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Some Results on Spaces of Packable Riemann Surfaces
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Abstract. In this paper, we describe the basic theory of circle packings on
Riemann surfaces. We also state and prove two propositions regarding the in-
terplay between the patterns of tangencies in combinatorial strictures defining
Riemann surfaces which admit circle packings and the geometry of the circle
packings realized on those surfaces.
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1. Introduction

A circle packing is a collection of circles with a prescribed pattern of tangen-
cies. Of course, given a collection of circles, there is no guarantee that they will
“fit together” in a particular pattern; in fact, some patterns may not be possible.
For example, given that all the circles have the same radius, one circle cannot
be tangent to more than six other Euclidean circles. The “prescribed pattern”
is a strictly combinatorial structure with no inherent geometry. As the circles
adjust their radii, trying to meet the constraints of the combinatorial pattern
prescribed, a rigid geometry is realized. The interplay between the combinato-
rial structure and the rigid constraints inherent in the geometry of the circles
provides a deep link to geometric function theory and the structure of Riemann
surfaces.

Imposing the geometry of a circle implies the existence of a metric; thus we can
speak about circle packings on any surface with a metric. In particular, we may
discuss circle packing on any Riemann surface. In fact, it is known that given
any reasonable pattern of tangencies there exists a unique Riemann surface which
supports a circle packing having that pattern of tangencies [2]. Not all surfaces,
though, support a circle packing. However, it has been shown by Brooks [7],
Bowers and Stephenson [5, 4], Barnard and Williams [1], Williams [29], and
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Murphy [19], that these packable Riemann surfaces are dense in Teichmüller
space. To go beyond this notion of density and enter into a deterministic dis-
cussion of how the pattern of tangencies affects the geometry of the surfaces and
their circle packings can be very difficult [2, 4, 5, 21].

Once we outline the essential background material in the theory of circle
packing, we then prove two results which speak specifically to the relationships
between the prescribed patterns of tangencies and the geometries of surfaces and
their circle packings. First, we prove a proposition regarding the interaction be-
tween the pattern of tangencies, the geometry of a surface and the unique packing
on that surface. We then prove a second proposition regarding the density of a
subclass of packable surfaces with constrained geometries. Specifically, we show
that we may approximate any Riemann surface with a sequence of packable sur-
faces such that the radii of the circles in the packings admitted on the surfaces
tend toward zero.

2. Riemann Surfaces and Circle Packing

2.1. Teichmüller Spaces of Riemann Surfaces. Here we review some of the
important definitions and properties of Riemann surfaces and their Teichmüller
spaces. Excellent references giving detailed development of the descriptions
which follow are available in [8, 9, 12, 14, 15, 16, 25].

Definition 2.1. A Riemann surface is a one complex-dimensional manifold
with charts whose overlap maps are analytic. The maximal collection of charts
on a Riemann surface is the conformal structure for that surface.

Two Riemann surfaces R1 and R2 are said to be conformally equivalent if
and only if there exists a conformal homeomorphism f : R1 → R2. The set
of equivalence classes of surfaces of the same topological type as R1 under this
equivalence relation is the moduli space of R1. The equivalence relation de-
fined by conformal equivalence which determines the moduli space of R1 is not
adequate for our purposes, however. We will require that for surfaces R1 and R2

to be considered equivalent they must first be conformally equivalent (the same
point in moduli space) and we will further require that the generators of their
fundamental groups correspond.

Definition 2.2. Let R be a Riemann surface, and let Σ be a collection of canon-
ical generators for π1(R). The collection Σ is called a marking for R. Two
markings on R are equivalent if they differ only by the choice of their base point.

This gives us a new equivalence relation which we use to describe another space
of surfaces.
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Figure 1: Action of a Map f with Dilatation Df(z0) > 1

Definition 2.3. Two marked Riemann surfaces (R, Σ) and (R̂, Σ̂) are said to be

equivalent if and only if there exists a conformal map f : R → R̂ for which the

marking f(Σ) is equivalent to Σ̂. The Teichmüller space of R is the set of
these equivalence classes.

Another useful description of the Teichmüller space of a surface involves equiv-
alence classes of maps from a reference or base surface. First we require a gen-
eralization of the concept of a conformal map.

Definition 2.4. Let f be a continuous, orientation-preserving map from a do-
main Ω ⊂ C into the complex plane, and fix z0 ∈ Ω. Define Lε and ℓε by

Lε = max {|f(z) − f(z0)| : |z − z0| = ε} ,

and
ℓε = min {|f(z) − f(z0)| : |z − z0| = ε} ,

as shown in Figure 1. The dilatation of f at z0 is

Df (z0) = lim sup
ε→0+

(
Lε

ℓε

)
.

If supz∈Ω {Df(z)} ≤ K, then we say that f : Ω → C is K-quasiconformal.

Now, the class of quasiconformal maps allows us to define a new equivalence
relation of the set of Riemann surfaces.

Definition 2.5. Quasiconformal maps f1 and f2 defined on a Riemann surface
R are Teichmüller equivalent if and only if f2 ◦ f−1

1 is homotopic to a conformal
map.

Proposition 2.6 establishes the equivalence of these two characterizations of
points in Teichmüller space [12, 16].

Proposition 2.6. Fix a Riemann surface R, and suppose f1 and f2 are maps

from R to Riemann surfaces R1 and R2, respectively. R1 and R2 are equivalent

in the Teichmüller space of R if and only if f1 and f2 are Teichmüller equivalent.
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Thus, points in the Teichmüller space of a Riemann surface R may be consid-
ered as either points or as functions. There is a natural metric on Teichmüller
space as a function of how close to conformal (or how quasiconformal) maps
which preserve the markings might be. If we fix a Riemann surface R and a
marking Σ on R, the distance between two points R1 = f1(R) and R2 = f2(R)
in the Teichmüller space of R is given by

d(R1, R2) =
1

2
log(K∗),

where K∗ is the infimum of the dilatation of g2◦g
−1
1 where g1 and g2 are equivalent

to f1 and f2, respectively. This infimum is attained, by definition, by the unique
Teichmüller map.

2.2. Introduction to Circle Packing. A circle packing is a configuration of
circle with a prescribed pattern of tangencies. William Thurston conjectured
in 1985 that these circle packings might be used to approximate the action of
conformal maps [27]. These circle packings have since been widely studied, with
applications in many different areas of mathematics. We begin here with some
basic definitions and a general discussion of circle packing. Several excellent
resources are available with much greater detail [11, 21, 23, 24, 31].

Definition 2.7. A bounded degree abstract triangulation K is an abstract
simplicial 2-complex which triangulates an orientable topological surface such
that

1. the set of interior vertices (vertices such that every incident edge belongs
to two faces) is non-empty and edge-connected;

2. no interior edge (an edge belonging to two faces) in K has both vertices on
the boundary;

3. no vertex in K belongs to more than two boundary edges;
4. there is an upper bound on the degree of vertices in K.

It is this combinatorial object, the abstract triangulation, which encapsulates the
“prescribed pattern of tangencies” in our circle packing. We refer to these trian-
gulations as abstract to emphasize the fact that in the definition we have implied
no concrete geometric realization. A 2-complex and, by extension, the associated
abstract triangulation are purely combinatorial objects; they have no inherent
geometric structure until they are realized as a circle packing. An example of
a simple valid abstract triangulation is shown in Figure 2. This triangulation
comprises 27 vertices, with edges between vertices indicating tangencies.
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Figure 2: An Abstract Triangulation K

Definition 2.8. A circle packing is a configuration of circles with a specified
pattern of tangencies. In particular, if K is an abstract triangulation of a topo-
logical surface, then a circle packing P for K is a configuration of circles such
that

1. P contains a circle Cv for every vertex v ∈ K;
2. if [u, v] is an edge of K, then Cv is externally tangent to Cu;
3. if 〈v, u, w〉 is a positively oriented face of K, then 〈Cv, Cu, Cw〉 forms a

positively oriented mutually tangent triple of circles in P .

Realizing such a configuration is, at its heart, a problem in computing the neces-
sary centers and radii of each circle in the packing. Examples of such algorithms
are given by Collins and Stephenson [10, 21] and Mohar [18]. A circle packing
is called univalent if the circles in the packing have mutually disjoint interiors.
This univalent circle packing represents a geometric realization of the underlying
abstract triangulation K. Vertices in the triangulation may be realized in this
packing as the centers (in some particular geometry, hyperbolic, Euclidean, or
spherical) of the circles, and the edges as geodesic segments connecting the cen-
ters. This embedding is called the carrier, written carr P , of the circle packing
P .

If K is embedded in C in two different ways (e.g., by giving two different sets
of values for the radii of the boundary circles), there is a natural piecewise map
from the carrier associated with one packing to the other achieved by sending
triangles of one packing to their counterparts in the other using affine maps.
These piecewise affine maps are referred to as discrete conformal maps.

We can produce a geometric realization (as a circle packing) of the combina-
torial structure given in Figure 2 in any number of ways, by defining the radii
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of the boundary vertices. Two different circle packings, obtained through ap-
plying different values to the boundary vertices, are shown in Figure 3. In each
of Figure 3a and Figure 3b, a triangle is shaded for reference; the triangle in
each case corresponds to a face determined by the same three vertices from the
triangulation shown in Figure 2.

1 2

(a) Euclidean Carrier for P1

1 2

(b) Euclidean Carrier for P2

Figure 3: The Carriers of Two Different Circle Packings of K

2.3. Discrete Function Theory. The important characteristic of the discrete
conformal maps induced by circle packings is not that they are quasiconformal;
the key fact, suggested by Thurston [28] and proven by Rodin and Sullivan [20],
is that these maps are “nearly conformal.” This is the result given in Theorem
2.15, the Rodin-Sullivan Theorem. Before we state this theorem, however, we
first state some geometric results associated with circle packing.

Definition 2.9. A chain of circles in a packing P for an abstract triangulation
K is a collection of circles (Cv1

, Cv2
, . . . , Cvn

) in P such that vi and vi+1 share an
edge in K for i = 1, 2, . . . , n − 1, and vi 6= vj , if i 6= j. Thus, a chain of circles
describes a non-self-intersecting edge path in K. Similarly, a closed chain is a
collection of circles corresponding to a closed non-self-intersecting edge path in
K. An examples of a closed chain of circles in the packing P2 is shown (as shaded
circles) in Figure 4.

Lemma 2.10 (Length-Area Lemma). Let P be a univalent packing in D and

Cv a circle in P with Euclidian radius r. Assume there exist m disjoint chains

of circles in P having combinatorial lengths n1, n2, . . . , nm, such that each chain
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Figure 4: A Chain of Circles

separates Cv from 0 and a point on ∂D. Then

(2.11) r <
4√
n∑

i=1

1

ni

.

As the number of generations separating a circle in a packing from the boundary
increases Lemma 2.10, the Length-Area Lemma, has the effect of forcing the
radius of this circle to zero (in the limit). The Length Area Lemma can be
extended to packings on the Riemann sphere [30] and other surfaces as well. For
a more detailed discussion of Lemma 2.10, the Length-Area Lemma, see [20, 21].

Lemma 2.12 (Ring Lemma). Given a univalent packing in C there is a lower

bound Cn, depending only on n, on the ratio of the radius r0 of any interior circle

to the radius ri of any of its neighbors.

Lemma 2.12, the Ring Lemma, guarantees that central angles in the carrier on
a flower are bounded away from zero and π. That is, suppose we are given a
complex K in which the degree of each vertex, the number of adjacent vertices,
is bounded; also suppose we have two (different) packings P1 and P2 associated
with K. The Ring Lemma guarantees that the quasiconformality of the induced
conformal map from P1 to P2 is bounded.

Lemma 2.13 (Hexagonal Packing Lemma). There is a sequence {sn}n ∈ N,

decreasing to zero, with the following property. Let c1 be a circle in a univalent
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Euclidean circle packing P , and suppose the first n generations of circles about

c1 have degree 6. Then for any circle c ∈ P tangent to c1,

(2.14)

∣∣∣∣1 −
rc

rc1

∣∣∣∣ ≤ sn,

where rc is the radius of the circle c in P and rc1 is the radius of the circle c1 in

P .

The immediate value of Lemma 2.10, Lemma 2.12, and Lemma 2.13 is their use
in proving Theorem 2.15, the Rodin-Sullivan Theorem, one of the fundamental
results in the study of circle packing.

Theorem 2.15 (Rodin-Sullivan Theorem). Fix a simply connected domain

Ω ( C and points p, q ∈ Ω. Let Pk be the portion lying in Ω of the infinite

regular hexagonal packing whose circles all have radius 1

k
, and let Kk be the

underlying complex for the packing Pk. Suppose P̃k is a packing in D for Kk

with all boundary circles tangent to ∂D, and let fk : carr(Pk) → carr(P̃k) be the

induced discrete conformal map. If each P̃k has been normalized so that fk(p) = 0
and fk(q) > 0, then {fk} converges locally uniformly to the unique Riemann map

f : Ω → D satisfying f(p) = 0 and f(q) > 0.

The requirement that the packings used in Theorem 2.15, the Rodin-Sullivan
Theorem, all be of uniformly degree 6 is quite restrictive. Since the initial proof
of Theorem 2.15, however, Stephenson [22] relaxed the degree 6 condition using
techniques of random walks, and He and Rodin [13] showed that only a uniform
bound on the degree is necessary. To thus relax the requirement on the com-
binatorics of the packing, we require Lemma 2.16, sometimes referred to as the
Packing Lemma [21].

Lemma 2.16 (Packing Lemma). Let {Kn}n∈N
be a sequence of combinatorial

closed disks such that

1. there exists a uniform bound on the degree of the vertices in Kn for each

n ∈ N, and

2. the sequence {Kn}n∈N
is either a nested sequence which exhausts a parabolic

combinatorial disk or is asymptotically parabolic.

There exists a sequence {sm}m∈N
⊂ R, decreasing to zero, with the following

property. Suppose that for some n, u and v are adjacent interior vertices of Kn

whose combinatorial distance from ∂Kn are both at least m, and suppose that Pn

and P̃n are two univalent, Euclidean circle packings for Kn. Then

(2.17)

∣∣∣∣
r̃u

r̃v

−
ru

rv

∣∣∣∣ ≤ sm,
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where ru and rv are the radii of the circle in Pn corresponding to u and v, and

r̃u and r̃v are the radii of the circle in P̃n corresponding to u and v.

Essentially, Lemma 2.16, the Packing Lemma, states that for a circle “deep” in
a packing, the ratio of its radius to any given neighbor is nearly the same in
the packings Pn and P̃n; in other words, the triangles in Pn and P̃n are nearly
similar triangles. This means that away from the boundary, the induced discrete
conformal map between Pn and P̃n is nearly conformal. This fact will play an
important role in the proofs of many results related to circle packing.

2.4. Hex Refinement. In order to obtain the various approximation results for
circle packing and discrete analytic function theory, we need a method to refine
given circle packings. The primary requirement in any such refinement is that we
maintain some uniform control over the degree of the complexes generated by the
refinement algorithm since we require that Lemma 2.12, the Ring Lemma, applies
at each successive level of refinement. The hex refinement method developed by
Bowers and Stephenson [6] is especially nice.

Definition 2.18. If K is a 2-complex, the hex refinement of K is the complex
formed by adding a vertex to each edge and adding an edge between any two
vertices lying on the same face, as shown in Figure 5.

(a) Before Hex Refinement (b) After Hex Refinement

Figure 5: Hex Refinement of Triangles

Note that hex refinement, and refinement in general, is really a combinatorial
process, refining the combinatorics of the complex K; one must repack the new
complex obtained by refining K in order to realize the effect of the refinement in
a circle packing. Hex refinement has a number useful characteristics described
by Bowers and Stephenson [6] and summarized in Proposition 2.19.

Proposition 2.19 (Bowers and Stephenson). Any new interior vertices added

to K by hex refinement have degree 6, while the degrees of the original vertices

remain unchanged. If K is embedded in C in such a way that the edges correspond
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to Euclidean line segments, then its hex refinement may be realized by adding line

segments joining the midpoint of each edge within every face. In this case, each

face in K is subdivided into four new faces, each similar to the original face in

which it is contained and having edges one-half as long.

Notice that refining only one edge in a complex is not permitted, since this
would result in a complex that is not a triangulation; the faces bordering the
refined face will have an extra vertex along the common edge they share with the
refined face, giving combinatorial quadrilaterals rather than triangles. We can,
however, locally refine only those triangles in the complex which present some
difficulty with respect to desired characteristics of the complex, then correct the
introduced problems on adjacent faces by adding a single edge from a vertex to
the midpoint of the opposite side, as shown in Figure 6.

Figure 6: Hex Refinement and Correction on Adjacent Triangle

This process of hex refinement of individual faces and the addition of edges
to absorb extra vertices can be used to locally refine an abstract triangulation
in order to improve the discrete conformal approximation in troublesome areas.
Local refinement will play a key role in the proofs to follow in Section 3.

3. Density and Geometry of Packable Surfaces

Demonstrations of the existence of circle packings have been given variously
by Thurston [28], Minda and Rodin [17], Beardon and Stephenson [2], and
Schramm [26]. Brooks [7] showed that compact packable surfaces are dense in
moduli space, and Bowers and Stephenson [4, 5] extended this result to include
surfaces of finite analytic type. Other results on the density of packable surfaces
have been given by Barnard and Williams [1], Murphy [19], and Williams [29].
The results thus demonstrated which are germane to this research are summa-
rized in Theorem 3.1.

Theorem 3.1. Let K be an abstract triangulation of an orientable surface. Then

there exists a unique surface in moduli space which supports a packing for K.
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A complex, along with a choice of marking, then determines a unique point in

Teichmüller space. Moreover, the collection of all packable surfaces is dense in

Teichmüller space.

The density of packable surfaces as given in Theorem 3.1 is extremely useful
and powerful. Of equal interest is the density of other subsets of packable surfaces
and the characteristics of convergent sequences of packable surfaces.

Proposition 3.2. Let R be a compact Riemann surface that is not packable.

If {Rn}
∞

n=1
is any sequence of compact, packable Riemann surfaces such that

Rn → R in the Teichmüller metric where each admits a packing Pn with degree

uniformly bounded through the sequence, then the radii in the circle packings

{Pn}
∞

n=1
tend to zero as n → ∞.

Proof. First note that since the circle packings {Pn}
∞

n=1
are assumed to be of

bounded degree, Lemma 2.10 guarantees that the radius of one circle in a packing
is arbitrarily small if and only if the radii of all circles in that packing are small.
Proceeding by way of contraposition, suppose that the radii of circles in Pn are
bounded away from zero by some fixed positive constant for each n ∈ N. For
every n ∈ N, Rn is a compact Riemann surface, and therefore has finite area.
Since Rn → R and R is compact, there exists a uniform upper bound on the
area of the Riemann surfaces Rn. Hence, there exists a uniform bound on the
total number of circles in each packing Pn. There are thus only a finite number
of abstract triangulations possible among the circle packings {Pn}

∞

n=1
. By the

pigeonhole principle, there exists a subsequence {Rnk
}∞

k=1
⊆ {Rn}

∞

n=1
such that

for each k ∈ N the circle packing realized in Pnk
corresponds to a single abstract

triangulation K, (i.e., there exists a subsequence of packings each having the same
combinatorial structure). Since the abstract triangulation uniquely determines
a surface for which that triangulation is realized as a packing, we find that
{Rnk

}∞
k=1

is a constant sequence of Riemann surfaces. Now, Rn → R as n → ∞,
so every subsequence of {Rn}

∞

n=1
must likewise converge to R; that is Rnk

→ R as
k → ∞. Thus R is an element of the sequence {Rn}

∞

n=1
; in fact, R is equivalent

to infinitely many elements of this sequence. Therefore, R is a compact, packable
Riemann surface. Thus, by our contrapositive argument, if a sequence of packable
surfaces, Rn, with degree uniformly bounded through the sequence converge to
a Riemann surface that is not, itself, packable, then the mesh of the packings on
the surfaces goes to zero.

We now recall another well-known class of compact Riemann surfaces, called
equilateral surfaces, which will be useful in constructing sequences of pack-
able Riemann surfaces while maintaining control over the combinatorics of their
underlying complexes.
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Definition 3.3. Suppose S denotes a compact, orientable topological surface and
let K denote a triangulation of the surface S. If we paste together equilateral
triangles (triangles conformally equivalent to equilateral triangles) in the pattern
of K to impose a piecewise affine structure on S, this affine structure defines a
conformal structure on S, guaranteeing that S is a Riemann surface. Riemann
surfaces thus constructed are called equilateral surfaces.

Just as with packable surfaces, compact equilateral surfaces are dense in Te-
ichmüler space, as shown by Bely̆i [3]. We state this result as Theorem 3.4.

Theorem 3.4 (Bely̆i). If S is a compact Riemann surface of genus g > 0, the

set of equilateral surfaces of genus g is countable and dense in the Teichmüller

space of S.

This result guarantees the existence of sequences of packable Riemann surfaces
with underlying combinatorial structures over which we may exercise a significant
degree of control. This ability to control the underlying combinatorics allows us
to manipulate the geometry of our packings. In particular, we may force the
circles in a sequence of packable (and packed) surfaces to decrease in size.

Proposition 3.5. Let S be a Riemann surface and let R be an arbitrary point

in the Teichmüller space of S. There exists a sequence of packable points {Rn}
in the Teichmüller space of S such that Rn → R in the Teichmüller metric as

n → ∞, Rn is packable for every n, and the radii of the circles in Pn go to zero

as n → ∞, where Pn is the unique packing on the surface Rn for every n.

Proof. First note that since the set of equilateral surfaces on S is dense in
the Teichmüller space of S, there exists a sequence of equilateral surfaces {E1

n}
in the Teichmüller space of S such that E1

n → R as n → ∞. Corresponding
to the equilateral surface E1

1 we have a triangulation K1
1 . This triangulation

corresponds to a unique packable surface R1
1, in general, distinct from E1

1 .

Now, refine the triangulation K1
1 using hex refinement to create a new trian-

gulation K2
1 . Note that refining this triangulation has no effect on the structure

of the surface E1
1 ; that is, the equilateral surface E2

1 corresponding to K2
1 is the

same as E1
1 , since hex refinement on an equilateral triangle divides that face into

4 new equilateral triangles. But K2
1 corresponds to a unique packable surface R2

1,
typically distinct from E2

1 (and E1
1). Continuing in this manner, we construct a

sequence of packable surfaces {Rm
1 }

∞

m=1
.

It follows from the work of Bowers and Stephenson [6] that as m → ∞, the
triangles in the carrier of the packing P m

1 on Rm
1 converge to equilateral triangles,

and the sequence {Rm
1 }

∞

m=1
converges to a surface conformally equivalent to E1

1 .
Thus, Rm

1 → E1
1 as m → ∞ in the Teicmüller metric. Note, however, that
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the degree of each packing in the sequence {P m
1 }∞m=1

is bounded by the same
constant, since the hex packing does not change the degree of any vertex in the
initial packing, and every new vertex has degree 6. Now, a standard application
of Lemma 2.10, the Length-Area Lemma, guarantees that the radii of the circles
in the sequence {P m

1 }∞m=1
go to zero as m → ∞. We repeat this process for each

equilateral surface E1
n, generating for each n a sequence of packable surfaces

{Rm
n }∞m=1

such that Rm
n → E1

n in the Teichmüller metric, and the radii of the
circles in the sequence of packings {P m

n }∞m=1
corresponding the packable surfaces

go to zero as m → ∞.

R1
1 R1

2 · · · · · ·
R2

1 R2
2 · · · · · ·

...
...

. . .
...

E1
1 E1

2 · · · R

Now, for each n ∈ N, choose a surface Rn from the sequence {Rm
n }

∞

m=1
such

that the Teichmüller distance from Rn to E1
n is less than 2−n and the maximum

radius of any circle in the packing on Rn (in the intrinsic metric on the surface)
is similarly less than 2−n. We now have a sequence {Rn}

∞

n=1
such that Rn → R

in the Teichmüller metric as n → ∞, Rn is packable for every n, and the radii
of the circles in Pn go to zero as n → ∞, where Pn is the unique packing on the
surface Rn for every n.
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