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Asymptotic Dirichlet problem on negatively curved

spaces
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Abstract. We study the Dirichlet problem at infinity for the p-Laplacian
and p-regularity of points at infinity on Cartan-Hadamard manifolds. We also
survey the recent result of the authors and Lang on the asymptotic Dirich-
let problem for p-harmonic functions on Gromov hyperbolic metric measure
spaces.
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1. Introduction

In [17] Greene and Wu conjectured that a Cartan-Hadamard manifold M
admits a wealth of non-constant bounded harmonic functions if the sectional
curvatures of M have an upper bound

KM(P ) ≤ −C ρ−2(x)

outside a compact set for some constant C > 0, where ρ = d(·, o) is the distance
function to a fixed point o ∈ M and P is any 2-dimensional subspace of TxM .
Recall that a Cartan-Hadamard manifold is a complete, connected and simply
connected Riemannian n-manifold, n ≥ 2, of non-positive sectional curvature.
By the Cartan-Hadamard theorem, the exponential map expo : ToM → M is
a diffeomorphism for every point o ∈ M . In particular, M is diffeomorphic
to Rn. It is well-known that M can be compactified by adding a sphere at
infinity (or a boundary at infinity), denoted by M(∞), so that the resulting
space M̄ = M ∪M(∞) equipped with the cone topology will be homeomorphic
to a closed Euclidean ball.

The conjecture of Greene and Wu can be approached by studying the so-
called Dirichlet problem at infinity (or the asymptotic Dirichlet problem) on a
Cartan-Hadamard manifold. Thus one asks whether every continuous function
on M(∞) has a (unique) harmonic extension to M . In general, the answer is no
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since the simplest Cartan-Hadamard manifold Rn admits no positive harmonic
functions other than constants.

The Dirichlet problem at infinity was solved by Choi [13] under the condition
that sectional curvatures have a negative upper bound K ≤ −a2 < 0 and any
two points of the sphere at infinity can be separated by convex neighborhoods.
Such appropriate convex sets were constructed by Anderson [6] for manifolds of
pinched sectional curvature −b2 ≤ K ≤ −a2 < 0. At the same time, the Dirichlet
problem at infinity was independently solved by Sullivan [32] under the same
pinched curvature assumption by using probabilistic arguments. In [7], Anderson
and Schoen presented a simple and direct solution to the Dirichlet problem again
in the case of pinched negative curvature. Major contributions to the Dirichlet
problem were given by Ancona in a series of papers [2], [3], [4], and [5]. In [2] he
was able to replace the lower curvature bound by a bounded geometry assumption
that each ball up to a fixed radius is L-bi-Lipschitz equivalent to an open set in Rn

for some fixed L ≥ 1. He also considered a more general class of linear equations
than merely the Laplace equation. On the other hand, in [5] he showed that the
Dirichlet problem is not solvable, in general, if there are neither curvature lower
bounds nor the bounded geometry assumption; see also [9]. Furthermore, in [3]
Ancona studied the asymptotic Dirichlet problem on Gromov hyperbolic graphs
and in [4] on Gromov hyperbolic Riemannian manifolds with bounded geometry
and a positive lower bound λ1(M) > 0 for the Dirichlet eigenvalues. Cheng [12]
solved the Dirichlet problem at infinity under a pointwise pinching condition
on the sectional curvature for Cartan-Hadamard manifolds M with λ1(M) > 0.
There are several papers where assumptions on curvature have been weakened
by allowing curvature decay (or growth) at a certain rate; see e.g. [8], [24], [28],
and [23].

In the general case of the p-Laplacian, 1 < p < ∞, Pansu [29] showed the
existence of nonconstant bounded p-harmonic functions with finite p-energy on
Cartan-Hadamard manifolds of pinched curvature

−b2 ≤ K ≤ −a2

for p > (n − 1)b/a. The Dirichlet problem at infinity for the p-Laplacian was
solved in [21] on Cartan-Hadamard manifolds of pinched negative sectional cur-
vature by modifying the direct approach of Anderson and Schoen [7]. In [33]
the asymptotic Dirichlet problem was considered for A-harmonic functions and
it was shown that x0 ∈M(∞) is p-regular if it has a neighborhood V in the cone
topology such that the sectional curvatures satisfy a pointwise pinching condition
in V ∩M and

KM ≤ −φ(φ− 1)

ρ2
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in V ∩M for some φ > 1 with p < 1+φ(n−1). Recall that a p-harmonic function
in an open subset U of a Riemannian manifold M is a continuous (weak) solution
u of the p-Laplace equation

− div
(
|∇u|p−2∇u

)
= 0.

More precisely, u belongs to the local Sobolev space W 1,p
loc (U) and

(1.1)

∫

U

〈|∇u|p−2∇u,∇ϕ〉 dm = 0

for every ϕ ∈ C∞
0 (U). Note that (1.1) is the Euler-Lagrange equation for the

(p-energy) variational integral

(1.2)

∫

U

|∇u|p dm.

For the nonlinear potential theory associated with the p-Laplacian and more
general quasilinear elliptic operators, we refer to the book [20] by Heinonen,
Kilpeläinen, and Martio. In [22] the authors, together with Lang, considered the
Dirichlet problem at infinity for p-harmonic functions in a very general setting of
Gromov hyperbolic metric measure spaces. Suppose that X is a connected and
locally compact Gromov hyperbolic metric measure space equipped with a Borel
regular measure µ. Assume that X has a (local) bounded geometry in a sense
that the measure µ is locally doubling, the measures of balls of a fixed sufficiently
small radius have a uniform positive lower bound, and that X supports a local
Poincaré-type inequality. Furthermore, suppose that X has at most exponential
volume growth and that a global Sobolev-type inequality holds for compactly
supported functions. The main result in [22] then states that given a bounded
continuous function f : ∂GX → R, there exists a continuous function u : X∗ → R

which is p-harmonic in X and equal to f in ∂GX. We refer to Chapter 4 for exact
assumptions and the notation employed in the theorem. It is worth pointing
out that the metric spaces above do not have, in general, a manifold structure
not to mention a smooth structure. Therefore, p-harmonic functions can not, in
general, be defined as solutions of an equation like (1.1) but rather as minimizers
of a variational integral such as (1.2).

This paper can be divided roughly into two parts. In the first part of the
paper (Section 3) we study in detail the Dirichlet problem at infinity for the
p-Laplacian and the p-regularity of a point x0 at infinity on a Cartan-Hadamard
manifold M under a curvature assumption

−(b ◦ ρ)2 ≤ KM ≤ −(a ◦ ρ)2

in V ∩M , where V is a neighborhood of x0. Here a, b : [0,∞) → [0,∞), b ≥ a,
are functions that will be specified later. In the second part of the paper we
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present basics on Gromov hyperbolic metric spaces and introduce upper gradi-
ents, Sobolev spaces, and p-harmonic functions on metric measure spaces. Then
we describe briefly how to solve the asymptotic Dirichlet problem on Gromov
hyperbolic metric measure spaces following [22].

2. Preliminaries

2.1. Notation. Let M be a connected Riemannian manifold. We denote the
Hessian of a smooth function f by D2f . If x ∈M , define

SxM = {v ∈ TxM : |v| = 1}
and SM =

⋃

x∈M SxM . If x ∈ M , let ρx : M → R be the distance function
ρx(y) = d(x, y). The sectional curvature of a 2-plane P ⊂ TxM is denoted by
KM(P ). If v ∈ TM , γv is the unique maximal geodesic with γ̇v0 = v.

Suppose then that M is a Cartan-Hadamard manifold. We let M(∞) stand
for its sphere at infinity and denote M̄ = M ∪M(∞). The sphere at infinity is
defined as the set of all equivalence classes of geodesic unit speed rays in M ; two
such rays γ1 and γ2 are equivalent if

sup
t≥0

d(γ1(t), γ2(t)) <∞.

The equivalence class of γ is denoted by γ(∞). For each x ∈M and y ∈ M̄ \{x}
there exists a (unique) unit speed geodesic γx,y : R → M such that γx,y(0) = x
and γx,y(t) = y for some t ∈ (0,∞]. If x ∈M and y, z ∈ M̄ \{x}, then we denote
by

∢x(y, z) = ∢(γ̇x,y0 , γ̇x,z0 )

the angle between vectors γ̇x,y0 and γ̇x,z0 in TxM . If v ∈ TxM \ {0}, δ > 0, and
r > 0, then we define a cone

C(v, δ) = {y ∈ M̄ \ {x} : ∢(v, γ̇x,y0 ) < δ}
and a truncated cone

T (v, δ, r) = C(v, δ) \ B̄(x, r).

All cones and open balls in M form a basis for a topology on M̄ . This topology
is called the cone topology and we always equip M̄ with it. Then M̄ is homeo-
morphic to the closed unit ball B̄n ⊂ Rn and M(∞) to the sphere Sn−1 = ∂Bn;
see [15] for a detailed study on the sphere at infinity and the cone topology.

Throughout the paper c is a positive constant, and c(x, y, . . .) denotes a posi-
tive constant depending on x, y, . . .. The actual value of c may vary, even within
a line.
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2.2. Solutions of the differential equation f ′′ = a2f . In this subsection
we consider the Jacobi equation f ′′ = a2f . We will later prove Proposition 2.5,
which explains why we are interested in these solutions.

If a : [0,∞) → [0,∞) is a smooth function, let fa : [0,∞) → R be the function
determined by







fa(0) = 0,

f ′
a(0) = 1,

f ′′
a = a2fa.

Then fa ≥ 0 is a smooth function.

Example 2.1. Suppose that α > 0 and t0 > 0 are constants and that

a(t) =
α

t
for all t ≥ t0. It is easy to verify that then

fa(t) = c1t
φ + c2t

1−φ

for all t ≥ t0, where

φ =
1 +

√
1 + 4α2

2
> 1,

c1 = t−φ0

fa(t0)(φ− 1) + t0f
′
a(t0)

2φ− 1
> 0,

and

c2 = tφ−1
0

fa(t0)φ− t0f
′
a(t0)

2φ− 1
.

In particular,

(2.1) lim
t→∞

tf ′
a(t)

fa(t)
= φ.

Lemma 2.2. Suppose that a, b : [0,∞) → [0,∞) are smooth and a ≤ b. Then

f ′
a

fa
≤ f ′

b

fb
.

In particular, fa ≤ fb.

Proof. Since

(f ′
bfa − f ′

afb)
′ = f ′′

b fa − f ′′
a fb = fafb

(f ′′
b

fb
− f ′′

a

fa

)

= fafb(b
2 − a2) ≥ 0,

we have f ′
bfa − f ′

afb ≥ 0. Therefore f ′
b/fb ≥ f ′

a/fa. On the other hand,
(fb
fa

)′

=
f ′
bfa − f ′

afb
f 2
a

≥ 0.
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Now limt→0 fb(t)/fa(t) = 1 so that fb/fa ≥ 1.

Lemma 2.3. Suppose that t0 > 0 is a constant, b : [0,∞) → [0,∞) is a smooth
function such that b(t) > 0 for every t ≥ t0, and that

lim
t→∞

b′(t)

b(t)2
= 0.

Then

lim
t→∞

f ′
b(t)/fb(t)

b(t)
= 1.

Proof. Let ε ∈ (0, 1/2). Choose t1 ≥ t0 such that

|b′(t)| < ε b(t)2

for all t ≥ t1. It follows that

b(t) ≥ c

t
for all t ≥ t1. In particular,

(2.2)

∫ ∞

0

b(t) dt = ∞.

If k > ε, let

gk(t) = exp
(

k

∫ t

0

b(s) ds
)

.

Then
g′k(t) = kb(t)gk(t)

and
g′′k(t) = k

(
b′(t) + kb(t)2

)
gk(t),

so that
g′′k(t)

gk(t)
= kb′(t) + k2b(t)2.

Therefore

(k2 − εk)b(t)2 ≤ g′′k(t)

gk(t)
≤ (k2 + εk)b(t)2

for all t ≥ t1. In particular,

g′′1−ε(t)

g1−ε(t)
≤ b(t)2 ≤ g′′1+ε(t)

g1+ε(t)

for every t ≥ t1. From this we see that

(fbg
′
1−ε − g1−εf

′
b)

′(t) = fb(t)g
′′
1−ε(t) − g1−ε(t)f

′′
b (t) ≤ 0

for all t ≥ t1. Hence
fb(t)g

′
1−ε(t) ≤ c+ g1−ε(t)f

′
b(t)



Asymptotic Dirichlet problem on negatively curved spaces 69

for all t ≥ t1. Therefore

g′1−ε(t)/g1−ε(t)

f ′
b(t)/fb(t)

≤ 1 +
c

f ′
b(t)g1−ε(t)

for all t ≥ t1. Since g1−ε(t) → ∞ as t→ ∞ by (2.2), we get

lim sup
t→∞

b(t)

f ′
b(t)/fb(t)

=
1

1 − ε
lim sup
t→∞

g′1−ε(t)/g1−ε(t)

f ′
b(t)/fb(t)

≤ 1

1 − ε
.

Similarly one gets

lim inf
t→∞

b(t)

f ′
b(t)/fb(t)

=
1

1 + ε
lim inf
t→∞

g′1+ε(t)/g1+ε(t)

f ′
b(t)/fb(t)

≥ 1

1 + ε
.

The claim follows by letting ε → 0.

Lemma 2.4. Let t0 > 0 be a constant. Suppose that a, b : [0,∞) → [0,∞) are
smooth functions that satisfy a(t) = b(t) for every t ≥ t0. Then

(2.3) lim
t→∞

f ′
a(t)/fa(t)

f ′
b(t)/fb(t)

= 1

and there exists a constant C > 0 such that

(2.4)
1

C
≤ f ′

a(t)

f ′
b(t)

≤ C

for every t ≥ 0.

Proof. If t ≥ t0, then

(f ′
afb − f ′

bfa)
′(t) = f ′′

a (t)fb(t) − f ′′
b (t)fa(t) =

(
a(t)2 − b(t)2

)
fa(t)fb(t) = 0.

Hence f ′
a(t)fb(t) = c+ f ′

b(t)fa(t) for every t ≥ t0. In particular,

f ′
a(t)/fa(t)

f ′
b(t)/fb(t)

= 1 +
c

f ′
b(t)fa(t)

→ 1

when t→ ∞ as we claimed. On the other hand,
(fa
fb

)′

(t) =
f ′
a(t)fb(t) − f ′

b(t)fa(t)

fb(t)2
=

c

fb(t)2

for all t ≥ t0. Therefore

fa(t)

fb(t)
=
fa(t0)

fb(t0)
+

∫ t

t0

c

fb(s)2
ds ≤ fa(t0)

fb(t0)
+

∫ ∞

t0

c

s2
ds = c <∞

for every t ≥ t0. Since limt→0 fa(t)/fb(t) = 1, it follows that fa ≤ cfb every-
where. Similarly one shows that fb ≤ cfa everywhere. Hence 1/c ≤ fa/fb ≤ c
everywhere. To get (2.4) we apply this to (2.3) that we already proved and use
the fact that f ′

a(0) = 1 = f ′
b(0).
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2.3. Comparison results. Let M ∋ o be a Cartan-Hadamard n-manifold and
denote ρ = ρo. Let a, b : [0,∞) → [0,∞) be smooth functions that are constant
in some neighborhood of 0.

Proposition 2.5. Suppose that v ∈ SoM is a unit vector and let γ = γv. Suppose
that

−b(t)2 ≤ KM(P ) ≤ −a(t)2

for every t > 0 and for every 2-dimensional subspace P ⊂ Tγ(t)M that contains
the radial vector γ̇t.

(a) Let W be a Jacobi field along γ with W0 = 0, |W ′
0| = 1, and W ′

0⊥v. Denote
f = |W |. Then

f ′
a(t)

fa(t)
≤ f ′(t)

f(t)
≤ f ′

b(t)

fb(t)

for all t > 0. In particular, fa ≤ f ≤ fb.

(b) Let t > 0 and X ∈ Tγ(t)M . Then
(f ′

a ◦ ρ
fa ◦ ρ

(g − dρ⊗ dρ)
)

(X,X) ≤ D2ρ(X,X) ≤
(f ′

b ◦ ρ
fb ◦ ρ

(g − dρ⊗ dρ)
)

(X,X).

Proof. We only prove the first inequality in (a) and (b) since the second ones
are similar.

Let M−a2 be R
n equipped with the Riemannian metric dr2 + fa(r)

2dθ2, where
r is the distance function from 0 and dθ2 is the standard metric on Sn−1. Note
that since a is constant in a neighborhood of 0, the metric dr2+fa(r)

2dθ2 extends
smoothly over 0. Hence M−a2 is a rotationally symmetric manifold with radial
curvature function −a2.

(a) Let ṽ ∈ T0M−a2 , |ṽ| = 1, and let W̃ be a Jacobi field along the unit speed
geodesic γ ṽ with W̃0 = 0, W̃ ′

0⊥ṽ, and |W̃ ′
0| = 1. Then

|W̃ (t)| = fa(t)

for every t ≥ 0. Applying the Rauch comparison theorem to W and W̃ shows
that f ′

a/fa ≤ f ′/f .

(b) This follows from the Hessian comparison theorem [17, Theorem A] since

D2r =
f ′
a ◦ r
fa ◦ r

(ḡ − dr ⊗ dr)

on M−a2 \ {0}, where ḡ is the Riemannian metric on M−a2 .

Let ψ : (0,∞) × SoM →M \ {o},
ψ(t, ξ) = expo(tξ).
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Denote λ = |Jψ|, the absolute value of the Jacobian of ψ. Then

mM

(
B(o, t)

)
=

∫ t

0

∫

SoM

λ(s, ξ) dξ ds

for every t ≥ 0. For all ξ ∈ SoM we have

(2.5) lim
t→0

λ(t, ξ)

tn−1
= 1.

Also,
(
λ(·, ξ)

)′
(t)

λ(t, ξ)
= ∆ρ

(
ψ(t, ξ)

)

for all t > 0 and ξ ∈ SoM . Therefore, in the situation of Proposition 2.5 we have

(n− 1)
f ′
a(t)

fa(t)
≤

(
λ(·, v)

)′
(t)

λ(t, v)
≤ (n− 1)

f ′
b(t)

fb(t)

for all t > 0 and in particular,

(2.6) fa(t)
n−1 ≤ λ(t, v) ≤ fb(t)

n−1

for all t > 0.

Lemma 2.6. Let x0 ∈ M \ {o}, U = M \ γo,x0(R), and define θ : U → [0, π],
θ(x) = ∢o(x0, x). Let x ∈ U and γ = γo,x. Suppose that

KM(P ) ≤ −a(t)2

for every t > 0 and for every 2-dimensional subspace P ⊂ Tγ(t)M that contains
the radial vector γ̇t. Then

|∇θ(x)| ≤ 1

(fa ◦ ρ)(x)
.

Proof. Let ϕ : M → Rn be a normal coordinate chart at o and let X ∈ SxM
be a unit vector. We want to prove that |Xθ| ≤ 1/fa(ρ(x)). If X = γ̇ρ(x), then
Xθ = 0 so without loss of generality we can assume that X⊥γ̇ρ(x). Now

θ = θ̃ ◦ ϕ|U,
where θ̃ : ϕU → [0, π],

θ̃(z) = ∢0

(
ϕ(x0), z

)
= arccos

(v · z
|z|

)

,

and v = ϕ(x0)
|ϕ(x0)|

. It is clear that |∇θ̃(z)| = |z|−1.

Let w = ϕ(x)
|ϕ(x)|

and define

Wt = (ϕ−1)∗tw(t ϕ∗X
|ϕ∗X|

).
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Then W is a Jacobi field along the geodesic γ and satisfies W0 = 0, |W ′
0| =

1, and Wρ(x) = ρ(x) X
|ϕ∗X|

. Since W0 = 0 and Wρ(x)⊥γ̇ρ(x), W⊥γ̇ everywhere.

Proposition 2.5(a) now implies that

|Xθ| = |X(θ̃ ◦ ϕ)| =
∣
∣∇θ̃

(
ϕ(x)

)
· ϕ∗X

∣
∣ ≤ |ϕ∗X|

ρ(x)
=

1

|Wρ(x)|
≤ 1

fa
(
ρ(x)

)

as we wanted.

3. Dirichlet problem at infinity on Cartan-Hadamard

manifolds

In this section we consider the Dirichlet problem at infinity on a Cartan-
Hadamard manifold M . We use the simple approach taken by Anderson and
Schoen in [7]. The same approach was used by Holopainen in [21] for p-harmonic
functions. The idea is that given a continuous function on the boundary at
infinity, we extend it radially to the whole M̄ . This extended function is then
smoothened and it is shown that a slight perturbation of the smoothened function
gives a p-superharmonic function. Starting with a suitable boundary function the
resulting p-superharmonic function behaves like a barrier function and a point
at infinity can be shown to be p-regular.

We apply Perron’s method to solve the Dirichlet problem at infinity. Our
definitions of the upper and lower Perron solutions follow [20]. Fix an exponent
p ∈ (1,∞).

Definition 3.1. A lower semicontinuous function u : U → (−∞,∞], where
U ⊂ M is an open set, is p-superharmonic if u 6≡ ∞ in each component of U ,
and for each open D ⊂⊂ U and each h ∈ C(D̄), p-harmonic in D, h ≤ u on ∂D
implies h ≤ u in D.

Definition 3.2. A function u : M → (−∞,∞] belongs to the upper class Uf of
f : M(∞) → [−∞,∞] if

(i) u is p-superharmonic in M ,
(ii) u is bounded below, and
(iii) lim infx→x0

u(x) ≥ f(x0) for all x0 ∈M(∞).

We call
Hf = inf{u : u ∈ Uf}

the upper Perron solution.

Theorem 3.3. One of the following holds:

(i) Hf is p-harmonic in M ,
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(ii) Hf ≡ ∞ in M ,
(iii) Hf ≡ −∞ in M .

Proof. As in [20, Theorem 9.2].

The upper Perron solution Hf is a good candidate to the solution of the
Dirichlet problem at infinity.

Definition 3.4. A point x0 ∈M(∞) is p-regular if

lim
x→x0

Hf (x) = f(x0)

for every continuous f : M(∞) → R.

Define the lower class Lf = −U−f and the lower Perron solution Hf = −H−f .

Then Hf ≥ Hf .

Remark 3.5. If x1, x2 ∈ M(∞), x1 6= x2, are both p-regular, then Hf is a
non-constant bounded p-harmonic function on M whenever f : M(∞) → R

is a continuous function such that f(x1) 6= f(x2). The Dirichlet problem at
infinity for p-harmonic functions is solvable if and only if all points at infinity
are p-regular.

Assumptions. We will carry the following notation and assumptions with us
until we reach Subsection 3.3. We fix a point o ∈ M and write ρ = ρo for the
distance function ρ(x) = d(x, o). Let

a, b : [0,∞) → [0,∞), b ≥ a,

be smooth functions that are constant in some neighborhood of 0. We suppose
that v0 ∈ SoM and L ∈ (8/π,∞) are given. For k > 0 we denote

Ω = C(v0, 1/L) ∩M
and

kΩ = C(v0, k/L) ∩M.

Suppose that
−(b ◦ ρ)2(x) ≤ KM(P ) ≤ −(a ◦ ρ)2(x)

for all x ∈ 4Ω and all 2-dimensional subspaces P ⊂ TxM .

Suppose that b is monotonic, in other words it is increasing or decreasing.
Suppose also that there exist constants T1 > 0, C1, C2, C3 > 0, and Q ∈ (0, 1)
such that

a(t)

{

= C1t
−1 if b is decreasing,

≥ C1t
−1 if b is increasing

(A1)
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for all t ≥ T1 and

a(t) ≤ C2,(A2)

b(t+ 1) ≤ C2b(t),(A3)

b(t/2) ≤ C2b(t),(A4)

b(t) ≥ C3(1 + t)−Q(A5)

for all t ≥ 0. In addition, we assume that

lim
t→∞

b′(t)

b(t)2
= 0(A6)

and that there exists a constant C4 > 0 such that

lim
t→∞

t1+C4b(t)

f ′
a(t)

= 0.(A7)

We collect all these constants and functions together and denote

C = (a, b, T1, C1, C2, C3, C4, Q, n, L).

Define h : M(∞) → R,

(3.1) h(x) = min
(
1, L∢(v0, γ̇

o,x
0 )

)
.

Our aim is to extend h to a function h ∈ C∞(M) ∩ C(M̄) with controlled first
and second order derivatives. Let us first make a crude extension by defining
h̃ : M̄ → R,

(3.2) h̃(x) = min
(

1,max
(
2 − 2ρ(x), L∢(v0, γ̇

o,x
0 )

))

.

Then h̃ ∈ C(M̄) and h̃|M(∞) = h.

If V is an inner product space and α : V 2 → R is a symmetric 2-covariant
tensor, denote

‖α‖ = sup
|X|≤1

|α(X,X)|.

It is clear that ‖·‖ defines a norm in the set of all symmetric 2-covariant tensors of
V . If α is a symmetric 2-covariant tensor field, we naturally define ‖α‖x = ‖αx‖.
Lemma 3.6. (Cauchy-Schwarz inequality) If V is an inner product space, α :
V 2 → R is a symmetric 2-covariant tensor, and X, Y ∈ V , then

|α(X, Y )| ≤ ‖α‖ |X||Y |.

Proof. By linearity we can assume that |X| = 1 = |Y |. Since α is symmetric,
we have

α(X, Y ) =
1

4

(

α(X + Y,X + Y ) − α(X − Y,X − Y )
)

.
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Applying the triangle inequality gives

|α(X, Y )| ≤ 1

4

(

‖α‖|X + Y |2 + ‖α‖|X − Y |2
)

=
1

2
‖α‖

(
|X|2 + |Y |2

)
= ‖α‖.

Lemma 3.7. Suppose that N is a Riemannian manifold and h1, h2 ∈ C∞(N).
Then

|∇〈∇h1,∇h2〉| ≤ |∇h1|‖D2h2‖ + |∇h2|‖D2h1‖.

Proof. Let x ∈ N . If X ∈ TxN , then

X
(
(∇h1)h2

)
= D2h2(X,∇h1) +

(
∇X(∇h1)

)
h2

= D2h2(X,∇h1) +
〈
∇X(∇h1),∇h2

〉

= D2h2(X,∇h1) +D2h1(X,∇h2).

By applying the Cauchy-Schwarz inequality we get

|∇〈∇h1,∇h2〉|x =
∣
∣∇

(
(∇h1)h2

)∣
∣
x

= sup
X∈SxN

∣
∣X

(
(∇h1)h2

)∣
∣

= sup
X∈SxN

∣
∣
∣D2h2(X,∇h1) +D2h1(X,∇h2)

∣
∣
∣

≤ |∇h1|x‖D2h2‖x + |∇h2|x‖D2h1‖x.
Here x ∈ N was arbitrary so the claim follows.

3.1. Extending the function h. In this subsection we extend h, defined in
(3.1), to a function h ∈ C(M̄) ∩ C∞(M) with controlled first and second order
derivatives.

Lemma 3.8. Let N be a Cartan-Hadamard manifold and f : N × N → R a
function. Suppose that f(·, y) ∈ C∞(N) for all y ∈ N and that

(x, y) 7→ Xm(Xm−1(· · · (X1(f(·, y))) · · · ))(x)
is continuous for all smooth vector fields Xi ∈ T (N) and all m ≥ 0. Suppose
also that each x0 ∈ N has a neighborhood V ∋ x0 such that the set

⋃

x∈V

supp f(x, ·)

is bounded. Define u : N → R,

u(x) =

∫

N

f(x, y) dmN(y).
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Then u ∈ C∞(N) and

(3.3) Xu =

∫

N

X
(
f(·, y)

)
dmN(y)

for all X ∈ TN , and

(3.4) D2u(X, Y ) =

∫

N

D2
(
f(·, y)

)
(X, Y ) dmN(y).

for all X, Y ∈ TxN , x ∈ N .

Proof. Let us first consider the special case N = Rn. Fix x0 ∈ Rn. The
assumptions imply that there exists a compact set K ⊂ Rn such that f(z, y) = 0
whenever z ∈ B̄(x0, 2) and y ∈ Rn \K. If x ∈ B(x0, 1), X ∈ SxR

n = Sn−1, and
σ ∈ [−1, 1] \ {0}, then

u(x+ σX) − u(x)

σ
=

∫

Rn

f(x+ σX, y) − f(x, y)

σ
dm(y)

=

∫

K

f(x+ σX, y) − f(x, y)

σ
dm(y).

The integrand is uniformly bounded since

sup
x∈B(x0,1), X∈Sn−1,

0<|σ|≤1, y∈K

∣
∣
∣
f(x+ σX, y) − f(x, y)

σ

∣
∣
∣ ≤ sup

y∈K, z∈B̄(x,2)

∣
∣∇

(
f(·, y)

)
(z)

∣
∣ <∞.

Therefore we can use the dominated convergence theorem to conclude that the
equation (3.3) holds if |X| = 1 and thus holds for all X. We also see that u is
locally Lipschitz, therefore continuous. Now note that if 1 ≤ i ≤ n, then the
function f̄ : (x, y) 7→ ∂i(f(·, y))(x) satisfies the assumptions of the lemma. The
above reasoning then shows that ū = ∂iu is continuous and satisfies (3.3). By
repeating this argument we see that u ∈ C∞(Rn).

We return to the case of a general Cartan-Hadamard manifold N . Let ϕ :
Rn → N be a diffeomorphism. Then

u ◦ ϕ =

∫

N

f(ϕ(·), y) dmN(y) =

∫

Rn

|Jϕ(y)|f(ϕ(·), ϕ(y)) dm(y).

The function R
n × R

n → R, (x, y) 7→ |Jϕ(y)|f(ϕ(x), ϕ(y)) satisfies the assump-
tions of the lemma. By what we already have shown in Rn we get that u ◦ ϕ is
a smooth function. Therefore u ∈ C∞(N). Fix x ∈ N , X ∈ TxN , and denote
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Z = (ϕ−1)∗X. Then

Xu = Z(u ◦ ϕ)

= Z

∫

Rn

|Jϕ(y)|f(ϕ(·), ϕ(y)) dm(y)

=

∫

Rn

|Jϕ(y)|Z
(
f(ϕ(·), ϕ(y))

)
dm(y)

=

∫

N

Z
(
f(ϕ(·), y)

)
dmN (y)

=

∫

N

X
(
f(·, y)

)
dmN (y).

Therefore (3.3) is valid.

We still have to show (3.4). Fix x ∈ N and X, Y ∈ TxN . Define W ∈ T (N)
by W =

∑

i〈Y, (∂i)x〉∂i, where ∂i is the i-th coordinate vector field of the normal
coordinate chart at x. Then Wx = Y and ∇XW = 0 so that

(3.5) D2η(X, Y ) = D2η(X,Wx) = X(Wη) − (∇XW )η = X(Wη)

for all η ∈ C∞(N). Define f̄ : N×N → R, (z, y) 7→Wz

(
f(·, y)

)
. Then f̄ satisfies

the assumptions of the lemma. Using (3.5) and (3.3) we get

D2u(X, Y ) = X(Wu) = X

∫

N

f̄(·, y) dmN(y)

=

∫

N

X
(
W

(
f(·, y)

))
dmN(y)

=

∫

N

D2
(
f(·, y)

)
(X, Y ) dmN(y).

Lemma 3.9. Let N be a Riemannian manifold, h1, h2 ∈ C∞(N), and h2(x) 6= 0
for every x ∈ N . Then

D2
(h1

h2

)

=
1

h2
D2h1 −

h1

h2
2

D2h2 + 2
h1

h3
2

dh2 ⊗ dh2

− 1

h2
2

dh2 ⊗ dh1 −
1

h2
2

dh1 ⊗ dh2.
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Proof. This is a direct computation. Fix X, Y ∈ T (N). Then

∇X

(
∇(h1/h2)

)
= ∇X

(
(1/h2)∇h1

)
−∇X

(
(h1/h

2
2)∇h2

)

= X
( 1

h2

)

∇h1 +
1

h2
∇X(∇h1) −X

(h1

h2
2

)

∇h2 −
h1

h2
2

∇X(∇h2)

= −Xh2

h2
2

∇h1 +
1

h2
∇X(∇h1) −

h2
2Xh1 − 2h1h2Xh2

h4
2

∇h2

−h1

h2
2

∇X(∇h2).

It follows that

D2
(h1

h2

)

(X, Y ) =
〈
∇X

(
∇(h1/h2)

)
, Y

〉

= −Xh2

h2
2

Y h1 +
1

h2
D2h1(X, Y ) − Xh1

h2
2

Y h2

+
2h1Xh2

h3
2

Y h2 −
h1

h2
2

D2h2(X, Y ).

The following lemma tells us that for given k > 0 and x ∈M , the function b◦ρ
does not change much in the set {y ∈ M : b(ρ(y))d(x, y) ≤ k}. Since −(b ◦ ρ)2

represents the curvature lower bound in 4Ω, this enables the use of comparison
theorems.

Lemma 3.10. Let k > 0. There exists a constant c1,k = c1,k(C, k) > 1 such that
if x, y ∈M and b(ρ(y))d(x, y) ≤ k, then

1

c1,k
b
(
ρ(x)

)
≤ b

(
ρ(y)

)
≤ c1,k b

(
ρ(x)

)
.

Proof. Case b increasing: Let x, y ∈ M be such that b(ρ(y))d(x, y) ≤ k. Since
b is increasing, we have d(x, y) ≤ k/b(0). Hence (A3) implies

b(ρ(y)) ≥ b
(
max(0, ρ(x) − k/b(0))

)
≥ 1

c1,k
b(ρ(x)),

where c1,k = C
k/b(0)+1
2 . Similarly, (A3) implies

b(ρ(y)) ≤ b
(
ρ(x) + k/b(0)

)
≤ c1,k b(ρ(x)).

Case b decreasing: Let x, y ∈M be such that b(ρ(y))d(x, y) ≤ k.

Since Q ∈ (0, 1), there exists a constant c′ = c′(C3, k, Q) such that

(3.6) tQ ≤ C3

2k
(c′ + t)
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for all t ≥ 0. Now (A5) and (3.6) imply

d(x, y) ≤ k

b(ρ(y))
≤ k

C3

(
1 + ρ(y)

)Q

≤ k

C3

(
1 + ρ(x) + d(x, y)

)Q

≤ k

C3

((
1 + ρ(x)

)Q
+ d(x, y)Q

)

≤ k

C3

((
1 + ρ(x)

)Q
+
C3

2k

(
c′ + d(x, y)

))

so that

(3.7) d(x, y) ≤ c′ +
2k

C3

(
1 + ρ(x)

)Q
.

Again since Q ∈ (0, 1), there exists a constant R = R(Q,C3, k) such that

(3.8) c′ +
2k

C3

(
1 + t

)Q ≤ t

2

for all t ≥ R. So, if ρ(x) ≥ R, then d(x, y) ≤ ρ(x)/2 by (3.7) and (3.8) and
therefore

b
(
ρ(y)

)
≥ b

(
ρ(x) + d(x, y)

)
≥ b

(
2ρ(x)

)
≥ 1

C2

b
(
ρ(x)

)
,

where the last inequality follows from (A4). Similarly, if ρ(x) ≥ R, then

b
(
ρ(y)

)
≤ b

(
ρ(x) − d(x, y)

)
≤ b

(
ρ(x)/2

)
≤ C2 b

(
ρ(x)

)
.

This is what we wanted but with the extra assumption ρ(x) ≥ R. Suppose now
that ρ(x) ≤ R. Then (3.7) and (3.8) imply

d(x, y) ≤ c′ +
2k

C3

(
1 + ρ(x)

)Q ≤ c′ +
2k

C3
(1 +R)Q ≤ R

2
.

In particular, ρ(y) ≤ 2R. Since b > 0 is continuous, there exists a constant
β = β(b, R) such that

1

β
≤ b(t) ≤ β

for all t ∈ [0, 2R]. Then

1

β2
≤ b

(
ρ(y)

)

b
(
ρ(x)

) ≤ β2.

By combining the cases ρ(x) ≥ R and ρ(x) ≤ R we see that the claim holds with
c1,k = max{C2, β

2}.
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Lemma 3.11. For each k > 0 there exists a constant c2 = c2(C, k) such that

mM

(

B
(

x,
k

b(ρ(x))

))

≤ c2
b(ρ(x))n

holds for all x ∈ M that satisfy B
(
x, k/b(ρ(x))

)
⊂ 4Ω.

Proof. Fix k > 0 and x ∈M that satisfies Bx ⊂ 4Ω, where Bx = B
(
x, k/b(ρ(x))

)
.

Let y ∈ Bx. Then b(ρ(x))d(x, y) < k. Lemma 3.10 (applied with x and y inter-
changed) then implies that

b(ρ(y)) ≤ c1,k b(ρ(x)) =: β.

Since Bx ⊂ 4Ω and the sectional curvature of M is bounded from below by
−(b ◦ ρ)2 in 4Ω, we see that the sectional curvature of M is bounded from below
by −β2 in the ball Bx. Denote N = Mn

−β2 , the model space with constant

sectional curvature −β2, and fix any xN ∈ N . We use the Bishop-Gromov
volume comparison theorem and (2.6) to obtain

mM(Bx) ≤ mN

(

B
(

xN ,
k

b(ρ(x))

))

=

∫ k/b(ρ(x))

0

∫

SxN
N

(
β−1 sinh(βt)

)n−1
dξ dt

= ωn−1β
1−n

∫ k/b(ρ(x))

0

sinhn−1(βt) dt

= ωn−1β
−n

∫ βk/b(ρ(x))

0

sinhn−1(s) ds

= ωn−1
1

cn1,kb(ρ(x))
n

∫ kc1,k

0

sinhn−1(s) ds.

From this we see that the claim holds with the constant

c2 = ωn−1c
−n
1,k

∫ kc1,k

0

sinhn−1(s) ds.

Fix χ ∈ C∞(R) such that 0 ≤ χ ≤ 1, suppχ ⊂ [−2, 2], and χ|[−1, 1] ≡ 1.

Lemma 3.12. If ϕ ∈ C(M), then the function f : M ×M → R,

f(x, y) = χ
(
b(ρ(y))d(x, y)

)
ϕ(y),

satisfies the assumptions of Lemma 3.8.
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Proof. Let X1, X2, . . . be smooth vector fields on M . We prove by induction
with respect to m that the function (x, y) 7→ Xm(Xm−1(· · · (X1(f(·, y))) · · · ))(x)
can be written as a finite sum of functions of the form

(3.9) (x, y) 7→ χ(k)
(
b(ρ(y))d(x, y)

)
b(ρ(y))kϕ(y)u(x, y),

where k ∈ N and u ∈ C∞(M ×M).

The basic case m = 0 is trivial.

Suppose that the claim holds for m = m0 − 1. We show that it holds for
m = m0. Let η,

η(x, y) = χ(k)
(
b(ρ(y))d(x, y)

)
b(ρ(y))kϕ(y)u(x, y),

be one of the functions in the finite sum corresponding to the function

(x, y) 7→ Xm0−1(Xm0−2(· · · (X1(f(·, y))) · · · ))(x).
We have to show that (x, y) 7→ Xm0

(η(·, y))(x) can be written as a finite sum of
functions of the form (3.9). If x 6= y, then

Xm0
(η(·, y))(x) =

η1(x,y):=
︷ ︸︸ ︷

χ(k)
(
b(ρ(y))d(x, y)

)
b(ρ(y))kϕ(y)Xm0

(
u(·, y)

)
(x)

+ χ(k+1)
(
b(ρ(y))d(x, y)

)
b(ρ(y))k+1ϕ(y)u(x, y)Xm0

(
d(·, y)

)
(x)

︸ ︷︷ ︸

=:η2(x,y)

.

The function η1 is of the form (3.9). The problem with η2 is that the metric
d : M ×M → R is not smooth on the diagonal. This is no real problem since if
b(ρ(y))d(x, y) ≤ 1, then χ(k+1)

(
b(ρ(y))d(x, y)

)
= 0 and thus

η2(x, y) = χ(k+1)
(
b(ρ(y))d(x, y)

)
b(ρ(y))k+1ϕ(y)

(
u ū

)
(x, y),

where ū : M ×M → R,

ū(x, y) =

{(

1 − χ
(
2 b(ρ(y))2d(x, y)2

))

Xm0

(
d(·, y)

)
(x) if x 6= y,

0 if x = y.

It is easy to see that ū ∈ C∞(M ×M), so that η2 is of the form (3.9). This ends
the induction proof. Every function of the form (3.9) is continuous, so the first
assumption in Lemma 3.8 is verified.

Let x0 ∈ M be arbitrary. Then V = B(o, ρ(x0) + 1) is a neighborhood of x0.
Let x ∈ V and y ∈M be such that f(x, y) 6= 0. Then b(ρ(y))d(x, y) < 2. Denote
β = inf0≤t≤1+ρ(x0) b(t) > 0. By Lemma 3.10 we have

β ≤ b(ρ(x)) ≤ c1,2b(ρ(y))
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so that

d(x, y) <
2

b(ρ(y))
≤ 2c1,2

β
.

Therefore
⋃

x∈V

supp f(x, ·) ⊂ B̄
(

o, ρ(x0) + 1 + 2c1,2β
−1

)

is a bounded set.

Let ϕ ∈ C(M) and f be as in Lemma 3.12. Then we can define

R(ϕ)(x) =

∫

M

f(x, y) dmM(y)

by Lemma 3.8 and Lemma 3.12. Since R(1) > 0, we can also define P(ϕ) : M →
R by

P(ϕ) =
R(ϕ)

R(1)
.

Then P is linear: if λ1, λ2 ∈ R and ϕ1, ϕ2 ∈ C(M), then

P(λ1ϕ1 + λ2ϕ2) = λ1P(ϕ1) + λ2P(ϕ2).

Also, if k : M → R is a constant function, then

P(k) = k.

Lemma 3.13. Suppose that ϕ ∈ C(M̄). Extend the function P(ϕ) : M → R to
a function M̄ → R by setting

P(ϕ)(x̄) = ϕ(x̄)

whenever x̄ ∈M(∞). Then the extended function satisfies

P(ϕ) ∈ C∞(M) ∩ C(M̄).

Proof. We already know that P(ϕ) ∈ C∞(M) by Lemma 3.8. It is therefore
enough to show continuity at infinity. Fix x̄ ∈ M(∞) and ε > 0. Since ϕ is
continuous at x̄, there exist δ ∈ (0, 1) and R > 0 such that |ϕ(x)−ϕ(x̄)| < ε for
every x ∈ T (γ̇o,x̄0 , δ, R).

Since Q ∈ (0, 1), we can choose R′ > 3R/2 such that

2c1,2
C3

(1 + t)Q ≤ δ

3
t

for all t ≥ R′. Let x ∈M\B(o, R′) and let y ∈M be such that b(ρ(y))d(x, y) ≤ 2.
Lemma 3.10 and (A5) imply

(3.10) d(x, y) ≤ 2

b(ρ(y))
≤ 2c1,2
b(ρ(x))

≤ 2c1,2
C3

(
1 + ρ(x)

)Q ≤ δ

3
ρ(x).
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Lemma 2.6 (applied with a ≡ 0) together with (3.10) imply that

∢o(x, y) ≤
d(x, y)

ρ(x) − d(x, y)
≤ δ/2.

Also by (3.10),

ρ(y) ≥ ρ(x) − d(x, y) ≥ 2ρ(x)

3
≥ 2R′

3
> R.

So, if x, y ∈ M are such that ρ(x) ≥ R′, ∢o(x, x̄) < δ/2, and b(ρ(y))d(x, y) ≤ 2,
then

∢o(y, x̄) ≤ ∢o(y, x) + ∢o(x, x̄) < δ

and ρ(y) > R, therefore y ∈ T (γ̇o,x̄0 , δ, R) and thus |ϕ(y)−ϕ(x̄)| < ε. This implies
that if x ∈ T (γ̇o,x̄0 , δ/2, R′) ∩M , then

|P(ϕ)(x) − P(ϕ)(x̄)| = |P(ϕ)(x) − ϕ(x̄)| =
∣
∣P

(
ϕ− ϕ(x̄)

)
(x)

∣
∣

=

∣
∣
∣
∣

∫

M
χ
(
b(ρ(y))d(x, y)

)(
ϕ(y) − ϕ(x̄)

)
dmM(y)

∫

M
χ
(
b(ρ(y))d(x, y)

)
dmM(y)

∣
∣
∣
∣

≤
∫

M
χ
(
b(ρ(y))d(x, y)

)∣
∣ϕ(y) − ϕ(x̄)

∣
∣ dmM(y)

∫

M
χ
(
b(ρ(y))d(x, y)

)
dmM(y)

≤ sup
y∈M, b(ρ(y))d(x,y)<2

|ϕ(y) − ϕ(x̄)| ≤ ε.

This shows that P(ϕ) is continuous at x̄.

Lemma 3.14. Let ϕ ∈ C(M). Let x ∈M be such that B(x, 2c1,2/b(ρ(x))) ⊂ 4Ω
and let X ∈ SxM . Then

(3.11) |R(ϕ)(x)| ≤ c3b(ρ(x))
−n sup

y∈B(x,2c1,2/b(ρ(x)))

|ϕ(y)|,

(3.12)
∣
∣X

(
R(ϕ)

)∣
∣ ≤ c3b(ρ(x))

1−n sup
y∈B(x,2c1,2/b(ρ(x)))

|ϕ(y)|,

and

(3.13)
∣
∣D2

(
R(ϕ)

)
(X,X)

∣
∣ ≤ c3b(ρ(x))

2−n sup
y∈B(x,2c1,2/b(ρ(x)))

|ϕ(y)|.

Also,

(3.14) R(1)(x) ≥ c−1
3 b(ρ(x))−n.

Here c3 = c3(C) is a constant.
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Proof. To shorten our notation we denote Bx = B
(
x, 2c1,2/b(ρ(x))

)
. Then

(3.15) mM(Bx) ≤ cb(ρ(x))−n

by Lemma 3.11. By Lemma 3.10 and Lemma 3.8 we can write

R(ϕ)(x) =

∫

Bx

χ
(
b(ρ(y))d(x, y)

)
ϕ(y) dmM(y),

X
(
R(ϕ)

)
=

∫

Bx

X
(
f(·, y)

)
dmM(y),

and

D2
(
R(ϕ)

)
(X,X) =

∫

Bx

D2
(
f(·, y)

)
(X,X) dmM(y).

Here X
(
f(·, y)

)
and D2

(
f(·, y)

)
(X,X) can be computed using the formulas

(3.16) ∇
(
f(·, y)

)
(x) = ϕ(y)b(ρ(y))χ′

(
b(ρ(y))d(x, y)

)
∇ρy(x)

and

D2
(
f(·, y)

)
(x)(3.17)

= ϕ(y)b(ρ(y))
(

b(ρ(y))χ′′
(
b(ρ(y))d(x, y)

)
(dρy)x ⊗ (dρy)x

+χ′
(
b(ρ(y))d(x, y)

)
D2ρy(x)

)

.

We get (3.11) from (3.15) by estimating

|R(ϕ)(x)| =

∣
∣
∣
∣

∫

Bx

χ(b(ρ(y))d(x, y))ϕ(y) dmM(y)

∣
∣
∣
∣

≤ mM (Bx) sup
y∈Bx

|ϕ(y)|

≤ c b(ρ(x))−n sup
y∈Bx

|ϕ(y)|.

Suppose that y ∈ M is such that b(ρ(x))d(x, y) ≤ min{2, c−1
1,2}. Then Lemma

3.10 implies that

1

c1,2
b(ρ(x)) ≤ b(ρ(y)) ≤ c1,2b(ρ(x)).
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Therefore b(ρ(y))d(x, y) ≤ 1. This and the Bishop-Gromov volume comparison
theorem imply that

|R(1)(x)| =

∣
∣
∣
∣

∫

M

χ(b(ρ(y))d(x, y)) dmM(y)

∣
∣
∣
∣

≥ mM

(

B
(

x,
min{2, c−1

1,2}
b(ρ(x))

))

≥ mRn

(

B
(

0,
min{2, c−1

1,2}
b(ρ(x))

))

= c b(ρ(x))−n.

This shows that (3.14) holds.

Inequality (3.12) follows from (3.16), Lemma 3.10, and (3.15) since

∣
∣X

(
R(ϕ)

)∣
∣ =

∣
∣
∣

∫

Bx

X
(
f(·, y)

)
dmM(y)

∣
∣
∣

=
∣
∣
∣

∫

Bx

ϕ(y)b(ρ(y))χ′(b(ρ(y))d(x, y))(Xρy) dmM(y)
∣
∣
∣

≤ c b(ρ(x))mM (Bx) sup
y∈Bx

|ϕ(y)|

≤ c b(ρ(x))1−n sup
y∈Bx

|ϕ(y)|.

Suppose that y ∈ M is such that 1 ≤ b(ρ(y))d(x, y) ≤ 2. If z lies on the
geodesic segment between the points x and y, then b(ρ(y))d(z, y) ≤ 2 and thus

b(ρ(z)) ≤ c1,2b(ρ(y)) ≤ c21,2b(ρ(x))

by Lemma 3.10. The Hessian comparison theorem [17, Theorem A] and Lemma
3.10 then give us

0 ≤ D2ρy(X,X) ≤ c21,2 b(ρ(x)) coth
(
c21,2 b(ρ(x))d(x, y)

)

≤ c21,2 b(ρ(x)) coth
(
c1,2 b(ρ(y))d(x, y)

)

≤ c21,2 coth(c1,2) b(ρ(x)).
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This computation along with (3.17) and (3.15) are used to estimate

∣
∣D2

(
R(ϕ)

)
(X,X)

∣
∣ =

∣
∣
∣

∫

Bx

D2
(
f(·, y)

)
(X,X) dmM(y)

∣
∣
∣

=
∣
∣
∣

∫

Bx

ϕ(y)b(ρ(y))
(

b(ρ(y))χ′′
(
b(ρ(y))d(x, y)

)
(Xρy)2

+ χ′
(
b(ρ(y))d(x, y)

)
D2ρy(X,X)

)

dmM(y)
∣
∣
∣

≤ c b(ρ(x))2mM (Bx) sup
y∈Bx

|ϕ(y)|

≤ c b(ρ(x))2−n sup
y∈Bx

|ϕ(y)|.

This gives us (3.13) and ends the proof.

Lemma 3.15. There exist constants R1 = R1(C) and c4 = c4(C) such that the
following hold.

(a) If x ∈ 3Ω \B(o, R1) and y ∈ B(x, 2c1,2/b(ρ(x))), then

(3.18) ∢o(x, y) ≤
c4

b(ρ(x))fa(ρ(x))

and
y ∈ 4Ω \B(o, 1).

(b) If x ∈M \
(
2Ω∪B(o, R1)

)
, then B(x, 2c1,2/b(ρ(x))) ⊂M \

(
Ω∪B(o, 1)

)
.

Proof. Suppose that x ∈ M and y ∈ B(x, 2c1,2/b(ρ(x))). Since Q ∈ (0, 1), we
can choose R > 2 such that

2c1,2
C3

(1 + t)Q ≤ t

2L

for all t ≥ R. Suppose that ρ(x) ≥ R. Then (A5) implies

(3.19) d(x, y) ≤ 2c1,2
b(ρ(x))

≤ 2c1,2
C3

(
1 + ρ(x)

)Q ≤ ρ(x)

2L

and thus ρ(y) ≥ ρ(x) − d(x, y) ≥ ρ(x)/2 > 1. Also, Lemma 2.6 (applied with
a ≡ 0) gives

∢o(x, y) ≤
d(x, y)

ρ(x) − d(x, y)
≤ 1/(2L)

1 − 1/(2L)
<

1

L
.

From this we see that if x /∈ 2Ω∪B(o, R), then y /∈ Ω∪B(o, 1). This proves (b).
Also, if x ∈ 3Ω \B(o, R), then y ∈ 4Ω \B(o, 1).

Suppose now that x ∈ 3Ω and ρ(x) ≥ R. We know by above that then
B(x, 2c1,2/b(ρ(x))) ⊂ 4Ω \ B(o, 1). We are left to verify the equation (3.18) in
(a).



Asymptotic Dirichlet problem on negatively curved spaces 87

Suppose first that b is increasing and denote r1 = 2c1,2/b(0) > 0. Then

d(x, y) ≤ 2c1,2
b(ρ(x))

≤ r1.

Since a ≤ C2 by (A2), the function fa/fC2
is decreasing by Lemma 2.2. In

particular,

fa(ρ(x))

fC2
(ρ(x))

≤ fa(ρ(x) − r1)

fC2
(ρ(x) − r1)

.

Therefore

fa(ρ(x) − d(x, y)) ≥ fa(ρ(x) − r1) ≥
fC2

(ρ(x) − r1)

fC2
(ρ(x))

fa(ρ(x))

=
sinh

(
C2(ρ(x) − r1)

)

sinh
(
C2ρ(x)

) fa(ρ(x)).

From this we see that if ρ(x) is large enough, then

fa(ρ(x) − d(x, y)) ≥ cfa(ρ(x)).

Suppose then that b is decreasing. Then a(t) = C1t
−1 for all t ≥ T1 by

assumption (A1). By Example 2.1 we see that there exist constants φ > 1,
c′1 > 0, and c′2 ∈ R such that

fa(t) = c′1t
φ + c′2t

1−φ

for all t ≥ T1. This implies that

fa(t/2) ≥ 2−1−φfa(t)

for all large t. Hence in this case (3.19) implies

fa
(
ρ(x) − d(x, y)

)
≥ fa(ρ(x)/2) ≥ cfa(ρ(x))

whenever ρ(x) is large enough.

We have proved that regardless of whether b is increasing or decreasing, we
get

fa(ρ(x) − d(x, y)) ≥ cfa(ρ(x))

if ρ(x) is large enough. Since we have proved that B(x, 2c1,2/b(ρ(x))) ⊂ 4Ω,
Lemma 2.6 gives

∢o(x, y) ≤
d(x, y)

fa
(
ρ(x) − d(x, y)

) ≤ c
d(x, y)

fa(ρ(x))
≤ c

b(ρ(x))fa(ρ(x))
.

This shows (3.18) and ends the proof.
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We extend h : M(∞) → R, defined by (3.1), to a function h : M̄ → R by
setting

h(x) = P(h̃)(x), x ∈M,

where h̃ is the function given by (3.2). We already know by Lemma 3.13 that
h ∈ C∞(M) ∩ C(M̄) and are now ready to estimate its derivatives.

Lemma 3.16. (Main lemma) The extended function h ∈ C∞(M) ∩ C(M̄) sat-
isfies

|∇h(x)| ≤ c5
1

(fa ◦ ρ)(x)
,

‖D2h(x)‖ ≤ c5
(b ◦ ρ)(x)
(fa ◦ ρ)(x)

,

(3.20)

for all x ∈ 3Ω \B(o, R1). In addition,

h(x) = 1

for every x ∈M \
(
2Ω ∪B(o, R1)

)
. Here R1 = R1(C) is the constant in Lemma

3.15 and c5 = c5(C) is a constant.

Proof. Suppose first that x ∈M \
(
2Ω ∪B(o, R1)

)
. Then

B(x, 2c1,2b(ρ(x))) ⊂ M \
(
Ω ∪B(o, 1)

)

by Lemma 3.15(b) and hence

P(h̃)(x) =
1

R(1)(x)

∫

B(x,2c1,2/b(ρ(x)))

χ
(
d(x, y)b(ρ(y)

)
h̃(y)
︸︷︷︸

=1

dmM(y)

=
R(1)(x)

R(1)(x)
= 1.

We are left to verify (3.20).

Fix x ∈ 3Ω \B(o, R1). Denote ϕ = h̃− h̃(x). By Lemma 3.15(a)

B(x, 2c1,2/b(ρ(x))) ⊂ 4Ω \B(o, 1)

and

sup
y∈B(x,2c1,2/b(ρ(x)))

|ϕ(y)| ≤ L sup
y∈B(x,2c1,2/b(ρ(x)))

|∢(v0, γ̇
o,y
0 ) − ∢(v0, γ̇

o,x
0 )|

≤ L sup
y∈B(x,2c1,2/b(ρ(x)))

|∢o(x, y)|

≤ c

b(ρ(x))fa(ρ(x))
.

(3.21)
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Let X ∈ SxM be a unit vector. Then

(3.22) X
(
P(ϕ)

)
=

1

R(1)
X

(
R(ϕ)

)
− R(ϕ)

(
R(1)

)2X
(
R(1)

)

and

D2
(
P(ϕ)

)
(X,X) =

1

R(1)
D2

(
R(ϕ)

)
(X,X) − R(ϕ)

(
R(1)

)2D
2
(
R(1)

)
(X,X)

+ 2
R(ϕ)

(
R(1)

)3

(
X

(
R(1)

))2 − 2
1

(
R(1)

)2X
(
R(1)

)
X

(
R(ϕ)

)

(3.23)

by Lemma 3.9. We use (3.22), Lemma 3.14, and (3.21) to estimate
∣
∣X

(
P(h̃)

)∣
∣ =

∣
∣X

(
P(h̃) − h̃(x)

)∣
∣ =

∣
∣X

(
P(ϕ)

)∣
∣

≤
∣
∣
∣

1

R(1)
X

(
R(ϕ)

)
∣
∣
∣ +

∣
∣
∣

R(ϕ)
(
R(1)

)2X
(
R(1)

)
∣
∣
∣

≤ c b(ρ(x)) sup
y∈B(x,2c1,2/b(ρ(x)))

|ϕ(y)|

≤ c

fa
(
ρ(x)

) .

Similarly, using (3.23), Lemma 3.14, and (3.21) we get
∣
∣D2

(
P(h̃)

)
(X,X)

∣
∣ =

∣
∣D2

(
P(h̃) − h̃(x)

)
(X,X)

∣
∣

=
∣
∣D2

(
P(ϕ)

)
(X,X)

∣
∣

≤
∣
∣
∣

1

R(1)
D2

(
R(ϕ)

)
(X,X)

∣
∣
∣ +

∣
∣
∣

R(ϕ)
(
R(1)

)2D
2
(
R(1)

)
(X,X)

∣
∣
∣

+ 2
∣
∣
∣

R(ϕ)
(
R(1)

)3

(
X

(
R(1)

))2
∣
∣
∣ + 2

∣
∣
∣

1
(
R(1)

)2X
(
R(1)

)
X

(
R(ϕ)

)
∣
∣
∣

≤ c b(ρ(x))2 sup
y∈B(x,2c1,2/b(ρ(x)))

|ϕ(y)|

≤ c
b(ρ(x))

fa
(
ρ(x)

) .

3.2. Constructing a p-superharmonic function. The function ρ−δ, δ ∈ R,
satisfies

∇(ρ−δ) = −δρ−δ−1∇ρ
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and

D2(ρ−δ) = δ(δ + 1)ρ−δ−2
(
dρ⊗ dρ

)
− δρ−δ−1D2ρ

in the set M \ {o}. In particular,

∆(ρ−δ) = δ(δ + 1)ρ−δ−2 − δρ−δ−1∆ρ.

Lemma 3.17. There exist constants R2 = R2(C) and c6 = c6(C) with the
following property. If δ ∈ (0, 1), then

|∇h| ≤ c6/(fa ◦ ρ),
‖D2h‖ ≤ c6ρ

−C4−1(f ′
a ◦ ρ)/(fa ◦ ρ),

|∇〈∇h,∇h〉| ≤ c6ρ
−C4−2(f ′

a ◦ ρ)/(fa ◦ ρ),
|∇〈∇h,∇(ρ−δ)〉| ≤ c6ρ

−C4−2(f ′
a ◦ ρ)/(fa ◦ ρ),

∇
〈
∇(ρ−δ),∇(ρ−δ)

〉
= −2δ2(δ + 1)ρ−2δ−3∇ρ

in the set 3Ω \B(o, R2).

Proof. Choose R2 ≥ max{1, R1} so large that

t1+C4b(t) ≤ f ′
a(t),

f ′
b(t)

fb(t)
≤ 2b(t),

t−1 ≤ b(t).

(3.24)

for all t ≥ R2. Such R2 exists by (A7), (A6), Lemma 2.3, and (A5).

We already know the first inequality by (3.20). The second inequality follows
from (3.20) and (3.24) since

‖D2h‖ ≤ c5
b ◦ ρ
fa ◦ ρ

≤ c5ρ
−C4−1f

′
a ◦ ρ
fa ◦ ρ

in the set 3Ω \ B(o, R2). The third inequality follows from Lemma 3.7 and the
first two inequalities by estimating

|∇〈∇h,∇h〉| ≤ 2|∇h| ‖D2h‖ ≤ 2c25ρ
−C4−1 f ′

a ◦ ρ
(fa ◦ ρ)2

≤ 2c25ρ
−C4−2f

′
a ◦ ρ
fa ◦ ρ

in 3Ω \B(o, R2).
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We proceed to the fourth inequality. Using Lemma 3.7, (3.20), and Proposition
2.5(b) we get

∣
∣∇

〈
∇h,∇(ρ−δ)

〉∣
∣ ≤ |∇h|

∥
∥D2(ρ−δ)

∥
∥ +

∣
∣∇(ρ−δ)

∣
∣‖D2h‖

≤ c5
fa ◦ ρ

(

δ(δ + 1)ρ−δ−2 + δρ−δ−1‖D2ρ‖
)

+ δρ−δ−1 c5(b ◦ ρ)
fa ◦ ρ

≤ c5
fa ◦ ρ

(

2δρ−δ−2 + δρ−δ−1 f
′
b ◦ ρ
fb ◦ ρ

)

+ δρ−δ−1 c5(b ◦ ρ)
fa ◦ ρ

=
c5δρ

−δ−1

fa ◦ ρ
(

2ρ−1 +
f ′
b ◦ ρ
fb ◦ ρ

+ (b ◦ ρ)
)

in the set 3Ω \B(o, R2). Hence (3.24) implies

∣
∣∇

〈
∇h,∇(ρ−δ)

〉∣
∣ ≤ 5c5ρ

−δ−1 b ◦ ρ
fa ◦ ρ

≤ 5c5ρ
−δ−1ρ−C4−1f

′
a ◦ ρ
fa ◦ ρ

≤ 5c5ρ
−C4−2f

′
a ◦ ρ
fa ◦ ρ

in 3Ω \B(o, R2). This proves the fourth inequality.

The last equality holds since

∇
〈
∇(ρ−δ),∇(ρ−δ)

〉
= ∇

〈
−δρ−δ−1∇ρ,−δρ−δ−1∇ρ

〉

= δ2∇(ρ−2δ−2)

= −2δ2(δ + 1)ρ−2δ−3∇ρ
in M \ {o}.

Denote

φ1 =
1 +

√

1 + 4C2
1

2
> 1 and δ1 = min

{

C4,
−1 + (n− 1)φ1

1 + (n− 1)φ1

}

.

Then δ1 ∈ (0, 1).

Lemma 3.18. Let δ ∈ (0, δ1). Denote

λ =
1 + δ

(1 − δ)(n− 1)φ1
∈ (0, 1).

There exists a constant R3,δ = R3,δ(C, δ) ≥ R2 such that

−∆(ρ−δ) > 0,
−∆(ρ−δ)

δρ−δ−1∆ρ
≥ 1 − λ,

|∆h|
−∆(ρ−δ)

≤ δ,
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in the set 3Ω \B(o, R3,δ).

Proof. Since 0 < δ < δ1, we see that 0 < λ < 1.

Define a1 : [0,∞) → [0,∞) such that a1 is a smooth function that is constant
in some neighborhood of 0, a1 ≤ a everywhere, and a1(t) = C1t

−1 for every
t ≥ T1 + 1. Such a function exists by the assumption (A1). Then

f ′
a

fa
≥ f ′

a1

fa1

everywhere by Lemma 2.2. By (2.1) we have

lim
t→∞

tf ′
a1(t)

fa1(t)
= φ1.

Therefore

lim inf
t→∞

tf ′
a(t)

fa(t)
≥ φ1.

Since δ < C4, we have

lim
t→∞

t−C4+δ = 0.

Using these formulas we see that there exists R3,δ ≥ R2 such that

(3.25)
ρ(x)(f ′

a ◦ ρ)(x)
(fa ◦ ρ)(x)

≥ (1 − δ)φ1

and

(3.26)
2c6
δ
ρ(x)−C4+δ ≤ δ(1 − λ)

whenever x ∈M \B(o, R3,δ).

By Proposition 2.5(b) we have

(3.27) ∆ρ ≥ (n− 1)
f ′
a ◦ ρ
fa ◦ ρ

> 0

in 4Ω. Inequalities (3.27) and (3.25) imply

(3.28)
1 + δ

ρ∆ρ
≤ 1 + δ

(n− 1)ρ(f ′
a ◦ ρ)/(fa ◦ ρ)

≤ 1 + δ

(n− 1)(1 − δ)φ1
= λ

in 4Ω \B(o, R3,δ). By (3.28) we have

(3.29)
−∆(ρ−δ)

δρ−δ−1∆ρ
=

−δ(δ + 1)ρ−δ−2 + δρ−δ−1∆ρ

δρ−δ−1∆ρ
= 1 − 1 + δ

ρ∆ρ
≥ 1 − λ
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in the set 4Ω \ B(o, R3,δ). In particular, ∆(ρ−δ) < 0. By (3.29) and (3.27) we
now have

|∆h|
−∆(ρ−δ)

≤ (1 − λ)−1 |∆h|
δρ−δ−1∆ρ

≤ (1 − λ)−1 |∆h|
δ(n− 1)ρ−δ−1(f ′

a ◦ ρ)/(fa ◦ ρ)
in 4Ω \B(o, R3,δ). Here we can estimate |∆h| with Lemma 3.17 and get

|∆h|
−∆(ρ−δ)

≤ (1 − λ)−1 nc6ρ
−C4−1(f ′

a ◦ ρ)/(fa ◦ ρ)
δ(n− 1)ρ−δ−1(f ′

a ◦ ρ)/(fa ◦ ρ)

≤ (1 − λ)−12c6
δ
ρ−C4+δ

in the set 3Ω \B(o, R3,δ). Using (3.26) we see that

−|∆h|/∆(ρ−δ) ≤ δ

in 3Ω \B(o, R3,δ).

Lemma 3.19. Suppose that

p ∈
(
1, 1 + (n− 1)φ1

)
.

Then there exist constants δ = δ(p, C) ∈ (0, δ1) and R4 = R4(p, C) such that
the function ρ−δ + σh is a p-superharmonic in the set 3Ω \ B̄(o, R4) for every
σ ∈ [−1, 1].

Proof. Fix σ ∈ [−1, 1]. Choose δ ∈ (0, δ1) so that (1−φ1)+δ < 0, −C4+2δ < 0,
and

δ +
(

max{p− 2, 0} + δ|p− 2|
)

(1 − δ)−3 (1 + δ)

(1 − δ)(n− 1)φ1 − (1 + δ)
< 1.

Such δ exists since p− 2 < (n− 1)φ1 − 1. As in Lemma 3.18, we denote

λ =
1 + δ

(1 − δ)(n− 1)φ1

.

Then 0 < λ < 1.

Let a1 be as in the proof of Lemma 3.18. Since a ≥ a1, fa ≥ fa1 by Lemma
2.2. Denote

c′ = lim inf
t→∞

fa(t)

tφ1

.

By Example 2.1 we have

c′ ≥ lim inf
t→∞

fa1(t)

tφ1

> 0.

Lemma 3.17 now implies that

|∇h|
|∇(ρ−δ)| ≤

c6/(fa ◦ ρ)
δρ−δ−1

≤ 2c6
δc′

ρ(1−φ1)+δ
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in 3Ω \B(o, r) if r is large. Note that we chose δ such that (1− φ1) + δ < 0. By
this, Lemma 3.18, and (3.25) we can choose R4 ≥ R3,δ such that

(3.30)
|∇h|

|∇(ρ−δ)| ≤ δ,

(3.31)
|∆h|

−∆(ρ−δ)
≤ δ,

(3.32)
ρ(f ′

a ◦ ρ)
fa ◦ ρ

≥ (1 − δ)φ1,

and

(3.33)
2c6|p− 2|(1 − δ)−2

(1 − λ)(n− 1)

ρ−C4+2δ

δ2
≤ δ

in 3Ω \B(o, R4).

Denote u = ρ−δ + σh. Then |∇u| > 0 and ∆u < 0 in 3Ω \B(o, R4) by (3.30),
(3.31), and Lemma 3.18. We now have

p−2
2
|∇u|p−4

〈
∇〈∇u,∇u〉,∇u

〉

−|∇u|p−2∆u
=
p− 2

2

〈
∇〈∇u,∇u〉,∇u

〉

−|∇u|2∆u

=
p− 2

2

(
〈
∇〈∇(ρ−δ),∇(ρ−δ)〉,∇(ρ−δ)

〉

−|∇u|2∆u

+

〈

σ2∇〈∇h,∇h〉 + 2σ∇〈∇h,∇(ρ−δ)〉,∇u
〉

−|∇u|2∆u

+
σ
〈
∇〈∇(ρ−δ),∇(ρ−δ)〉,∇h

〉

−|∇u|2∆u
)

≤ p− 2

2

〈
∇〈∇(ρ−δ),∇(ρ−δ)〉,∇(ρ−δ)

〉

−|∇u|2∆u
︸ ︷︷ ︸

=:T1

+
|p− 2|

2

∣
∣∇〈∇h,∇h〉

∣
∣ + 2

∣
∣∇〈∇h,∇(ρ−δ)〉

∣
∣

−|∇u|∆u
︸ ︷︷ ︸

=:T2

+
|p− 2|

2

∣
∣∇〈∇(ρ−δ),∇(ρ−δ)〉

∣
∣|∇h|

−|∇u|2∆u
︸ ︷︷ ︸

=:T3
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in 3Ω \ B(o, R4). We have to estimate the terms T1, T2, and T3. To do this we
first denote

T =

∣
∣∇〈∇(ρ−δ),∇(ρ−δ)〉

∣
∣

−|∇u|∆u
and estimate this. By (3.30), (3.31), Lemma 3.18, and Proposition 2.5(b) we
have

1

−|∇u|∆u ≤ (1 − δ)−2 1

−|∇(ρ−δ)|∆(ρ−δ)

≤ (1 − δ)−2 1

δ2ρ−2δ−2(1 − λ)∆ρ

≤ (1 − δ)−2 1

δ2ρ−2δ−2(1 − λ)(n− 1)

fa ◦ ρ
f ′
a ◦ ρ

(3.34)

in 3Ω \B(o, R4). By Lemma 3.17, (3.34), and (3.32) we have

T =
2δ2(1 + δ)ρ−2δ−3

−|∇u|∆u

≤ 2(1 − δ)−2 δ2(1 + δ)ρ−2δ−3

δ2ρ−2δ−2(1 − λ)(n− 1)

fa ◦ ρ
f ′
a ◦ ρ

= 2(1 − δ)−2 (1 + δ)

(1 − λ)(n− 1)ρ

fa ◦ ρ
f ′
a ◦ ρ

≤ 2(1 − δ)−3 (1 + δ)

(1 − λ)(n− 1)φ1

= 2(1 − δ)−2 (1 + δ)

(1 − δ)(n− 1)φ1 − (1 + δ)

(3.35)

in 3Ω \B(o, R4).

We start to estimate T1. If p ≤ 2, then T1 ≤ 0 in 3Ω \B(o, R4) since
〈
∇〈∇(ρ−δ),∇(ρ−δ)〉,∇(ρ−δ)

〉
=

〈
−2δ2(δ + 1)ρ−2δ−3∇ρ,−δρ−δ−1∇ρ

〉

= 2δ3(δ + 1)ρ−3δ−4 > 0.

On the other hand, if p > 2, then by (3.35) and (3.30) we have

T1 ≤
p− 2

2
T
|∇(ρ−δ)|
|∇u|

≤ (p− 2)(1 − δ)−3 (1 + δ)

(1 − δ)(n− 1)φ1 − (1 + δ)

in 3Ω \B(o, R4).
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Next we estimate T2. By (3.34), Lemma 3.17, and (3.33) we have

T2 =
|p− 2|

2

∣
∣∇〈∇h,∇h〉

∣
∣ + 2

∣
∣∇〈∇h,∇(ρ−δ)〉

∣
∣

−|∇u|∆u

≤ |p− 2|(1 − δ)−2

∣
∣∇〈∇h,∇h〉

∣
∣ +

∣
∣∇〈∇h,∇(ρ−δ)〉

∣
∣

δ2ρ−2δ−2(1 − λ)(n− 1)

fa ◦ ρ
f ′
a ◦ ρ

≤ |p− 2|(1 − δ)−22c6ρ
−C4−2(f ′

a ◦ ρ)/(fa ◦ ρ)
δ2ρ−2δ−2(1 − λ)(n− 1)

fa ◦ ρ
f ′
a ◦ ρ

=
2c6|p− 2|(1 − δ)−2

(1 − λ)(n− 1)

ρ−C4+2δ

δ2

≤ δ

in 3Ω \B(o, R4).

We still have to estimate T3. By (3.30) and (3.35) we have

T3 =
|p− 2|

2

∣
∣∇〈∇(ρ−δ),∇(ρ−δ)〉

∣
∣|∇h|

−|∇u|2∆u

=
|p− 2|

2
T
|∇h|
|∇u|

≤ |p− 2|
2

T
δ

1 − δ

≤ δ|p− 2|(1 − δ)−3 (1 + δ)

(1 − δ)(n− 1)φ1 − (1 + δ)

in 3Ω \B(o, R4). We combine our results and get

p−2
2
|∇u|p−4

〈
∇〈∇u,∇u〉,∇u

〉

−|∇u|p−2∆u
≤ T1 + T2 + T3

≤ δ +
(

max{p− 2, 0} + δ|p− 2|
)

(1 − δ)−3 (1 + δ)

(1 − δ)(n− 1)φ1 − (1 + δ)

< 1

in 3Ω \B(o, R4) by our choice of δ. It follows that

div
(
|∇u|p−2∇u

)
= |∇u|p−2∆u+

〈
∇

(
|∇u|p−2

)
,∇u

〉

= |∇u|p−2∆u+ p−2
2
|∇u|p−4

〈
∇〈∇u,∇u〉,∇u

〉

< 0

in 3Ω \B(o, R4). Therefore u = ρ−δ + σh is a continuous p-supersolution, hence
p-superharmonic in 3Ω \ B̄(o, R4).
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Let δ and R4 be as in Lemma 3.19.

Lemma 3.20. Suppose that

p ∈
(
1, 1 + (n− 1)φ1

)
.

Then there exists a function w : M → [0, 1] such that w is continuous and
p-superharmonic in M , w|

(
M \ (3Ω \ B̄(o, R4))

)
≡ 1, and

(3.36) lim
x→γv0 (∞), x∈M

w(x) = 0.

Proof. Denote U = 3Ω \ B̄(o, R4) and Uk = U ∩B(o, k) if k ∈ N ∩ (R4 + 1,∞).
Let η : M → R,

η(x) = min
(

1,max
(
R4 + 1 − ρ(x), h(x)

))

.

Then η : M → [0, 1] is continuous, η|∂B(o, R4) ≡ 1, and η(x) = h(x) for every
x ∈ M \ B(o, R4 + 1). If k ∈ N ∩ (R4 + 1,∞), let uk : Uk → R be the unique
p-harmonic function with uk − η ∈ W 1,p

0 (Uk). Let k ∈ N ∩ (R4 + 1,∞) and
x0 ∈ ∂Uk. Then

(3.37) lim
x→x0, x∈Uk

uk(x) = η(x0) =

{

1 if ρ(x0) < k,

h(x0) if ρ(x0) > R4,

since Uk is p-regular and since h|
(
M \ (2Ω ∪ B(o, R1))

)
≡ 1 by Lemma 3.16.

Now (uk) is a bounded sequence of p-harmonic functions. Hence there exists
a subsequence, again denoted by (uk), and a p-harmonic function u : U → [0, 1]
such that uk → u locally uniformly in U . It follows from (3.37) that if x0 ∈
M ∩ ∂U , then

(3.38) lim
x→x0, x∈U

u(x) = 1.

By (3.37) we have

lim
x→x0, x∈Uk

uk(x) ≤ ρ(x0)
−δ/R−δ

4 + h(x0)

for every k ∈ N ∩ (R4 + 1,∞) and every x0 ∈ ∂Uk. The function ρ−δ/R−δ
4 + h

is p-superharmonic in Uk by Lemma 3.19 and hence we get by the comparison
principle that

uk ≤ ρ−δ/R−δ
4 + h

in Uk. It follows that
u ≤ ρ−δ/R−δ

4 + h

in U . This implies that

lim sup
x→γv0 (∞), x∈U

u(x) ≤ h
(
γv0(∞)

)
= 0.
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Thus

(3.39) lim
x→γv0(∞), x∈U

u(x) = 0.

Define w : M → [0, 1],

w(x) =

{

min(1, 2u)(x) if x ∈ U,

1 if x ∈M \ U.
Because the minimum of two p-superharmonic functions is p-superharmonic
and (3.38) holds for every x0 ∈ M ∩ ∂U , we see that w is continuous and p-
superharmonic in some neighborhood of each point in M . It follows that w
is p-superharmonic since p-superharmonicity is a local property. The equation
(3.36) follows from (3.39).

3.3. p-regular points at infinity. We are ready to prove our main result in
this section.

Theorem 3.21. Let a, b : [0,∞) → [0,∞) be smooth functions that are constant
in some neighborhood of 0. Suppose that a and b satisfy the conditions (A1)-
(A7). Suppose that M ∋ o is a Cartan-Hadamard n-manifold and ρ = ρo. Let
x0 ∈M(∞) and let U be a neighborhood of x0 in the cone topology. Suppose that

−(b ◦ ρ)2(x) ≤ KM(P ) ≤ −(a ◦ ρ)2(x)

for every x ∈ U ∩M and every 2-dimensional subspace P ⊂ TxM . Let

p ∈
(
1, 1 + (n− 1)φ1

)
,

where

φ1 =
1 +

√

1 + 4C2
1

2
.

Then x0 is a p-regular point at infinity.

Proof. Fix an arbitrary continuous function f : M(∞) → R. We have to show
that the upper Perron solution Hf satisfies

lim
x→x0

Hf(x) = f(x0).

Fix ε > 0. Denote v0 = γ̇o,x0

0 . Choose R > 0 and L ∈ (8/π,∞) such that
T (v0, 4/L,R) ⊂ U and that |f(x1) − f(x0)| < ε for all x1 ∈ C(v0, 4/L) ∩M(∞).

Let k > 1 and define b̃ = kb and ã =
(
1 − χ(·/k)

)
a, where χ ∈ C∞(R) is

such that 0 ≤ χ ≤ 1, suppχ ⊂ [−2, 2], and χ|[−1, 1] ≡ 1. Then ã and b̃ satisfy
the conditions (A1)-(A7) with constants T̃1 = max{T1, 2k}, C̃1 = C1, C̃2 = C2,
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C̃3 = C3, Q̃ = Q, and C̃4 = C4. Conditions (A1)-(A6) are easy to verify and
(A7) follows from Lemma 2.4. By choosing k > 1 large enough we have

−(b̃ ◦ ρ)2(x) ≤ KM(P ) ≤ −(ã ◦ ρ)2(x)

for every x ∈ C(v0, 4/L) ∩M and every 2-dimensional subspace P ⊂ TxM . By

considering ã and b̃ instead of a and b we are now in a situation where we can
apply Lemma 3.20. Let w be the p-superharmonic function described there.
Then

Hf ≤ f(x0) + ε+ 2(sup |f |)w
by the definition of Hf and the properties of w. Since

lim
x→x0

w(x) = 0,

we get lim supx→x0
Hf (x) ≤ f(x0) + ε. Letting ε → 0 gives

lim sup
x→x0

Hf(x) ≤ f(x0).

Similarly one proves that the lower Perron solution Hf satisfies

lim inf
x→x0

Hf(x) ≥ f(x0).

Taking into account Hf ≥ Hf we get limx→x0
Hf (x) = f(x0).

The most interesting special cases of this result are given by the following two
corollaries.

Corollary 3.22. Let φ > 1 and ε > 0. Suppose that M ∋ o is a Cartan-
Hadamard n-manifold and ρ = ρo. Let x0 ∈ M(∞) and let U be a neighborhood
of x0 in the cone topology. Suppose that

(3.40) −ρ(x)2φ−4−ε ≤ KM(P ) ≤ −φ(φ− 1)

ρ(x)2

for every x ∈ U ∩M and every 2-dimensional subspace P ⊂ TxM . Then x0 is a
p-regular point at infinity for every p ∈

(
1, 1 + (n− 1)φ

)
.

Proof. Without loss of generality we can assume that U = T (γ̇o,x0

0 , α, r) for
some α > 0 and r > 1. We can also assume that ε < 2φ− 2.

Denote C1 =
√

φ(φ− 1). If t ≥ r + 1, let

b(t) = tφ−2−ε/2.

Extend b to a smooth function b : [0,∞) → (0,∞) that is monotonic and constant
in some neighborhood of 0. If t ≥ r + 1, let

a(t) = C1t
−1
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and extend a to a smooth function a : [0,∞) → [0,∞) that is constant in some
neighborhood of 0 and that satisfies a ≤ b. This can be done since

C1t
−1 ≤ tφ−2−ε/2

for every t ≥ r by (3.40). Now a and b satisfy (A1)-(A7) with constants T1 =
r + 1, C1, some C2 > 0, some C3 > 0, Q = max{1/2,−φ + 2 + ε/2}, and any
C4 ∈ (0, ε/2). The sectional curvatures satisfy

−(b ◦ ρ)2(x) ≤ KM(P ) ≤ −(a ◦ ρ)2(x)

for every x ∈ T (γ̇o,x0, α, r+ 1)∩M and every 2-dimensional subspace P ⊂ TxM
and the claim follows from Theorem 3.21.

Corollary 3.23. Let k > 0 and ε > 0. Suppose that M ∋ o is a Cartan-
Hadamard n-manifold and ρ = ρo. Let x0 ∈ M(∞) and let U be a neighborhood
of x0 in the cone topology. Suppose that

(3.41) −ρ(x)−2−εe2kρ(x) ≤ KM(P ) ≤ −k2

for every x ∈ U ∩M and every 2-dimensional subspace P ⊂ TxM . Then x0 is a
p-regular point at infinity for every p ∈ (1,∞).

Proof. Let r0 > 1 be so large that t 7→ t−1−ε/2ekt is increasing on [r0,∞).
Without loss of generality we can assume that U = T (γ̇o,x0

0 , α, r) for some α > 0
and r > r0.

Fix p ∈ (1,∞). Let a(t) = k for every t ≥ 0. Let b(t) = t−1−ε/2ekt for every
t ≥ r + 1 and extend b to a smooth increasing function b : [0,∞) → (0,∞) such
that b is constant in a neighborhood of 0 and a ≤ b everywhere. This can be
done since k ≤ t−1−ε/2ekt for every t ≥ r by (3.41). Choose C1 > 0 to be so large
that φ, defined by

φ =
1 +

√

1 + 4C2
1

2
,

satisfies p < 1 + (n − 1)φ. Now a and b satisfy (A1)-(A7) with constants T1 =
C1/k, C1, some C2 > 0, some C3 > 0, Q = 1/2, and any C4 ∈ (0, ε/2). The
sectional curvatures satisfy

−(b ◦ ρ)2(x) ≤ KM(P ) ≤ −(a ◦ ρ)2(x)

for every x ∈ T (γ̇o,x0

0 , α, r+ 1)∩M and every 2-dimensional subspace P ⊂ TxM
and it follows from Theorem 3.21 that x0 is p-regular.

Remark 3.24. 1) In the case of the Laplacian (p = 2), the results of the
previous corollaries are similar to those presented by Hsu in [23]. Hsu used
probabilistic methods whereas our proof is analytic.
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2) The condition p < 1+(n−1)φ, that appears in Theorem 3.21 and Corollary
3.22 is automatically satisfied if p ≤ n, in particular in the most important
cases p = 2 and p = n. This condition appeared and was discussed in [33].

3) In the case n = 2 Theorem 3.21, Corollary 3.22, and Corollary 3.23 follow
as special cases from [33]. In this case no curvature lower bound is needed.

4. Dirichlet problem at infinity on Gromov hyperbolic

metric measure spaces

4.1. Hyperbolic metric spaces. In this subsection we recall the basic notions
related to Gromov hyperbolic metric spaces. Our notation and terminology is
similar to that in [34]. Let X = (X, d) be a metric space. We usually write
|x−y| for the distance d(x, y) between points x, y ∈ X. For points x, y, o ∈ X in
a metric space X, the Gromov product of x and y with respect to the basepoint
o is defined by

(x | y)o = 1
2

(
|x− o| + |y − o| − |x− y|

)
.

Note that 0 ≤ (x | y)o ≤ min{|x − o|, |y − o|}. Moreover, if o′ ∈ X is another
basepoint, then

(4.1) |(x | y)o − (x | y)o′| ≤ |o− o′|
for all x, y ∈ X. The metric space X is called (Gromov) δ-hyperbolic, with δ ≥ 0,
if

(4.2) (x | z)o ≥ min{(x | y)o, (y | z)o} − δ

for all x, y, z, o ∈ X. The space X is called (Gromov) hyperbolic if it is δ-
hyperbolic for some δ ≥ 0.

We assume from now on that X is δ-hyperbolic. We fix a basepoint o ∈ X
and abbreviate (x | y) = (x | y)o. A sequence x̄ = (xi) of points in X is called a
Gromov sequence, or a sequence converging at infinity , if

(4.3) lim
i,j→∞

(xi | xj) = ∞.

The condition (4.3) is independent of the choice of the basepoint o by (4.1). It
is worth observing that

|xi − o| = (xi | xi) → ∞
for a Gromov sequence (xi). We say that two Gromov sequences x̄ = (xi) and
ȳ = (yi) are equivalent , and write x̄ ∼ ȳ, if (xi | yi) → ∞ as i → ∞. This
defines an equivalence relation on the set of all Gromov sequences; the relation
is transitive due to (4.2). Note that x̄ is equivalent to all of its subsequences.
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The Gromov boundary of X, also called the boundary at infinity of X, is the set
of all equivalence classes

∂GX = {[x̄] : x̄ is a Gromov sequence in X}.
The set

X∗ = X ∪ ∂GX
is called the Gromov closure of X.

To introduce an appropriate topology on X∗ and a family of metrics in ∂GX
we next define the Gromov product (a | b) for all a, b ∈ X∗. Following [14, p. 18]
we set

(a | b) = inf

{

lim inf
i,j→∞

(xi | yj) : x̄ ∈ a, ȳ ∈ b

}

for a, b ∈ ∂GX, and

(a | y) = (y | a) = inf
{

lim inf
i→∞

(xi | y) : x̄ ∈ a
}

for a ∈ ∂GX and y ∈ X. It then follows that

(4.4) (a | c) ≥ min{(a | b), (b | c)} − δ

for all a, b, c ∈ X∗. Note that (a | b) = ∞ if and only if a = b ∈ ∂GX. Let ε > 0
and define

̺ε(a, b) =

{

exp
(
−ε(a | b)

)
, if a 6= b,

0, if a = b.

By (4.4), we then have

̺ε(a, c) ≤ eεδ max{̺ε(a, b), ̺ε(b, c)}
for all a, b, c ∈ X∗. For a, b ∈ X∗ we define

(4.5) dε(a, b) = inf

k∑

j=1

̺ε(aj , aj−1),

where the infimum is taken over all finite sequences a = a0, . . . , ak = b in X∗. If
ε > 0 is so small that eεδ ≤ 2, then dε is a metric satisfying

1

4
̺ε(a, b) ≤ dε(a, b) ≤ ̺ε(a, b)

for all a, b ∈ X∗, cf. [16] and [34]. We say that the metric space (X∗, dε) is
obtained from the δ-hyperbolic space X.

Let Td denote the original topology of X induced by the metric d. Each metric
dε induces a topology Tdε

on X∗. For fixed a ∈ X, ̺ε(a, b) → exp(−ε|a− o|) as
|a− b| → 0. Consequently, the open ball Bdε

(a, r), a ∈ X, with respect to dε is
the singleton {a} for all r ≤ 1

2
exp(−ε|a − o|). Hence Tdε

|X is discrete, i.e. all
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subsets of X are open with respect to Tdε
. However, we want to maintain the

original topology of X, and therefore we choose

T ∗ = {U ∈ Tdε
: U ∩X ∈ Td}

for the topology of X∗ for the rest of the paper; see [1, 4.7] and [34, 5.29]. It is
important to observe that Tdε

and hence T ∗ is independent of the choices of o
and ε.

Remark 4.1. IfX is a Cartan-Hadamard whose sectional curvatures are bounded
from above with a negative constant −a2 < 0, then it is Gromov-hyperbolic; see
[14, Théorème 5.1]. In this case X̄ = X ∪X(∞), equipped with cone topology,
and the Gromov closure X∗ = X ∪ ∂GX, equipped with the topology T ∗, are
homeomorphic, cf. [10, Sect. III.H.3].

4.2. p-harmonic functions on a metric measure space. Suppose that X =
(X, d, µ) is a connected, locally compact, and non-compact metric measure space
with a metric d and a Borel regular measure µ. We assume that the measure µ
is locally doubling , that is, there exist positive constants Cd and Rd such that

(4.6) 0 < µ(B(x, 2r)) ≤ Cd µ(B(x, r)) <∞
for every ball B(x, r) ⊂ X, with 0 < r ≤ Rd.

Let Γ be a family of paths in X and let 1 ≤ p < ∞. The p-modulus of Γ is
defined as

Mp(Γ) = inf

∫

X

ρp dµ,

where the infimum is taken over all Borel functions ρ : X → [0,+∞] satisfying
∫

γ

ρ ds ≥ 1

for every locally rectifiable path γ ∈ Γ. We say that a property of paths hold for
p-almost all paths if the family of paths for which the property fails is of zero
p-modulus.

A Borel function g : X → [0,+∞] is said to be an upper gradient of a function
u : X → [−∞,+∞] if, for every rectifiable path γ : [a, b] → X,

(4.7)
∣
∣u(γ(b)) − u(γ(a))

∣
∣ ≤

∫

γ

g ds

whenever both u(γ(a)) and u(γ(b)) are finite, and
∫

γ
g ds = +∞ otherwise. We

say that g is a p-weak upper gradient of u if (4.7) holds for p-almost all paths
γ : [a, b] → X.
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If u has a p-weak upper gradient in Lp(X), then it also has a minimal p-weak
upper gradient , denoted by |∇u|, in the sense that |∇u| ≤ g µ-a.e. for every
p-weak upper gradient g ∈ Lp(X) of u; see [18, 7.16].

We assume that the space (X, d, µ) supports a local weak (1, p)-Poincaré in-
equality which means that there exist constants CP > 0, RP > 0, and τ ≥ 1
such that for all balls B = B(x, r) ⊂ X, with 0 < r ≤ RP ,

(4.8)

∫

B

|u− uB| dµ ≤ CP r

(∫

τB

gp dµ

)1/p

whenever u is an integrable function in τB = B(x, τr) and g is a p-weak upper
gradient of u. Here

uB =

∫

B

u dµ =
1

µ(B)

∫

B

u dµ.

Let Ñ1,p(X) be the set of all functions u ∈ Lp(X) that have a p-weak upper

gradient g ∈ Lp(X). We equip Ñ1,p(X) with the seminorm

‖u‖Ñ1,p(X) = ‖u‖Lp(X) + inf‖g‖Lp(X),

where the infimum is taken over all p-weak upper gradients g of u. As usual, we
identify functions u, v ∈ Ñ1,p(X), and write u ∼ v, if

‖u− v‖Ñ1,p(X) = 0.

The Sobolev space N1,p(X) is then the space Ñ1,p(X)/∼ with the (well-defined)
norm

‖u‖N1,p(X) = ‖u‖Ñ1,p(X).

We say that u belongs to the local Sobolev space N1,p
loc (X) if u ∈ N1,p(U) for

every measurable U ⋐ X. Here U ⋐ X means that Ū is compact. We refer to
[30] for basic properties of the Sobolev spaces N1,p(X). In [11] Cheeger gives an
alternative definition which leads to the same Banach space if 1 < p < ∞; see
[30]. Furthermore, Cheeger [11] proved the deep result that N1,p(X) is reflexive
if 1 < p <∞.

The (Sobolev) p-capacity of a set E ⊂ X is defined by

Cp(E) = inf‖u‖N1,p(X),

where the infimum is taken over all functions u ∈ N1,p(X), with u|E ≥ 1. For
a subset Ω ⊂ X let N1,p

0 (Ω) be the space of all elements in N1,p(X) whose
representatives u satisfy

Cp
(
{x ∈ X \ Ω: u(x) 6= 0}

)
= 0.
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The space N1,p
0 (Ω) equipped with the norm

‖u‖N1,p
0

(Ω) = ‖u‖N1,p(X)

is called the Sobolev space with zero boundary values. It is worth observing that
N1,p(X) = N1,p

0 (X), and therefore N1,p
0 (Ω), for a subset Ω ⊂ X, depends on the

ambient space X. In the literature the Sobolev spaces as above are usually called
Newtonian spaces.

The local doubling condition (4.6) and the local weak (1, p)-Poincaré inequal-
ity (4.8) imply, by [19, Theorem 5.1], that there are constants c > 0, RS > 0,
and λ > 1 such that a local Sobolev-Poincaré inequality

(4.9)

(∫

B

|u− uB|λp dµ
)1/λp

≤ cr

(∫

5τB

gp dµ

)1/p

holds for all balls B = B(x, r) ⊂ X, with 0 < r ≤ RS, whenever u is an integrable
function in 5τB = B(x, 5τr) and g is a p-weak upper gradient of u. Furthermore,
if u ∈ N1,p

0

(
B(x, r)

)
, with 0 < r ≤ RS, then a local Sobolev inequality

(4.10)

(∫

B(x,r)

|u|λp dµ
)1/λp

≤ CSr

(∫

B(x,r)

gp dµ

)1/p

holds.

Let 1 < p < ∞. Suppose that Ω ⊂ X is open and ϑ ∈ N1,p(Ω). A function
u ∈ N1,p(Ω) is called a p-minimizer in Ω with boundary values ϑ if u−ϑ ∈ N1,p

0 (Ω)
and

(4.11)

∫

Ω

|∇u|p dµ ≤
∫

Ω

|∇v|p dµ

for every v ∈ N1,p(Ω), with v − ϑ ∈ N1,p
0 (Ω). Recall that |∇u| and |∇v| are

the minimal p-weak upper gradients of u and v in Ω, respectively. Let then
U ⊂ X be an open set. A function u ∈ N1,p

loc (U) is called a p-minimizer in U

if (4.11) holds for every open set Ω ⋐ U and for all functions v ∈ N1,p
loc (U), with

u − v ∈ N1,p
0 (Ω). Furthermore, a function u is called p-harmonic in U if it is a

continuous p-minimizer in U. It is proved in [27] that every p-minimizer in U can
be redefined in a set of measure zero so that it becomes locally Hölder continuous
in U. We refer to [11, 7.12, 7.14], [25, 3.2], and [31, 5.6] for the existence and
uniqueness of p-harmonic functions with prescribed boundary values in relatively
compact open sets. More precisely, suppose that Ω ⋐ X is open and that ϑ ∈
N1,p(Ω) is bounded. Then there exists a unique p-harmonic function u in Ω, with
u− ϑ ∈ N1,p

0 (Ω).

Remark 4.2. Let (X, d, µ) be a metric measure space, where X is a Riemannian
manifold, d is the Riemannian distance, and µ is the Riemannian measure. If
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u is a smooth real-valued function on X, then |∇u|, the norm of the gradient
of u, is the minimal p-weak upper gradient of u for all p ≥ 1. Thus the spaces
N1,p(X), N1,p

loc (X), and N1,p
0 (Ω), where Ω ⋐ X, coincide with the corresponding

usual Sobolev spaces W 1,p(X), W 1,p
loc (X), and W 1,p

0 (Ω). Furthermore, p-harmonic
functions in an open set U ⊂ X defined as continuous p-minimizers in U are,
equivalently, continuous (weak) solutions of the p-Laplace equation

− div
(
|∇u|p−2∇u

)
= 0,

that is,
∫

U

〈|∇u|p−2∇u,∇ϕ〉 dµ = 0

for every ϕ ∈ C∞
0 (U).

4.3. Solving the Dirichlet problem at infinity. Let X be a connected,
locally compact, and non-compact metric space equipped with a Borel regular
measure µ satisfying the local doubling condition (4.6). Furthermore, we assume
that the local weak (1, p)-Poincaré inequality (4.8) holds on X, with fixed 1 <
p < ∞. The following two lemmata are crucial in solving the Dirichlet problem
at infinity. Their proofs combine ideas from [12] and [26]; see [22] for the details.

Lemma 4.3. [22, Lemma 5.1] Suppose that a global (p, p)-Sobolev inequality

(4.12) ‖u‖p ≤ C ‖|∇u|‖p
holds for all compactly supported functions u ∈ N1,p(X). Let Ω ⋐ X be an open
set and f ∈ N1,p(Ω) a bounded continuous function. Then for every q ≥ p there
exists a constant c = c(p, q, C) such that

(4.13) ‖u− f‖Lq(Ω) ≤ c ‖|∇f |‖Lq(Ω),

where u ∈ N1,p(Ω) is the unique p-harmonic function in Ω with u− f ∈ N1,p
0 (Ω).

Proof. The idea of the proof is to first obtain the inequality

(4.14)

∫

Ω

|u− f |q−p|∇u|p dµ ≤
∫

Ω

|u− f |q−p|∇f |p dµ

by using the fact that u is a p-harmonic in Ω. Then the Sobolev inequality (4.12)
applied to the function |u− f |q/p together with (4.14) and the Hölder inequality
imply (4.13).

In the next lemma, Cd and Rd are the constants in the local doubling condi-
tion (4.6) and CS > 0, RS > 0, and λ > 1 are the constants in the local Sobolev
inequality (4.10).
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Lemma 4.4. [22, Lemma 5.2] Let 1 < p < ∞ and Q ≥ p. Let f ∈ N1,p
loc (X) be

a bounded continuous function such that its minimal p-weak upper gradient |∇f |
is bounded. Suppose that Ω ⋐ X and that u is a bounded p-harmonic function in
Ω, with u − f ∈ N1,p

0 (Ω), and u − f = 0 in X \ Ω. Then there exists a constant
d ∈ (0, 1) such that for every x ∈ X and 0 < R ≤ min{Rd, RS/2} we have

(4.15) sup
B(x,R)

|u− f |Q ≤ C

(∫

B(x,2R)

|u− f |Q dµ
)d

,

where C depends on p,Q, Cd, Rd, λ, CS, RS, supX |u − f |, and supX |∇f |, but is
independent of x ∈ X.

Proof. The idea of the proof is to first obtain a Caccioppoli type estimate
∫

X

ηp
∣
∣∇|u− f |q/p

∣
∣p dµ ≤ cqp

∫

X

ηp|u− f |q−p|∇f |p dµ+ c

∫

X

|u− f |q|∇η|p dµ

for Lipschitz test functions η by using the fact that u is p-harmonic in Ω. This
applied to suitable test functions η together with the local Sobolev inequality
(4.10) then imply (4.15). Here the argument is similar to the Moser iteration.

We employ two additional assumptions on measures of balls. The first one is
a global volume growth condition

(4.16) µ(B(o, R)) ≤ CeβR

for all R > 0, where β > 0 and C > 0 are constants and o ∈ X is fixed. The
second new assumption is a uniform positive lower bound for measures of balls
with fixed small radius. More precisely, we assume that there exist constants
Cv > 0 and 0 < Rv ≤ min{2Rd, RS} such that

(4.17) µ(B(x,Rv)) ≥ Cv

for all x ∈ X.

Theorem 4.5. [22, Theorem 6.2] Let X be a connected, locally compact, and
non-compact δ-hyperbolic metric space equipped with a non-trivial Borel regular
measure µ supported on all of X. Suppose that the local weak (1, p)-Poincaré
inequality (4.8) and the global (p, p)-Sobolev inequality (4.12) hold on X, with
a fixed 1 < p < ∞. Furthermore, we assume that the measure µ satisfies the
local doubling condition (4.6), the volume growth condition (4.16), and has the
uniform positive lower bound (4.17). If f : ∂GX → R is a bounded continuous
function, there exists a continuous function u : X∗ → R which is p-harmonic in
X and equal to f in ∂GX.
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The proof of Theorem 4.5 is carried out in several steps that we briefly de-
scribe next. Suppose first that the given bounded continuous function on ∂GX
is Lipschitz. Applying the McShane-Whitney extension theorem to the metric
space (X∗, dε) and to the L-Lipschitz function f : ∂GX → R we obtain a function
F : X∗ → R which is L-Lipschitz with respect to the metric dε. Note that F need
not be continuous in the topology T ∗ that we use for X∗. Next we define, by us-
ing a Lipschitz partition of unity, another extension of f : ∂GX → R which will be
Lipschitz in the original metric d. We denote this extension by f : X∗ → R. The
Gromov hyperbolicity of X implies that Lip f(x) has an exponentially decreasing
upper bound

(4.18) Lip f(x) ≤ cL exp
(
−ε|x− o|

)

for all x ∈ X (cf. [22, Lemma 3.2]). Here

Lip f(x) = lim sup
r→0

sup
y∈B(x,r)

|f(x) − f(y)|
r

is the pointwise upper Lipschitz constant of f at x ∈ X. This exponential
decay together with the volume growth condition (4.16) imply LQ-integrability
of |∇f | for suitably large Q. Using an exhaustion of X by relatively compact
domains and solving the Dirichlet problem with boundary values f in each of
these domains, we obtain a sequence of p-harmonic functions converging, after
passing to a subsequence, locally uniformly to a function that is p-harmonic on
all of X. To show that the p-harmonic limit function has the right boundary
values, we apply the crucial Lemmata 4.3 and 4.4. This solves the Dirichlet
problem at infinity with Lipschitz-continuous boundary values. The general case
follows by another limiting argument. We refer to [22, Section 6] for the details
and to [22, Section 7] for the discussion on the uniqueness of the solution.
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