,Γ) by

‖ϕ‖An(D,Γ) =

∫∫

ω

|ϕ(z)|(1 − |z|2)n−2dxdy,

‖ϕ‖Bn(D,Γ) = sup
z∈D

|ϕ(z)|(1 − |z|2)n,

where ω is a fundamental domain for Γ, that is, a subdomain of D such that ω∩γ(ω) = ∅
for every γ ∈ Γ with γ 6= id,

⋃
γ∈Γ γ(ω̄) = D and ∂ω is of zero area. We denote by

An(D,Γ) and Bn(D,Γ) the subsets of Hn(D,Γ) consisting of ϕ with finite norm ‖ϕ‖An(D,Γ)

and ‖ϕ‖Bn(D,Γ), respectively. It is easy to see that these become complex Banach spaces.

When Γ is the trivial group 1, we write An(D) and Bn(D) for An(D, 1) and Bn(D, 1),

respectively.

The definition of the spaces An(D) and Bn(D) can be extended for hyperbolic Riemann

surfaces R. Let Hn(R) denote the set of holomorphic n-forms on R and set

‖ϕ‖An(R) =

∫∫

R

|ϕ(w)|ρR(w)2−ndxdy,

‖ϕ‖Bn(R) = sup
w∈R

|ϕ(w)|ρR(w)−n

for ϕ = ϕ(w)dwn in Hn(R). Here, we should note that |ϕ(w)|ρR(w)−n does not depend on

the choice of the local coordinate w, in other words, |ϕ|ρ−n
R can be regarded as a function

on R.

The Banach spaces An(D,Γ) and An(D/Γ) (resp. Bn(D,Γ) and Bn(D/Γ)) are isomet-

rically isomorphic through the pull-back p∗n by the projection p : D → D/Γ. Also, the

following invariance property is convenient to note.

Lemma 1.3.1. Let R and S be hyperbolic Riemann surfaces and let p : R → S be a

conformal homeomorphism. Then the pullback operator p∗n : Bn(S) → Bn(R) is a linear

isometry, in other words,

‖p∗nϕ‖Bn(R) = ‖ϕ‖Bn(S), ϕ ∈ Bn(S).

In the theory of Teichmüller spaces, it is important to consider the spaces A2 and B2

as we shall see later. A 2-form q(w)dw2 is traditionally called a quadratic differential.
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1.4. Univalent functions. In connection with the universal Teichmüller space, the the-

ory of univalent functions is of particular importance. The best textbook in this direction

is [67] by O. Lehto.

We denote by S the set of analytic univalent functions f on the unit disk so normalized

that f(0) = 0 and f ′(0) = 1. An analytic function f around the origin is said to be

strongly normalized if f(0) = f ′(0)−1 = f ′′(0) = 0. Let S0 be the subset of S consisting

of strongly normalized functions. For f ∈ S , the function g = f/(1 + af), where

a = f ′′(0)/2, is strongly normalized but not necessarily analytic in D. It is thus natural

to consider the wider class

S̃0 = {f : meromorphic and univalent in D and strongly normalized}

than S0.

The following meromorphic counterpart is also useful in the theory of univalent func-

tions. Let Σ be the set of meromorphic univalent functions F on the exterior D
∗ = {ζ ∈

Ĉ : |ζ| > 1} of the unit disk so normalized that

(1.4.1) F (ζ) = ζ + b0 +
b1
ζ

+
b2
ζ2

+ . . .

in |ζ| > 1.

For f ∈ S , the function F (ζ) = 1/f(1/ζ) belongs to Σ and satisfies the condition

0 /∈ F (D∗), and vice versa. Let Σ′ denote the set of those functions F ∈ Σ that satisfy

0 /∈ F (D∗). Moreover, b0 = 0 for a function F (ζ) = ζ + b0 + b1/ζ + . . . in Σ if and only if

f ∈ S̃0, where f(z) = 1/F (1/z). Hence, if we set

Σ0 = {F ∈ Σ : F (ζ) − ζ → 0 as ζ → ∞},

the correspondence f(z) 7→ F (ζ) = 1/f(1/ζ) gives bijections of S̃0 onto Σ0 and of S0

onto Σ′
0, where we define Σ′

0 = Σ0 ∩ Σ′.

1.5. Grunsky inequality. For a meromorphic function F near the point at infinity with

an expansion of the form (1.4.1), we take a single-valued branch of log((F (ζ)−F (ω))/(ζ−
ω)) in |ζ| > R and |ω| > R for sufficiently large R > 0 and expand it in the form

log
F (ζ) − F (ω)

ζ − ω
= −

∞∑

j=1

∞∑

k=1

bj,k
ζjωk

there. The coefficients bj,k are called the Grunsky coefficients of F. It is easy to see that

bj,k = bk,j and b1,k = bk for j, k ≥ 1, where bk is the coefficient in (1.4.1). The last relation

is deduced in the following way. If we write F (ζ) = ζ + b0 +G(ζ), then G(ζ) = O(|ζ|−1)
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as ζ → ∞. Fix ω for a moment. Since

log
F (ζ) − F (ω)

ζ − ω
= log

(
1 +

G(ζ) −G(ω)

ζ − ω

)
=
G(ζ) −G(ω)

ζ − ω
+O(|ζ|−2),

we obtain
∞∑

k=1

b1,k

ωk
= − lim

ζ→∞
ζ log

F (ζ) − F (ω)

ζ − ω

= − lim
ζ→∞

ζ
G(ζ) −G(ω)

ζ − ω

= G(ω),

from which the required relation follows.

The following theorem is greatly useful in the theory of Teichmüller spaces as well as

the theory of univalent functions. See [42], [29] or [86] for the proof and applications.

Theorem 1.5.1 (Grunsky). A meromorphic function F (ζ) with expansion of the form

(1.4.1) around ζ = ∞ is analytically continued to a univalent meromorphic function in

|ζ| > 1 if and only if the inequality

(1.5.2)
∞∑

k=1

k

∣∣∣∣∣

∞∑

j=1

bj,kxj

∣∣∣∣∣

2

≤
∞∑

j=1

|xj|2
j

holds for an arbitrary sequence of complex numbers x1, x2, . . . .

The inequality in (1.5.2) is known as the strong Grunsky inequality. Noting b1,k = bk,

we take (x1, x2, x3, . . . ) = (1, 0, 0, . . . ) to obtain

(1.5.3)
∞∑

k=1

k|bk|2 ≤ 1.

This inequality is known as Gronwall’s area theorem.

It is also known that inequality (1.5.2) can be replaced in the above theorem by the

(classical) Grunsky inequality:

(1.5.4)

∣∣∣∣∣

∞∑

j=1

∞∑

k=1

bj,kxjxk

∣∣∣∣∣ ≤
∞∑

j=1

|xj|2
j
.

The symmetric matrix (
√
jkbj,k) defines a linear operator on ℓ2, where bj,k are the

Grunsky coefficient of a meromorphic function F (ζ) around ζ = ∞. This is sometimes

called the Grunsky operator and will be denoted by G[F ] in the following. The strong
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Grunsky inequality says that F ∈ Σ if and only if G[F ] is a bounded linear operator on

ℓ2 with operator norm ≤ 1. Here, the operator norm ‖G[F ]‖ of G[F ] is defined by

‖G[F ]‖2 = sup
‖y‖2=1

∞∑

k=1

∣∣∣∣∣

∞∑

j=1

√
jkbj,kyj

∣∣∣∣∣

2

,

where ‖y‖2 = (
∑

k |yk|2)1/2 for y = (y1, y2, . . . ). Thus, F ∈ Σ ⇔ ‖G[F ]‖ ≤ 1. It is

known (cf. [86]) that F has a quasiconformal extension to Ĉ if and only if ‖G[F ]‖ < 1.

See also the article “Univalent holomorphic functions with quasiconformal extensions”, by

Krushkal, in [61, vol. 2].

1.6. Schwarzian derivative. For a non-constant meromorphic function f on a domain,

we define Tf and Sf by

Tf =
f ′′

f ′
= (log f ′)′,

Sf = (Tf )
′ − 1

2
(Tf )

2 =
f ′′′

f ′
− 3

2

(
f ′

f

)2

.

These are called the pre-Schwarzian derivative and the Schwarzian derivative of f, respec-

tively. Note that Tf is analytic at a finite point z0 if and only if f is analytic and injective

around z0. Similarly, Sf is analytic at z0 if and only if f is meromorphic and injective

around z0. The following two lemmas show usefulness of these operations.

Lemma 1.6.1. Let f be a non-constant meromorphic function on a domain D. The

pre-Schwarzian derivative of f vanishes on D if and only if f is (the restriction of)

a similarity. The Schwarzian derivative of f vanishes on D if and only if f is (the

restriction of) a Möbius transformation.

Lemma 1.6.2. Let f and g be non-constant meromorphic functions for which the com-

position f ◦ g is defined. Then

Tf◦g = (Tf ) ◦ g · g′ + Tg = g∗1(Tf ) + Tg,

Sf◦g = (Sf ) ◦ g · (g′)2 + Sg = g∗2(Sf ) + Sg.

Combining these lemmas, we observe that SL◦f◦M = M∗
2 (Sf ) for Möbius transforma-

tions L and M. Thus the Schwarzian derivative behaves like a quadratic differential.



The universal Teichmüller space and related topics 269

2. The universal Teichmüller space

We have two choices to develop the theory of the (universal) Teichmüller space; the

unit disk model or the upper half-plane model. Although they can be translated into

each other, in principle, via the Möbius transformation z 7→ (z − i)/(z + i), both models

have their own advantage and thus can be chosen at will according to the purpose. In the

present survey, we will take the unit disk model to connect with the theory of univalent

functions in a direct way.

2.1. Definition 1: the quotient space of quasiconformal maps. We denote by

QC(D) the set of quasiconformal automorphisms of the unit disk D. As we will observe

later, every function in QC(D) extends to a unique homeomorphism of the closed unit

disk D. Thus, we may think that every f ∈ QC(D) is a self-homeomorphism of the closed

unit disk D. Two functions f and g in QC(D) are said to be Teichmüller equivalent and

denoted by f
T∼g if there exists a disk automorphism L ∈ Aut(D) such that g = L ◦ f on

∂D. The quotient space QC(D)/
T∼ is a model of the universal Teichmüller space and will

be denoted by T1 for a moment. The equivalence class represented by f ∈ QC(D) will be

denoted by [f ] below.

Let f, g ∈ QC(D). The Teichmüller distance between p = [f ] and q = [g] is defined by

d1(p, q) = inf
f1

T
∼f,g1

T
∼g

1

2
logK(g1 ◦ f−1

1 ).

Recall here that K(f) denotes the maximal dilatation of f. By a compactness property

of quasiconformal maps, one can check that d1(p, q) is indeed a distance on T1. In this

way, T1 becomes a metric space. It can also be shown that T1 is a complete metric

space with metric d1 by a normality property of the set of normalized K-quasiconformal

automorphisms of C (see [69]).

2.2. Definition 2: quasisymmetric functions. The notion of quasisymmetric func-

tions was created by Beurling and Ahlfors [18] for functions on the real line. We give

here a corresponding definition of quasisymmetric functions on the unit circle. A sense-

preserving homeomorphism h of the unit circle ∂D is called quasisymmetric if

1

M
≤ |h(ei(s+t)) − h(eis)|

|h(eis) − h(ei(s−t))| ≤M, s ∈ R, 0 < t <
π

2

for a constant M ≥ 1. The set of all quasisymmetric functions on the unit circle will be

denoted by QS(∂D). The main result in [18] can be stated as follows.
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Theorem 2.2.1 (Beurling-Ahlfors). The restriction of a quasiconformal automorphism

of the unit disk to the unit circle is quasisymmetric. Conversely, a quasisymmetric func-

tion on the unit circle can be extended to a quasiconformal automorphism of the unit disk.

Two functions h1 and h2 on the unit circle are called Möbius equivalent if there exists

a disk automorphism L ∈ Aut(D) such that h2 = L◦h1. Let T2 denote the quotient space

of QS(∂D) by the Möbius equivalence. By the above theorem of Beurling and Ahlfors,

one readily sees that T1 can be identified with T2 in a natural manner.

In order to get rid of taking quotient, we can define T2 as follows. A (sense-preserving)

homeomorphism h of ∂D is said to be normalized if h fixes the points 1,−1 and −i. Since

every Möbius equivalence class of quasisymmetric functions is represented by a unique

normalized one, one can identify T2 with the set of normalized quasisymmetric functions

on the unit circle.

See [37] for a modern treatment of quasisymmetric functions. The survey article “Uni-

versal Teichmüller space”, by Gardiner and Harvey, in [61, vol. 1] puts emphasis on the

connection with quasisymmetric functions.

2.3. Definition 3: marked quasidisks. A simply connected domain D in Ĉ is called a

quasidisk if D is the image of the unit disk under a quasiconformal automorphism of Ĉ. If

D is the image under a K-quasiconformal automorphism, then D is called a K-quasidisk.

Many characteristic properties of quasidisks are known. See, for instance, [40].

Let D be a quasidisk (or a Jordan domain more generally) and x1, x2, x3 are positively

ordered (distinct) points on ∂D. The quadruple (D, x1, x2, x3) will be called a marked

quasidisk. By the Riemann mapping theorem and the Carathéodory extension theorem,

there exists a unique conformal homeomorphism g : H → D with g(0) = x1, g(1) = x2

and g(∞) = x3.

We denote by Q the set of all marked quasidisks in Ĉ. Two marked quasidisks (D, xj)

and (D′, x′j) are said to be Möbius equivalent if D′ = L(D) and x′j = L(xj), j = 1, 2, 3,

for some Möbius transformation L ∈ Möb = Aut(Ĉ). We can define a pseudo-metric on

Q by

d((D, xj), (D
′, x′j)) = ‖Sf‖B2(D),

where f is a conformal homeomorphisms of D onto D′ with f(xj) = x′j. It is easy to see

that d(D,D′) = 0 if and only if D and D′ are Möbius equivalent.

The set T3 of Möbius equivalence classes of all marked quasidisks constitutes another

model of the universal Teichmüller space and the above-defined pseudo-metric gives a

metric on T3, which will be denoted by d3, i.e.,

d3(p, q) = inf
(D,xj)∈p,(D′,x′

j)∈q
d((D, xj), (D

′, x′j))
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for p, q ∈ T3.

We can again take a suitable normalization to avoid the process of quotient and even

marking. For instance, we may say that a quasidisk D is normalized if its boundary

contains the points 0, 1 and ∞ in positive order along the boundary curve. If we denote

by Q0 the set of normalized quasidisks in Ĉ, then T3 can be identified with Q0 naturally,

and the restriction of the distance d on Q0 corresponds to the distance d3 on T3.

In the above, the marking is important. For two simply connected hyperbolic domains

D1 and D2, we set

d(D,D′) = inf
f :D→D′ conformal

‖Sf‖B2(D).

It is easy to see that d is a pseudo-distance. Lehto [67] posed a question whether or

not d(D,D′) = 0 implies that D and D′ are Möbius equivalent. Osgood and Stowe [82]

answered to this question in the negative (see also [19]).

2.4. Definition 4: Bers embedding. Let D be a hyperbolic domain in Ĉ. We define

a subset T (D) of B2(D) to consists of those holomorphic quadratic differentials ϕ(z)dz2

on D such that ϕ = Sf for some univalent meromorphic function f on D which extends

to a quasiconformal automorphism of the Riemann sphere. Note that ‖Sf‖B2(D) ≤ 12 for

every univalent meromorphic function f on D (see §5.2 and [10]). By Lemmas 1.6.1 and

1.6.2, for a Möbius transformation L, the pull-back L∗
2 gives an isometric isomorphism of

B2(L(D)) onto B2(D). In particular, for a circle domain ∆, that is, the interior or the

exterior of a circle, or a half-plane, the space B2(∆) is isomorphic, say, to B2(D
∗). The

space T4 = T (D∗) (or its equivalent) is a model of the universal Teichmüller space and

known as the Bers embedding of the universal Teichmüller space.

Ahlfors [2] showed the following.

Theorem 2.4.1. T (D∗) is a bounded, connected and open subset of B2(D
∗).

Thus T4 = T (D∗) inherits a complex structure and a metric from B2(D
∗). We denote by

d4 the distance, namely, d4(ϕ, ψ) = ‖ϕ− ψ‖B2(D∗) for ϕ, ψ ∈ T4. Since T (D∗) is bounded,

the distance d4 is not complete.

2.5. Equivalence of T1 through T4. We see now that the above definitions of the

universal Teichmüller space are all equivalent. Firstly, consider the restriction map

QC(D) → QS(∂D) defined by f 7→ f |∂D. Then this map yields a bijection of T1 onto

T2.

Secondly, we see the equivalence of T3 and T4. For ϕ ∈ T4 = T (D∗), by definition,

there exists a quasiconformal map f of Ĉ fixing 0, 1,∞ such that f is conformal on D
∗

and satisfies Sf = ϕ. Then the image D = f(D∗) is a normalized quasidisk. Therefore, the

correspondence ϕ 7→ D gives a map T4 → T3. We next show that this map is bijective.
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Suppose that a normalized quasidisk D is given. By definition, D = h(D∗) for some

quasiconformal map h of Ĉ with h(1) = 0, h(−1) = 1 and h(−i) = ∞. Let µ = µh|D∗

and set f = h ◦ (wµ)−1 : Ĉ → Ĉ. Then f is quasiconformal map of Ĉ, is conformal on

wµ(D∗) = D
∗ and satisfies f(1) = 0, f(−1) = 1 and f(−i) = ∞. Therefore, ϕ = Sf

belongs to T4 = T (D∗). In this way, we obtain the map of T3 into T4, which is obviously

the inverse map of the previously defined map of T4 to T3. We have now concluded that

T3 and T4 are equivalent by those maps.

Finally, we connect T1 with T4. Let h ∈ QC(D). We define µ ∈ Belt(C) by

µ =

{
µh on D,

0 on D
∗

and define a quasiconformal map f : Ĉ → Ĉ by f = fµ, where fµ was defined in §1.1.

Since f is conformal in D
∗, the Schwarzian derivative Sf belongs to T4 = T (D∗). Note that

f ◦ h−1 is conformal in D by construction. Let h1 ∈ QC(D) be Teichmüller equivalent to

h and define f1 in the same way as above. We claim now that Sf1
= Sf . By assumption,

h1 = L ◦ h on ∂D for an L ∈ Aut(D). Define a map g : Ĉ → Ĉ by

g =

{
f1 ◦ f−1 on Ĉ \ f(D),

f1 ◦ h−1
1 ◦ L ◦ h ◦ f−1 on f(D).

It is clear that g is conformal on f(D) and f(D∗). Furthermore, since h−1
1 ◦ L ◦ h = id

on ∂D, the map g is continuous on Ĉ. Since C = f(∂D) and g(C) = f1(∂D) are both

quasicircles, it turns out that g is quasiconformal in Ĉ. Since µg = 0 a.e., we conclude

that g is conformal, hence, a Möbius map. Because of the relation f1 = g ◦ f on f(D∗),

Sf = Sf1
follows as required.

In this way, we obtain the mapping of T1 to T4 : [h] 7→ Sf |∗
D
. It is not difficult to see

that this mapping is bijective. This map is called the Bers embedding.

3. Analytic properties of the Bers embedding

3.1. The Teichmüller space of a Riemann surface. It is beyond the scope of the

present survey to develop the theory of Teichmüller spaces of Riemann surfaces in full

generality. Here, our focus will be on the Bers embedding of the Teichmüller space of a

Riemann surface. See [75], [45], [35], [36] for general properties of Teichmüller spaces. See

also [1], [113] for a differential geometric approach, [94] for an algebraic approach.

For simplicity, we assume a Riemann surface R to be hyperbolic, in other words,

there exists a torsion-free Fuchsian group Γ acting on D such that D/Γ is conformally

equivalent to R. Thus, we can identify R with D/Γ. We denote by p : D → D/Γ = R
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the canonical projection. Two quasiconformal maps fj : R → Sj, j = 1, 2, are called

Teichmüller equivalent if there exists a conformal homeomorphism g : S1 → S2 such that

f−1
2 ◦ g ◦ f1 : R → R is homotopic to the identity relative to the ideal boundary. We omit

the explanation of the term “relative to the ideal boundary”. See the references given

above for details. Also, [33] gives several useful equivalent conditions for that.

The Teichmüller space Teich(R) of R is defined as the set of all the Teichmüller equiv-

alence classes of such quasiconformal maps of R onto another surface.

Suppose that f1 : R → S1 and f2 : R → S2 are quasiconformal maps. Let Γj be a

Fuchsian model of Sj acting on D and hj : D → D be a lift of fj, namely, pj ◦ hj = fj ◦ p,
where pj : D → D/Γj = Sj is the canonical projection. Then, it is known that f1 and f2

are Teichmüller equivalent if and only if h1 and h2 are Teichmüller equivalent in the sense

of §2.1. Note that hj ◦ γ ◦ h−1
j ∈ Γj for each γ ∈ Γ, namely, hjΓh

−1
j = Γj.

Set

QC(D,Γ) = {h ∈ QC(D) : hΓh−1 is Fuchsian}

and denote by Teich(Γ) the quotient space QC(D,Γ)/
T∼. As we have seen, Teich(R) and

Teich(Γ) are canonically isomorphic through the universal covering projection p : D →
D/Γ = R. Also, Teich(Γ) is naturally contained in Teich(1) = T1. In this sense, the

universal Teichmüller space T (D∗) contains all the Teichmüller space of an arbitrary

hyperbolic Riemann surface.

By using (1.1.1), the complex dilatation of f ∈ QC(D,Γ) is seen to be contained in

Belt(D,Γ) = {µ ∈ Belt(D) : (µ ◦ γ)γ′/γ′ = µ ∀γ ∈ Γ}.

Furthermore, for h ∈ QC(D,Γ), let f be the function constructed in §2.5 and let γ ∈ Γ.

Since f and γ ◦ f ◦ γ−1 has the same complex dilatation, γ ◦ f ◦ γ−1 = L ◦ f for an

L ∈ Aut(Ĉ) = Möb by Lemma 1.1.2. Lemma 1.6.2 now implies that γ∗2(Sf ) = Sf .

Therefore, Sf is contained in the closed subspace B2(D
∗,Γ) of B2(D

∗) defined in §1.3. As

in the previous section, we see that Sf depends only on the Teichmüller equivalence class

of h in QC(D,Γ) and the corresponding h 7→ Sf is one-to-one, we obtain an embedding

βΓ : Teich(D,Γ) → B2(D
∗,Γ), which is called the Bers embedding of Teich(D,Γ). We set

T (D∗,Γ) = βΓ(Teich(D,Γ)).

Bers [15] showed that T (D∗,Γ) is a bounded domain in B2(D
∗,Γ). It is obvious that

T (D∗,Γ) is contained in T (D∗) by definition. Indeed, by using the Douady-Earle extension

[28], it can be seen that

T (D∗,Γ) = T (D∗) ∩B2(D
∗,Γ)

and that T (D∗,Γ) is contractible.
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3.2. Relationship with quasi-Teichmüller spaces. In view of the description of the

set T (D∗,Γ), it may be natural to consider the following sets more generally. Let D be a

hyperbolic domain in Ĉ and let G be a subgroup of Aut(D). Typically, G is a Kleinian

group and D is a connected component of its region of discontinuity. Then we set (cf. [98])

S(D,G) = {ϕ ∈ B2(D,G) : ∃f : D → Ĉ s.t. ϕ = Sf and f is univalent in D},

T (D,G) = {ϕ ∈ B2(D,G) : ∃f : D → Ĉ s.t. ϕ = Sf and f extends to a qc map of Ĉ},

For a circle domain ∆ and a Fuchsian group Γ acting on ∆, the set S(∆,Γ) sometimes

called the quasi-Teichmüller space of Γ. (But, note that this terminology is not popular.)

Clearly, T (D,G) ⊂ S(D,G). It is easy to see that S(D∗) is closed while, as Ahlfors

showed, T (D∗) is open in B2(D
∗). The boundary of T (∆,Γ) in B2(∆,Γ) is called the Bers

boundary and is important in relation with the deformation theory of Kleinian groups

(see [16]).

When G is the trivial group 1, we write S(D), T (D) for S(D, 1), T (D, 1), respectively.

Note that under the mapping f 7→ Sf , the sets S̃0 and Σ0 correspond to S(D) and

S(D∗), respectively, in one-to-one fashion. It is a challenging problem to characterize

those functions f in S whose Schwarzian derivatives lie on ∂T (D). See [7] and [43] for
some attempts.

In 1970’s, it had been a conjecture of Bers [16] that the closure of T (D∗) in B2(D
∗)

is S(D∗). In 1978, Gehring [39] disproved it. Prior to it, Gehring [38] proved the weaker

assertion that the interior of S(D∗) in B2(D
∗) coincides with T (D∗). See [34] for a relevant

result. Thurston [110] proved the more striking result that S(D∗) even has an isolated

point in B2(D
∗) (see also [5]). After that, the Bers conjecture was reformulated in the form

that the closure of T (D∗,Γ) is equal to S(D∗,Γ) for a cofinite Fuchsian group Γ, that is, a

finitely generated Fuchsian group of the first kind. (This is nowadays generalized to the

Bers-Thurston density conjecture.) Shiga [95] proved a weaker version of it: the interior of

S(D∗,Γ) in B2(D
∗,Γ) coincides with T (D∗,Γ) for a cofinite Γ. In the line of these studies,

the author showed that S(D∗,Γ) \ T (D∗) 6= ∅ for a Fuchsian group Γ of the second kind

([99]) and that the interior of S(D∗,Γ) in B2(D
∗,Γ) coincides with T (D∗,Γ) for a finitely

generated, purely hyperbolic Fuchsian group Γ of the second kind ([100]). Matsuzaki [71]

generalized the former to the case of a certain kind of infinitely generated Fuchsian groups

of the first kind. In recent years, a huge amount of progress has been made in the theory

of Kleinian groups, which enabled to prove the Bers-Thurston conjecture partially. See,

for instance, [20] and [80] for partial solutions to the conjecture.

We end the subsection with the following conjecture.
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Conjecture 3.2.1. The interior of quasi-Teichmüller space S(D∗,Γ) in B2(D
∗,Γ) is equal

to the Bers embedding T (D∗,Γ) of the Teichmüller space of a Fuchsian group Γ acting on

D
∗.

Note that Zhuravlev (Žuravlev) [117] proved that T (D∗,Γ) is the connected component

of the interior of S(D∗,Γ) which contains the origin for an arbitrary Fuchsian group Γ (see

also [98]). Thus the conjecture is equivalent to connectedness of the interior of S(D∗,Γ).

3.3. The Bers projection. Let D be a hyperbolic domain in Ĉ and denote by E its

complement in Ĉ. We define the map Φ : Belt(E) → B2(D) by Φ(µ) = Sfµ|D , where fµ

is defined as in §1.1 for µ which is extended to C by setting µ = 0 on D. Recall here that

Belt(E) is the open unit ball of the complex Banach space L∞(E) with norm ‖ · ‖∞. It

is clear by definition that Φ(Belt(E)) = T (D). The map Φ : Belt(E) → T (D) is called

the (generalized) Bers projection. It is known that Φ : Belt(E) → B2(D) is holomorphic

(cf. [98]) and that the Fréchet derivative d0Φ : L∞(E) → B2(D) of Φ at the origin is

described by

d0Φ[ν](z) = − 6

π

∫∫

E

ν(ζ)

(ζ − z)4
dξdη (ζ = ξ + iη)

for ν ∈ L∞(E). Bers [15] strengthened Ahlfors’ theorem (Theorem 2.4.1) to the following

form.

Theorem 3.3.1. The Bers projection Φ : Belt(D) → T (D∗) is a holomorphic split

submersion, in other words, the Fréchet derivative of Φ at every point exists and has a

(bounded) left inverse.

Indeed, Bers showed the above theorem for the projection Φ : Belt(D,Γ) → T (D∗,Γ)

for an arbitrary Fuchsian group Γ. In particular, T (D∗,Γ) is shown to be an open subset

of B2(D
∗,Γ).

3.4. Convexity. Krushkal [57] proved that the Bers embedding T (D∗) of the universal

Teichmüller space is not starlike with respect to any point, and hence, not convex in

B2(D
∗). For non-starlikeness of general Teichmüller spaces, see Krushkal [60] and Toki

[111].

In spite of the above fact, the (Bers embededing of the) Teichmüller spaces enjoy many

kinds of convexity properties. We briefly list some of them in this subsection.

The most useful is perhaps the following “disk convexity” due to Zhuravlev [117], which

is shown as an application of the Grunsky inequality. A weaker version can be proved

also by the λ-lemma (see [102]).

Theorem 3.4.1 (Zhuravlev). Let Γ be a Fuchsian group acting on D
∗. Suppose that a

continuous map α : D → B2(D
∗,Γ) is holomorphic in D and satisfies α(∂D) ⊂ S(D∗).
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Then α(D) ⊂ S(D∗,Γ). Furthermore, if α(D)∩T (D∗) is non-empty, then α(D) ⊂ T (D∗,Γ).

Outline of the proof. For each z ∈ D, there exists a unique Fz ∈ Σ0 such that SFz
= α(z).

Let B(ℓ2) denote the complex Hilbert space consisting of bounded linear operators on ℓ2.

Then the map β : D → B(ℓ2) defined by z 7→ G[Fz] turns to be holomorphic. Then the

(generalized) maximum principle implies that

sup
z∈D

‖β(z)‖ = sup
z∈∂D

‖β(z)‖ ≤ 1

and that either ‖β(z)‖ < 1 for all z ∈ D or else ‖β(z)‖ = 1 for all z ∈ D. Theorem

1.5.1 now yields that α(D) ⊂ S(D∗). If we assume that α(z0) ∈ T (D∗) for some point

z0 ∈ D in addition, then ‖β(z0)‖ < 1 and thus ‖β(z)‖ < 1 for all z ∈ D. This means that

α(D) ⊂ T (D∗) ∩B2(D
∗,Γ) = T (D∗,Γ).

We remark that the above argument is a variant of Lehto’s principle (see [13] or [67]).

A more sophisticated application of Grunsky inequality to Teichmüller spaces can be

found in [96].

Bers and Ehrenpreis [17] proved that finite dimensional Teichmüller spaces are holo-

morphically convex. Krushkal [58] strengthened it by showing that the Teichmüller space

of an arbitrary Riemann surface R is complex hyperconvex, that is to say, there exists a

negative plurisubharmonic function u(x) on Teich(R) such that u(x) → 0 when x tends to

∞. He proved it by pointing out that the function log tanh(d(x, y)) gives the Green func-

tion on Teich(R), where d(x, y) denotes the Teichmüller distance of Teich(R). Krushkal

[59] also proved that finite dimensional Teichmüller spaces are polynomially convex.

3.5. Teichmüller distance and other natural distances (metrics). In §2, we de-

fined two kinds of distances on the universal Teichmüller space; the Teichmüller distance

and the distance induced by the Bers embedding. These distances can be defined for the

Teichmüller space of an arbitrary Riemann surface. On the other hand, since Teichmüller

spaces have complex structure, it carries natural invariant distances for holomorphic maps

(see [46] or [52] as a general reference).

Let X be a complex (Banach) manifold. The Kobayashi pseudo-distance dK(x, y) is

defined as

inf
N∑

j=1

dD(zj−1, zj),

where the infimum is taken over all finitely many holomorphic maps fj : D → X (j =

1, . . . , N) which satisfy fj(zj) = fj+1(zj)(1 < j < N), f1(z0) = x, and fN(zN) = y. Here,
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dD(z, w) denotes the Poincaré distance of D:

dD(z, w) = arctanh

∣∣∣∣
w − z

1 − z̄w

∣∣∣∣ .

The following theorem was proved by Royden [91] for finite dimensional case and by

Gardiner (see [35] or [36]) for general case. (For a simple proof using the λ-lemma, see

[32].)

Theorem 3.5.1. The Kobayashi pseudo-distance of the Teichmüller space of a Riemann

surface is equal to the Teichmüller distance.

For other invariant metrics on Teichmüller spaces, see [75, Appendix 6].

Earle [31] proved that the Carathéodory (pseudo)distance of the Teichmüller space of

an arbitrary Fuchsian group is complete.

The Weil-Petersson metric is another important (Riemannian) metric on finite dimen-

sional Teichmüller spaces. Since the complex structure of the Teichmüller space of a

general Riemann surface is modelled on a complex Banach space which may not be re-

flexive, this metric cannot be defined on general Teichmüller spaces unless the structure

of the space is changed. However, some attempts were made to construct analogs of the

Weil-Petersson metric on the universal Teichmüller space, see [76], [77], [107], [108].

4. Pre-Schwarzian models

The Schwarzian derivative plays an important role in the definition of the Teichmüller

space. But, it is not easy to treat with Schwarzian derivative, in general, because of its

complicated form. Therefore, some attempts of replacing Schwarzian by pre-Schwarzian

have been made. See [116] and [6]. Though the pre-Schwarzian model is sometimes

called “poor man’s model” (cf. [43]) since it does not have much invariance, this model is

interesting in connection with geometric function theory.

When dealing with pre-Schwarzian derivative, the point at infinity plays a special role.

Therefore, we have to consider the case ∞ ∈ D separately.

4.1. The models T̂ (D) and T̂ (H). Let ∆ be a disk or a half-plane in C. Set

Ŝ(∆) = {Tf : f : ∆ → C is holomorphic and univalent}
and

T̂ (∆) = {Tf : f : ∆ → C is holomorphic and extends to a qc map of Ĉ}.

Here, Tf denotes the pre-Schwarzian derivative of f (see §1.6). By definition, T̂ (∆) ⊂
Ŝ(∆).
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We recall that the pre-Schwarzian derivative vanishes only when the function is affine.

Since each circle domain in C is similar (affinely equivalent) to either the unit disk D or

the half-plane H = {z ∈ C : Im z > 0}. Therefore, we may restrict ourselves on the two

cases ∆ = D and H. First let f ∈ S . By the well-known inequality (cf. [29])

(4.1.1)
∣∣(1 − |z|2)Tf (z) − 2z̄

∣∣ ≤ 4,

we obtain ‖Tf‖B1(D) ≤ 6. In particular, Ŝ(D) ⊂ B1(D). Note also that the constant 6 is

sharp as the Koebe function K(z) = z/(1−z)2 shows. It is easy to see that Ŝ(D) is closed

in B1(D).

Let L(z) = (z − i)/(z + i). Note that ‖TL‖B1(H) = 4 and hence TL ∈ T̂ (H). Since

L∗
1 : B1(D) → B1(H) is a linear isometry and Tf◦L = L∗

1(Tf ) + TL, the space T̂ (H) is

contained in B1(H) and it is isometrically equivalent to T̂ (D). In this sense, it is enough

to consider only T̂ (D).

We define the map π : B1(D) → B2(D) by π(ψ) = ψ′ −ψ2/2. By definition, π(Ŝ(D)) =

S(D) and π(T̂ (D)) = T (D). Duren, Shapiro and Shields [30] noticed that this map is

continuous (see also §5.3).

Astala and Gehring [6] proved an analogous result to the case of Schwarzian derivative.

Theorem 4.1.2. The interior of Ŝ(D) in B1(D) is equal to T̂ (D), while the closure of

T̂ (D) in B1(D) is not equal to Ŝ(D). Moreover, ∂T (D) \ π(∂T̂ (D)) is not empty.

Zhuravlev [116] revealed the following remarkable property of T̂ (D).

Theorem 4.1.3 (Zhuravlev). The space T̂ (D) decomposes into the uncountably many

connected components T̂0 and T̂ω, ω ∈ ∂D, where

T̂0 = {Tf ∈ T̂ (D) : f(D) is bounded } and T̂ω = {Tf ∈ T̂ (D) : f(z) → ∞ as z → ω}.

Moreover, {ψ ∈ B1(D) : ‖ψ − ψω‖B1(D) < 1} ⊂ T̂ω holds for each ω ∈ ∂D, where ψω(z) =

2ω̄/(1 − ω̄z) is the pre-Schwarzian derivative of the function z/(1 − ω̄z).

Note that the map π is not injective even in each connected component of T̂ (D).

Therefore, we should note that this model of the universal Teichmüller space has some

redundancy.

4.2. The model T̂ (D∗). There is some subtlety in consideration of the pre-Schwarzian

model of the universal Teichmüller space T̂ (D∗) on the exterior D
∗ of the unit circle. The
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first thing to note is the fact that the Banach space B1(D
∗) is not the right space on which

T̂ (D∗) is modeled. We define

Ŝ(D∗) = {TF : F ∈ Σ}
and

T̂ (D∗) = {TF : F ∈ Σ extends to a quasiconformal map of Ĉ}.
If F (ζ) = ζ + b0 + b1/ζ + b2/ζ

2 + . . . , then TF (ζ) = 2b1/ζ
3 + · · · = O(ζ−3) as ζ → ∞.

Therefore, the norm

(4.2.1) B(ψ) = sup
ζ∈D∗

(|ζ|2 − 1)|ζψ(ζ)|

is more natural. Indeed, Becker’s univalence criterion [12] and Avhadiev’s inequality [8]

(4.2.2) (|ζ|2 − 1)

∣∣∣∣
ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ ≤ 6

imply the following result.

Theorem 4.2.3. If a meromorphic function F (ζ) = ζ+b0 +b1/ζ+ . . . in |ζ| > 1 satisfies

B(TF ) ≤ 1, then F ∈ Σ. Conversely, every function F in Σ satisfies B(TF ) ≤ 6.

We set
B′

1(D
∗) = {ψ ∈ B1(D

∗) : lim
ζ→∞

ζ2ψ(ζ) = 0}.

Then, it is easy to see that B′
1(D

∗) = {ψ : D
∗ → C holomorphic and B(ψ) < ∞}. The

above theorem now yields that Ŝ(D∗) is a bounded subset of B′
1(D

∗).

We define π : B′
1(D

∗) → B2(D
∗) as before by π(ψ) = ψ′ − ψ2/2. Then π is continuous

[13, Lemma 6.1]. By definition, π(Ŝ(D∗)) = S(D∗) and π(T̂ (D∗)) = T (D∗). Since T (D∗)

is an open set and T̂ (D∗) = π−1(T (D∗)), the set T̂ (D∗) is also open in B′
1(D

∗). In this

way, we see that the space T̂ (D∗) is a complex Banach manifold modeled on B′
1(D

∗). We

remark that π does not map B1(D
∗) into B2(D

∗).

The set T̂ (D∗) seems to be less investigated, but could be more useful. For instance,

the mapping F 7→ TF sends Σ0 to Ŝ(D∗) bijectively. Recall that the mapping F 7→ SF

sends Σ0 to S(D∗) bijectively. Therefore, the mapping π sends Ŝ(D∗) to S(D∗) bijectively.

4.3. Loci of typical subclasses of S . Since the differential operator Tf is closely

related with geometric function theory, many classical subclasses of univalent functions

correspond to sets with nice properties in Ŝ(D).

We recall several fundamental classes in univalent function theory. We denote by A the

set of analytic functions f in the unit disk D so normalized that f(0) = 0 and f ′(0) = 1.

A function f ∈ A is called starlike (convex) if f is univalent and if f(D) is starlike with



280 T. Sugawa IWQCMA05

respect to the origin (convex). We denote by S ∗ and K the sets of starlike and convex

functions in A , respectively. A function f ∈ A is called close-to-convex if eiαf ′/g′ has

positive real part in D for a convex function g and for a real constant α. Denote by C the

set of close-to-convex functions in A . It is known that C ⊂ S (cf. [29]).

It is interesting to see how pre-Schwarzians of those functions are located in the space

Ŝ(D). The following result gives an answer to this question.

Theorem 4.3.1 ([27], [51]). {Tf : f ∈ K } and {Tf : f ∈ C } are both convex subsets of

Ŝ(D).

It may be natural to conjecture the following.

Conjecture 4.3.2 ([48]). The subset {Tf : f ∈ S ∗} of Ŝ(D) is starlike with respect to

the origin.

Note that the vector operations in B1(D) is translated to the Hornich operations in

the space of uniformly locally univalent functions (see, for example, [48]). Also, see Casey

[22] for relations between subclasses of S and (the closure) of T̂ (D).

5. Univalence criteria

As is well developed in Lehto’s textbook [67], univalence criteria are closely connected

with the universal Teichmüller space. The present section will be devoted to this topic.

5.1. Univalence criteria due to Nehari and Ahlfors-Weill. Nehari [78] proved the

following result, which is fundamental in the Teichmüller spaces.

Theorem 5.1.1. Every meromorphic univalent function f on the unit disk satisfies

the inequality ‖Sf‖B2(D) ≤ 6. Conversely, if a meromorphic function f on the unit disk

satisfies the inequality ‖Sf‖B2(D) ≤ 2, then f must be univalent.

The constants 6 and 2 are sharp since the Koebe function K(z) = z/(1 − z)2 satisfies

‖SK‖B2(D) = 6 and since the function f(z) = ((1 + z)/(1− z))iǫ, ǫ > 0, is never univalent

but ‖Sf‖B2(D) = 2(1 + ε2) can approach 2 (Hille [44]). The former assertion was first

proved by Kraus [56] and reproved by Nehari. Therefore, it is called nowadays the Kraus-

Nehari theorem. The Kraus-Nehari theorem is a consequence of the Bieberbach theorem.

By the Möbius invariance of (1− |z|2)2|Sf (z)|, it is enough to show the inequality only at

the origin, namely, |Sf (0)| ≤ 6 for f ∈ S . A straightforward computation gives Sf (0) =

6(a3−a2
2) for f(z) = z+a2z

2 +a3z
3 + . . . . If we set F (ζ) = 1/f(1/ζ) = ζ+b0 +b1/ζ+ . . . ,

then b1 = a2
2 − a3, and thus the inequality |b1| ≤ 1 (see (1.5.3)) implies the required one.
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The class N = {f ∈ A : ‖Sf‖B2(D) ≤ 2} is sometimes called the Nehari class. Gehring

and Pommerenke [41] showed that f ∈ N maps the unit disk conformally onto a Jordan

domain unless f(D) is Möbius equivalent to the parallel strip {z : |Im z| < π/4}. For

further development, see [24], [25] and [26].

In connection with Nehari’s theorem, Ahlfors and Weill established the following quasi-

conformal extension criterion. For ϕ ∈ B2(D
∗) with ‖ϕ‖B2(D∗) < 2, we set α[ϕ] ∈ Belt(D)

by α[ϕ](z) = −ρD(z)−2ϕ(1/z̄)z̄−4/2. Note that the map α is the restriction of a bounded

linear operator which maps B2(D
∗,Γ)2 = {ϕ ∈ B2(D

∗,Γ) : ‖ϕ‖B2(D) < 2} into Belt(D∗,Γ)

for every Fuchsian group Γ.

Theorem 5.1.2 (Ahlfors-Weill). The map α : B2(D
∗)2 → Belt(D) is the local inverse

of the Bers projection Φ : Belt(D) → T (D∗), in other words, Φ(α[ϕ]) = ϕ for ϕ ∈ B2(D
∗)

with ‖ϕ‖B2(D∗) < 2.

Corollary 5.1.3. The universal Teichmüller space T(D∗) contains the open ball centered

at the origin with radius 2 in B2(D
∗).

The map α : B2(D
∗)2 → Belt(D) is sometimes called the Ahlfors-Weill section.

5.2. Inner radius and outer radius. Let D be a hyperbolic domain in Ĉ. The inner

radius σI(D) and the outer radius σO(D) of univalence is defined respectively by

σI(D) = sup{σ ≥ 0 : ‖Sf‖B2(D) ≤ σ ⇒ f is univalent in D},

σO(D) = sup{‖Sf‖B2(D) : f : D → Ĉ is univalent}.

We also define the number τ(D) ∈ [0,+∞] as ‖Sp‖B2(D), where p is a holomorphic universal

covering projection of D onto D. The quantity τ(D) is independent of the choice of p and

thus well defined. Note that τ(D) <∞ if and only if ∂D is uniformly perfect (cf. [87] or

[103]).

Summarizing theorems of Ahlfors [2], Gehring [38], Nehari [78], we obtain the following.

Theorem 5.2.1. σI(∆) = 2, σO(∆) = 6, τ(∆) = 0 hold for a circle domain ∆. Let D be

a simply connected hyperbolic domain. Then σO(∆) ≤ 12 and τ(D) ≤ 6. Moreover, D is

a quasidisk if and only if σI(D) > 0.

The inequality σO(∆) ≤ 12 is shown as follows. Let f : D → Ĉ be univalent and set

Ω = f(D). Take a conformal map g : D
∗ → D and set h = f ◦ g. Then, by Lemmas 1.3.1,

1.6.2 and the Kraus-Nehari theorem, we obtain

‖Sf‖B2(D) = ‖g∗2(Sf )‖B2(D∗) = ‖Sh − Sg‖B2(D∗) ≤ ‖Sh‖B2(D∗) + ‖Sg‖B2(D∗) ≤ 12.
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It is a remarkable fact due to Beardon and Gehring [10] that σO(D) ≤ 12 holds even for

an arbitrary hyperbolic domain D.

The inner and outer radii of univalence are better understood in the context of (quasi-)

Teichmüller space.

Lemma 5.2.2. Let g : D
∗ → D be a conformal homeomorphism of D

∗ onto a simply

connected hyperbolic domain D. Then {ϕ ∈ S(D∗) : ‖ϕ−Sg‖ < σI(D)} is the maximal open

ball centered at Sg contained in T (D∗). On the other hand, σO(D) = max{‖ϕ−Sg‖B2(D∗) :

ϕ ∈ S(D∗)}.

Lehto [65] proved the following relations.

Theorem 5.2.3. The relation σO(D) = τ(D) + 6 holds for a simply connected hyperbolic

domain D. Furthermore, 2 − τ(D) ≤ σI(R) ≤ min{2, 6 − τ(D)}.

As for the quantity τ(D), the following are known. For a convex domain D, we have

τ(D) ≤ 2. This result is repeatedly re-discovered by many mathematicians; [85], [90],

[112], [79], [65]. Suita [106] refined this result by showing the sharp inequality

τ(f(D)) ≤
{

2, 0 ≤ α ≤ 1/2,

8α(1 − α), 1/2 ≤ α ≤ 1

for a convex function f ∈ K of order α, namely, when Re (1 + zf ′′(z)/f ′(z)) > α.

It is known that τ(D) ≤ 6(K2 − 1)/(K2 + 1) for a K-quasidisk D (see [67]). See also

[68], [53], [23], [72], [9] for other classes of domains.

It is not easy to determine, or even to estimate from below, the value of σI(D), in

general. Known examples are sectors [62], triangles [64], the interiors and the exteriors

of regular polygons [21], [64], some other polygonal domains [73], [74], the exteriors of

hyperbolas [63].

For a general method of estimating σI(D) from below, see [66], [67] and [104]. See also

[105].

5.3. Pre-Schwarzian counterpart. One can define quantities similarly as in the pre-

vious section with respect to pre-Schwarzian derivative. We add the symbol ˆ to indicate

it. For instance,

σ̂I(D) = sup{σ ≥ 0 : ‖Tf‖B1(D) ≤ σ ⇒ f is univalent in D}

for a hyperbolic domain D in C. In the case when D = D
∗, we adopt the norm B(ψ) :

σ̂I(D
∗) = sup{σ ≥ 0 : B(TF ) ≤ σ ⇒ f is univalent in D

∗}.
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Duren, Shapiro and Shields [30] proved that σ̂I(D) ≥ 2(
√

5−2) = 0.472 · · · by observing

that ‖ψ′‖B2(D) ≤ 4‖ψ‖B1(D) and thus π(ψ) = ψ′ −ψ2/2 is a continuous map of B1(D) into

B2(D). Note that Wirths [114] found the sharp constant C = (13
√

3 + 55
√

11)/64 =

3.20204 . . . for the estimate ‖ψ′‖B2(D) ≤ C‖ψ‖B1(D). Nowadays, the best value for this

univalence criterion is known.

Theorem 5.3.1. σ̂I(∆) = 1 and σ̂O(∆) = 6 for ∆ = D,H and D
∗.

Becker [11], [12] showed that σ̂I(D) ≥ 1 and σ̂I(D
∗) ≥ 1 and Becker-Pommerenke [14]

showed that equality hold for ∆ = D and that σ̂I(H) = 1. Pommerenke [88] showed the

sharpness for ∆ = D
∗.

By (4.1.1) and the fact that the Koebe function K satisfies ‖TK‖B1(D) = 6, we see that

σ̂O(D) = 6. σ̂O(H) = 6 can be seen by noting the relation

‖ψ‖B1(H) = lim
r→1−

‖ψ‖B1(∆r)

for ψ ∈ B1(H), where ∆r = {z : |z − i(1 + r2)/(1 − r2)| < 2r/(1 − r2)}. The formula

σ̂O(D∗) = 6 follows from the fact that the inequality in (4.2.2) is sharp for each ζ.

For concrete estimates of τ̂(D) for several geometric classes of domains, see [115], [101],

[81], [49], [50].

In spite of relative simplicity of the operation Tf , very little is known for quantities

σ̂I(D) and σ̂O(D). Stowe [97] gave non-trivial examples of domains D for which σ̂I(D) ≥ 1.

5.4. Directions of further investigation. The Bers embedding of Teichmüller spaces

is still mysterious. We know very little about the shape of it. Pictures of one-dimensional

Teichmüller spaces were recently given in [54] and [55]. Note that the first attempt towards

it was done by Porter [89] as early as in 1970’s.

It is an interesting and important problem to describe the intersection of T (∆) or T̂ (∆)

with a (complex) one-dimensional vector subspace of B2(∆) or B1(∆) for a circle domain.

Completely known examples are essentially, as far as the author knows, the linear hull of

1/(1 − z) in B1(∆) [92] and the linear hull of z−2 in B2(H) in [47], only.

The results presented above could be generalized to various directions. We end this

survey with remarks on possible ways to study furthermore.

In this section, we considered mainly the case when the domain is simply connected.

When the domain is multiply connected, the problem will become much more difficult.

See [83] and [84] for fundamental information.

We were concerned here with only pre-Schwarzian and Schwarzian derivatives. On the

other hand, several definitions of higher-order Schwarzian derivatives have been proposed

(e.g., [109], [93]). Thus, we may develop the theory for those higher-order Schwarzian

derivatives.
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Of course, we may consider domains in C
n or R

n but with great difficulty caused by

the lack of canonical metrics such as hyperbolic metric, the lack of Riemann mapping

theorem and so on. Note that Martio and Sarvas [70] gave some injectivity conditions

even in higher dimensions.
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12. , Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321–

335.
13. , Conformal mappings with quasiconformal extensions, Aspects of Contemporary Complex

Analysis, Proc. Conf. Durham, 1979, Academic Press, 1980, pp. 37–77.

14. J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math.

354 (1984), 74–94.

15. L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math.

116 (1966), 113–134.

16. , On boundaries of Teichmüller spaces and on Kleinian groups: I, Ann. of Math. (2) 91

(1970), 570–600.

17. L. Bers and L. Ehrenpreis, Holomorphic convexity of Teichmüller spaces, Bull. Amer. Math. Soc.

70 (1964), 761–764.

18. A. Beurling and L. V. Ahlfors, The boundary correspondence for quasiconformal mappings, Acta

Math. 96 (1956), 125–142.
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