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Geometric properties of hyperbolic polar coordinates

W. Ma and D. Minda

Abstract. In a simply connected hyperbolic region in the complex plane C

hyperbolic polar coordinates possess global Euclidean properties similar to
those of hyperbolic polar coordinates about the origin in the unit disk if and
only if the region is Euclidean convex. For example, the Euclidean distance
between travelers moving at unit hyperbolic speed along distinct hyperbolic
geodesic rays emanating from an arbitrary common initial point is increasing if
and only if the region is convex. Analogous geometric properties of hyperbolic
polar coordinates in convex regions in either the spherical plane C∞ or in
the hyperbolic plane D are established by making use of characterizations of
spherically or hyperbolically convex univalent functions.
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1. Introduction

In [7] the authors investigated geometric properties of hyperbolic polar co-
ordinates on simply connected hyperbolic regions in the Euclidean plane. In
particular, we showed that a number of Euclidean properties of hyperbolic po-
lar coordinates hold if and only the region is Euclidean convex. This paper is
devoted to the investigation of geometric properties of hyperbolic polar coordi-
nates in simply connected hyperbolic regions that lie in either the spherical plane
C∞ = C ∪ {∞} or in the hyperbolic plane D. In these two new contexts we are
able to establish analogs for many of the results that were proved for Euclidean
convex regions in the Euclidean plane. For example, hyperbolic polar coordinates
exhibit certain properties relative to spherical (hyperbolic) geometry if and only
if the region is spherically (hyperbolically) convex. The proofs of these theorems
depend upon characterizations of spherically (hyperbolically) convex univalent
functions. Some of the results in this paper were announced in [6].

The second author was supported by a Taft Faculty Fellowship and wishes to thank the Uni-
versity of Cambridge for its hospitality during his visit November 2004 - April, 2005.
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A region Ω in the Riemann sphere C∞ is hyperbolic if C∞ \ Ω contains at
least three points. The hyperbolic metric on a hyperbolic region Ω is denoted by
λΩ(w)|dw| and is normalized to have curvature

−∆ log λΩ(w)

λ2
Ω(w)

= −1,

where

△ = 4
∂2

∂w∂w̄
denotes the usual Laplacian. The hyperbolic metric on the unit disk D = {z :
|z| < 1} is given by

λD(z)|dz| =
2|dz|

1 − |z|2 .

The induced hyperbolic distance on D is

dD(a, b) = 2 tanh−1

∣

∣

∣

∣

a − b

1 − b̄a

∣

∣

∣

∣

and the hyperbolic geodesics are arcs of circles orthogonal to the unit circle. If f :
D → Ω is any meromorphic universal covering projection, then the density λΩ of
the hyperbolic metric is uniquely determined from λΩ(f(z))|f ′(z)| = 2/(1−|z|2).

We briefly recall the definition of hyperbolic polar coordinates; see [6] and
[7] for more details. Let Ω be a hyperbolic region in C∞. Fix a point a in Ω,
for θ in R, let ρθ(a, Ω) denote the unique hyperbolic ray emanating from a that
is tangent to eiθ at a. When a is fixed in Ω, we often write ρθ in place of the
more precise ρθ(a, Ω). Of course, ρθ+2nπ = ρθ for all n ∈ Z. Let w = w(s, θ),
0 ≤ s < +∞, be the hyperbolic arc length parametrization of ρθ. This means
that

∂w(s, θ)

∂s
=

eiΘ(s,θ)

λΩ(w(s, θ))
,

where eiΘ(s,θ) is a Euclidean unit tangent to ρθ at the point w(s, θ). If Ω = D and
a = 0, then ρθ is the segment [0, eiθ) with hyperbolic arc length parametrization
z(s, θ) = tanh(s/2)eiθ. In fact,

∂z(s, θ)

∂s
=

1

2
(1 − |z(s, θ)|2)eiθ =

eiθ

λD(z(s, θ))
=

(1 − |z(s, θ)|2)z(s, θ)

2|z(s, θ)| .

Suppose f : D → Ω is a meromorphic covering with f(0) = a and f ′(0) > 0.
Then w(s, θ) = f(z(s, θ)) is a hyperbolic arc length parametrization of ρθ(a, Ω).

For the unit disk D, hyperbolic geodesics exhibit various Euclidean properties.
For example, when a = 0, it is obvious that the Euclidean distance |z(s, θ1) −
z(s, θ2)| is an increasing function of s ≥ 0 for eiθ2 6= eiθ1 . Also, |z(s, θ)| is an
increasing function of s ≥ 0 for any fixed θ. In [7], we showed that a Euclidean
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convex region Ω has many analogous properties. For instance, the Euclidean
distance function |w(s, θ) − a| is an increasing function of s for any fixed θ, and
|w(s, θ1)−w(s, θ2)| is an increasing function of s for θ2 6= θ1 + 2nπ. We investigate
whether similar properties hold for convex regions in either the spherical plane
or the hyperbolic plane.

The spherical metric on C∞ is given by

σ(z)|dz| =
2|dz|

1 + |z|2 ;

it has curvature

−∆ log σ(z)

σ2(z)
= 1.

The spherical distance on C∞ is

dσ(z, w) = 2 tan−1

∣

∣

∣

∣

z − w

1 + w̄z

∣

∣

∣

∣

.

For antipodal z, w ∈ C∞, that is, w = −1/z̄, any of the infinitely many great
circular arcs connecting z and w is a spherical geodesic arc. If z, w ∈ C∞ are not
antipodal, then the unique spherical geodesic is the shorter arc between z and
w of the unique great circle determined by z and w. The orientation preserving
conformal isometries of the spherical plane form a group I(C∞). All of the
following groups are identical.

(1) the group of conformal isometries of the spherical distance dσ;

(2) the group of conformal isometries of the spherical metric σ(z)|dz| = 2|dz|
1+|z|2 ;

(3) the group of Möbius maps of the form

z 7→ az − c̄

cz + ā
, |a|2 + |c|2 = 1;

(4) the group of Möbius maps of the form

z 7→ eiθ z − c

1 + c̄z
,

where c ∈ C∞ and θ ∈ R.

The isometries of the spherical plane are sometimes called rotations since
they correspond to rotations of the unit sphere in R3 after conjugation by stere-
ographic projection; see [6] for more information.

Sections 2 through 4 deal with spherically convex functions and spherically
convex regions. Section 2 contains two two-variable characterizations of spheri-
cally convex functions. Spherical properties of hyperbolic coordinates are inves-
tigated in Section 3; for example, we prove that dσ(w(s, θ), a) is an increasing
function of s ≥ 0 for each fixed θ if and only if Ω is spherically convex. Also,
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dσ(w(s, θ1), w(s, θ2)) is an increasing function of s whenever eiθ2 6= eiθ1 if and only
if Ω is spherically convex. Applications of the two-variable characterizations of
spherically convex functions to the general study of spherically convex functions
are given in Section 4. For example, we obtain sharp lower bounds on Re {a2f(z)}
and Re {1+ zf ′′(z)

f ′(z)
} for spherically convex functions f(z) = αz+a2z

2+. . .. Section

5 concerns hyperbolically convex functions and hyperbolically convex regions in
the hyperbolic plane. Because this situation closely parallels that for spherically
convex regions, we present fewer details.

2. Spherically convex univalent functions

A simply connected region Ω in the spherical plane C∞ is called spherically

convex provided that for each pair of z, w ∈ Ω every spherical geodesic connecting
z and w also lies in Ω. If Ω is spherically convex and contains a pair of antipodal
points, then Ω = C∞. Otherwise, a spherically convex region Ω is a simply
connected hyperbolic region in C∞. A meromorphic and univalent function f
defined on D is called spherically convex if its image f(D) is a spherically convex
subset of C∞. Since spherical convexity and the spherical metric are invariant
under any rotation of C∞, we may assume Ω ⊂ C if this is convenient.

Important to our study of hyperbolic polar coordinates on spherically convex
regions are characterizations of spherically convex univalent functions. One such
characterization obtained by Mejia and Minda [8] (see also [2]) is

(2.1) Re

{

1 +
zf ′′(z)

f ′(z)
− 2zf ′(z)f(z)

1 + |f(z)|2

}

≥ 0

for all z in D. Unfortunately, it is often difficult to use (2.1) because it contains
the nonholomorphic term

2zf ′(z)f(z)

(1 + |f(z)|2) .

One way to overcome this difficulty is to establish two-variable characterizations
for spherically convex univalent functions, that are holomorphic in one of the
two variables. We establish such a two-variable characterization of spherically
convex univalent functions.

Theorem 2.1. Let f be meromorphic and locally univalent in D. Then f is

spherically convex univalent function if and only if for all z, ζ in D

(2.2) Re

{

2zf ′(z)

f(z) − f(ζ)
− z + ζ

z − ζ
− 2zf ′(z)f(ζ)

1 + f(ζ)f(z)

}

> 0.
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Proof. For any g ∈ I(C∞), f(z) is spherically convex if and only if g ◦ f(z) is,
and the inequality (2.2) is invariant if we replace f by g ◦ f . Therefore, we may
assume that f is holomorphic in D.

First, we assume that f is spherically convex univalent function. The spherical
geodesic γ from a to b ∈ C can be parameterized by

w(t) =
t b−a
1+āb

+ a

1 − tā b−a
1+āb

,

0 ≤ t ≤ 1. At a, the tangent vector to γ is

w′(0) =
b − a

1 + āb
(1 + |a|2).

Fix ζ = reiθ ∈ D and let z = reiϕ, θ < ϕ ≤ θ + 2π. We consider the spherical
geodesic γϕ connecting f(ζ) and f(z). The tangent vector to γϕ at f(ζ) is

w′
ϕ(0) =

f(reiϕ) − f(ζ)

1 + f(ζ)f(reiϕ)
(1 + |f(ζ)|2).

Since f(|z| = r) is a spherically convex curve [8],

L(ϕ) = arg
{

w′
ϕ(0)

}

= arg

{

f(reiϕ) − f(ζ)

1 + f(ζ)f(reiϕ)
(1 + |f(ζ)|2)

}

is nondecreasing in (θ, θ + 2π]. Therefore,

L′(ϕ) =
∂

∂ϕ
arg

{

f(reiϕ) − f(ζ)

1 + f(ζ)f(reiϕ)

}

= Re

{

zf ′(z)

f(z) − f(ζ)
− zf ′(z)f(ζ)

1 + f(ζ)f(z)

}

≥ 0.

Let

(2.3) p(z, ζ) =
2zf ′(z)

f(z) − f(ζ)
− z + ζ

z − ζ
− 2zf ′(z)f(ζ)

1 + f(ζ)f(z)
.

As Re {(z + ζ)/(z − ζ)} = 0 for |z| = r, z 6= ζ , we conclude that Re {p(z, ζ)} ≥ 0
when |z| = |ζ | = r; for z = ζ , this follows from continuity. Because Re {p(z, ζ)}
is harmonic in both z and ζ , the Maximum Principle yields that Re {p(z, ζ)} ≥ 0
for |z| < r and |ζ | < r. If we let r → 1, we see that Re {p(z, ζ)} ≥ 0 for z, ζ ∈ D.
The Maximum Principle again implies that Re {p(z, ζ)} > 0 for z, ζ ∈ D since
p(0, ζ) = 1, which means that Re {p(z, ζ)} cannot be identically 0.
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Now, we show that if f satisfies the inequality (2.2), then (2.1) holds for all
z ∈ D. The assumption is that Re {p(z, ζ)} > 0 for z, ζ ∈ D. Since

p(z, z) = 1 +
zf ′′(z)

f ′(z)
− 2zf ′(z)f(z)

1 + |f(z)|2 ,

f is a spherically convex univalent function by (2.1).

The preceding proof shows that (2.1) is a special case of (2.2).

Corollary 2.2. Suppose f is meromorphic and locally univalent in D. Then f
is a spherically convex univalent function if and only if

(2.4) Re

{

zf ′(z) − ζf ′(ζ)

f(z) − f(ζ)
− zf ′(z)f(ζ) + ζf ′(ζ)f(z)

1 + f(ζ)f(z)

}

> 0

for all z, ζ in D.

Proof. Suppose f is a spherically convex univalent function. Then the inequality
(2.2) holds. By interchanging the roles of z and ζ , we obtain

Re

{

−2ζf ′(ζ)

f(z) − f(ζ)
+

z + ζ

z − ζ
− 2ζf ′(ζ)f(z)

1 + f(ζ)f(z)

}

> 0

for all z, ζ in D. By adding this inequality to (2.2), we get Re {2q(z, ζ)} > 0,
where

(2.5) q(z, ζ) =
zf ′(z) − ζf ′(ζ)

f(z) − f(ζ)
− zf ′(z)f(ζ) + ζf ′(ζ)f(z)

1 + f(ζ)f(z)
.

Thus, (2.4) holds.

Conversely, suppose (2.4) holds for all z, ζ in D. Then Re {q(z, z)} > 0 for
all z in D. Since

q(z, z) = 1 +
zf ′′(z)

f ′(z)
− 2zf ′(z)f(z)

1 + |f(z)|2 ,

f is spherically convex because (2.1) holds.

3. Spherically convex regions

Now, we establish spherical properties of hyperbolic polar coordinates in
spherically convex regions. It is convenient to use the density of the hyperbolic
metric relative to the spherical metric; that is,

µΩ(w) =
λΩ(w)|dw|
σ(w)|dw| =

1

2
(1 + |w|2)λΩ(w).
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Then λΩ(w)|dw| = µΩ(z)σ(w)|dw| and the function µΩ is invariant under the
group I(C∞) of rotations of the sphere.

Theorem 3.1. Suppose Ω is a simply connected hyperbolic region in C∞.

(a) If Ω is spherically convex and a ∈ Ω, then dσ(w(s, θ), a) is an increasing

function of s ≥ 0 for all θ in R. Moreover, we have the following sharp bounds:

tanh(s/2)

µΩ(a) + tanh(s/2)
√

µ2
Ω(a) − 1

≤ tan
1

2
dσ(w(s, θ), a)

≤ tanh(s/2)

µΩ(a) − tanh(s/2)
√

µ2
Ω(a) − 1

.

(b) If dσ(w(s, θ), a) is an increasing function of s ≥ 0 for each a in Ω and all θ
in R, then Ω is spherically convex.

Proof. Since both spherical convexity and spherical distance are invariant under
rotations of C∞, we may assume Ω ⊂ C. Let f : D → Ω be a conformal mapping
with f(0) = a and f ′(0) > 0. Then w(s, θ) = f(z(s, θ)), and

dσ(w(s, θ), a) = 2 tan−1

∣

∣

∣

∣

w(s, θ) − a

1 + āw(s, θ)

∣

∣

∣

∣

= 2 tan−1

∣

∣

∣

∣

f(z(s, θ)) − a

1 + āf(z(s, θ))

∣

∣

∣

∣

.

This is an increasing function of s ≥ if and only if

A(s) = log

∣

∣

∣

∣

f(z(s, θ)) − a

1 + āf(z(s, θ))

∣

∣

∣

∣

is increasing on [0, +∞). Note that

A′(s) = Re

{

f ′(z(s, θ))∂z(s,θ)
∂s

f(z(s, θ)) − a
− āf ′(z(s, θ))∂z(s,θ)

∂s

1 + āf(z(s, θ))

}

=
1 − |z(s, θ)|2

2|z(s, θ)| Re

{

z(s, θ)f ′(z(s, θ))

f(z(s, θ)) − a
− āz(s, θ)f ′(z(s, θ))

1 + āf(z(s, θ))

}

.(3.1)

(a) Assume Ω is spherically convex. Then f is a spherically convex univalent
function. By using Theorem 2.1, we obtain

A′(s) >
1 − |z(s, θ)|2

4|z(s, θ)| > 0.

Thus, A(s) is an increasing function of s ≥ 0.

As g(z) = (f(z) − a)/(1 + āf(z)) is spherically convex with g(0) = 0 and
g′(0) > 0, we have [2]

g′(0)|z|
1 +

√

1 − g′(0)2 |z|
≤ |g(z)| ≤ g′(0)|z|

1 −
√

1 − g′(0)2 |z|
.
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Since

g′(0) =
f ′(0)

1 + |a|2 =
2

λΩ(a)(1 + |a|2)
and |z(s, θ)| = tanh(s/2), we get

tanh(s/2)

µΩ(a) + tanh(s/2)
√

µ2
Ω(a) − 1

≤
∣

∣

∣

∣

f(z(s, θ)) − a

1 + āf(z(s, θ))

∣

∣

∣

∣

≤ tanh(s/2)

λµ(a) − tanh(s/2)
√

µ2
Ω(a) − 1

.

From

tan
1

2
dσ(w(s, θ), a) =

∣

∣

∣

∣

w(s, θ) − a

1 + āw(s, θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(z(s, θ)) − a

1 + āf(z(s, θ))

∣

∣

∣

∣

,

we obtain the lower and upper bounds on dσ(w(s, θ), a) in Theorem 3.1(a).

For 0 < α ≤ 1, the spherical half-plane (hemisphere)

Ωα =

{

w :
∣

∣

∣
w −

√
1 − α2/α

∣

∣

∣
<

1

α

}

is spherically convex and

kα(z) =
αz

1 −
√

1 − α2z

maps D conformally onto Ωα. We consider a = 0. Then µΩα
(0) = 1/α,

w(s, 0) =
α tanh(s/2)

1 −
√

1 − α2 tanh(s/2)

is the hyperbolic arc length parametrization of
[

0, 1+
√

1−α2

α

)

, and the upper

bound is equal to

α tanh(s/2)

1 −
√

1 − α2 tanh(s/2)
= tan

1

2
dσ(w(s, 0), 0).

This shows that the upper bound is sharp. Similarly,

w(s, π) =
−α tanh(s/2)

1 +
√

1 − α2 tanh(s/2)

is the hyperbolic arc length parametrization of
(

−1+
√

1−α2

α
, 0
]

, and the lower

bound is equal to

α tanh(s/2)

1 +
√

1 − α2 tanh(s/2)
= tan

1

2
dσ(w(s, π), 0).

Hence, the lower bound is also sharp.
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(b) Suppose for each θ in R, dσ(w(s, θ), a) is an increasing function of s. Then
A′(s) ≥ 0. From (3.1), we obtain

Re

{

zf ′(z)

f(z) − a
− āzf ′(z)

1 + āf(z)

}

≥ 0

for all z ∈ D and a ∈ Ω. Let |ζ | = |z| and a = f(ζ). Then similar to the proof of
Theorem 2.1, we can deduce that (2.2) holds. Thus, Ω is spherically convex.

Theorem 3.2. Suppose Ω is a simply connected hyperbolic region in C∞.

(a) If Ω is spherically convex and a ∈ Ω, then dσ(w(s, θ1), w(s, θ2)) is an in-

creasing function of s ≥ 0 for all eiθ2 6= eiθ1.

(b) If there exists a ∈ Ω such that dσ(w(s, θ1), w(s, θ2)) is an increasing function

of s ≥ 0 whenever eiθ2 6= eiθ1, then Ω is spherically convex.

Proof. Again, by performing a rotation of C∞ if necessary, we may assume
Ω ⊂ C. Let f : D → Ω be a holomorphic covering with f(0) = a and f ′(0) > 0.
Then

dσ(w(s, θ1), w(s, θ2)) = dσ(f(z(s, θ1)), f(z(s, θ2)))

= 2 tan−1

∣

∣

∣

∣

∣

f(z(s, θ1)) − f(z(s, θ2))

1 + f(z(s, θ2))f(z(s, θ1))

∣

∣

∣

∣

∣

,

and this is an increasing function of s if and only if

B(s) = log

∣

∣

∣

∣

∣

f(z(s, θ1)) − f(z(s, θ2))

1 + f(z(s, θ2))f(z(s, θ1))

∣

∣

∣

∣

∣

is. From

B′(s) = Re

{

f ′(z(s, θ1))
∂z
∂s

(s, θ1) − f ′(z(s, θ2))
∂z
∂s

(s, θ2)

f(z(s, θ1)) − f(z(s, θ2))

}

= −Re

{

f ′(z(s, θ1))f(z(s, θ2))
∂z
∂s

(s, θ1) + f(z(s, θ1))f ′(z(s, θ2))
∂z
∂s

(s, θ2)

1 + f(z(s, θ2))f(z(s, θ1))

}

,

we get

(3.2) B′(s) =
1 − tanh2(s/2)

2 tanh(s/2)
Re

{

z(s, θ1)f
′(z(s, θ1)) − z(s, θ2)f

′(z(s, θ2))

f(z(s, θ1)) − f(z(s, θ2))

− z(s, θ1)f
′(z(s, θ1))f(z(s, θ2)) + z(s, θ2)f ′(z(s, θ2))f(z(s, θ1))

1 + f(z(s, θ2))f(z(s, θ1))

}

.
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(a) If the region Ω is spherically convex, then f is a spherically convex univalent
function. Corollary 2.2 implies that B′(s) > 0. Therefore, B(s) is an
increasing function of s ≥ 0, and so dσ(w(s, θ1), w(s, θ2)) is increasing on
[0, +∞).

(b) Suppose that there exists a in Ω such that dσ(w(s, θ1), w(s, θ2)) is an in-
creasing function of s ≥ 0 for any θ2 6= θ1 + 2nπ. Then B′(s) ≥ 0. Thus,
from (2.5) and (3.2), we have

Re {q(z, ζ)} ≥ 0 for |z| = |ζ | < 1.

Again, by using the same argument as we did in the proof of Theorem 2.1,
we get Re {q(z, ζ)} > 0 for all z, ζ in D. By Corollary 2.2, f is a spherically
convex univalent function, so Ω is spherically convex.

Geometrically, Theorem 3.2(a) indicates that in a spherically convex region
Ω, two hyperbolic geodesics starting off in different directions from a point a in
Ω will spread farther apart relative to the spherical distance.

Theorem 3.3. Suppose Ω is a simply connected hyperbolic region in C∞.

(a) If Ω is spherically convex and a ∈ Ω, then
∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣
/(1 + |w(s, θ)|2) is an

increasing function of s ≥ 0 for all θ in R. Furthermore, the sharp lower bound

|∂w(s, θ)/∂θ|
1 + |w(s, θ)|2 ≥ tanh(s/2)

µΩ(a)(1 + tanh2(s/2)) + 2 tanh(s/2)
√

µ2
Ω(a) − 1

holds.

(b) If there exists a ∈ Ω such that

∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣
/(1 + |w(s, θ)|2) is an increasing

function of s ≥ 0 for all θ in R, then Ω is spherically convex.

Proof. Without losing of generality, we may assume Ω ⊂ C. Let f : D → Ω be
a conformal mapping with f(0) = a and f ′(0) > 0. Then w(s, θ) = f(z(s, θ)),
and

∣

∣

∣

∣

∂w(s, θ)

∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(z(s, θ))
∂z(s, θ)

∂θ

∣

∣

∣

∣

= |z(s, θ)f ′(z(s, θ))|.

Set

C(s) = log
|∂w(s, θ)/∂θ|
1 + |w(s, θ)|2 = log

|z(s, θ)f ′(z(s, θ))|
1 + |f(z(s, θ))|2 .

Then

C ′(s) =
1 − |z(s, θ)|2

2|z(s, θ)| Re

{

1 +
z(s, θ)f ′′(z(s, θ))

f ′(z(s, θ))
− 2z(s, θ)f ′(z(s, θ))f(z(s, θ))

1 + |f(z(s, θ))|2

}

.
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(a) If Ω is spherically convex, then f is a spherically convex univalent function.

Inequality (2.1) implies that C ′(s) > 0, which shows that
∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣
/(1+|w(s, θ)|2)

is an increasing function of s.

Now we derive the sharp lower bound on
∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣
/(1+|w(s, θ)|2). The function

g(z) = (f(z) − a)/(1 + āf(z)) is spherically convex with g(0) = 0 and g′(0) =
f ′(0)

1+|a|2 > 0, so [3]

1 + |g(z)|2 +
√

(1 + |g(z)|2)2 − (1 − |z|2)2|g′(z)|2
(1 − |z|2)|g′(z)| ≤ 1 +

√

1 − g′(0)2

g′(0)

1 + |z|
1 − |z| .

Or equivalently,
√

1 − (1 − |z|2)2|g′(z)|2
(1 + |g(z)|2)2

≤ 1 +
√

1 − g′(0)2

g′(0)

1 + |z|
1 − |z|

(1 − |z|2)|g′(z)|
1 + |g(z)|2 − 1.

By squaring both sides and solving the resulting inequality for |g′(z)|/(1+|g(z)|2),
we find

|g′(z)|
1 + |g(z)|2 ≥ g′(0)

1 + |z|2 + 2|z|
√

1 − g′(0)2
.

As

|f ′(z)|
1 + |f(z)|2 =

|g′(z)|
1 + |g(z)|2 , g′(0) =

2

λΩ(a)(1 + |a|2) and |z(s, θ)| = tanh(s/2),

we obtain

|∂w(s, θ)/∂θ|
1 + |w(s, θ)|2 =

|z(s, θ)f ′(z(s, θ))|
1 + |f(z(s, θ))|2

≥ tanh(s/2)

µΩ(a)(1 + tanh2(s/2)) + 2 tanh(s/2)
√

µ2
Ω(a) − 1

.

In order to show sharpness, we consider the function kα, 0 < α ≤ 1, which
is a conformal map of D onto the hemisphere Ωα and is a spherically convex
univalent function. If a = 0, then w(s, θ) = kα(tanh(s/2)eiθ) and

|∂w(s, θ)/∂θ|
1 + |w(s, θ)|2 =

∣

∣tanh(s/2)k′
α(tanh(s/2)eiθ)

∣

∣

1 + |kα(tanh(s/2)eiθ)|2

=
α tanh(s/2)

∣

∣1 −
√

1 − α2 tanh(s/2)eiθ
∣

∣

2
+ α2 tanh2(s/2)

.

When θ = π,

|∂w(s, θ)/∂θ|
1 + |w(s, θ)|2 =

α tanh(s/2)

1 + tanh2(s/2) + 2
√

1 − α2 tanh(s/2)
,
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which is equal to the lower bound as a = 0 and λΩα
(a) = 2/α.

(b) Now, suppose for some a ∈ Ω,
∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣

1 + |w(s, θ)|2
is an increasing function of s ≥ 0 for every θ in R. Then C ′(s) ≥ 0, that is, (2.1)
holds. Thus, f is a spherically convex univalent function and so Ω is spherically
convex.

Theorem 3.3(a) is geometrically plausible. Note that 2
∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣
/(1+|w(s, θ)|2)

is the speed relative to the spherical metric with which w(s, θ) is moving around
the hyperbolic circle {w : dΩ(w, a) = s}. If s1 < s2, then the point w(s2, θ) must
move faster than w(s1, θ) in order to traverse the larger hyperbolic circle in the
same time period 2π. Theorem 3.3(a) indicates that it travels not only faster in
an average sense but also pointwise faster

2 |∂w(s1, θ)/∂θ|
1 + |w(s1, θ)|2

<
2 |∂w(s2, θ)/∂θ|
1 + |w(s2, θ)|2

when using the natural hyperbolic arc length parametrization w(s, θ).

4. Applications of the two-variable characterizations

As we pointed out earlier, we cannot easily deduce properties of spherically
convex univalent functions from (2.1) since it contains a nonholomorphic term.
Theorem 2.1 overcomes this difficulty in some cases. For example, if f is spheri-
cally convex, then p(z, ζ) is holomorphic as a function of z ∈ D, has positive real
part, and satisfies

(4.1)

∣

∣

∣

∣

p(z, ζ) − 1 + |z|2
1 − |z|2

∣

∣

∣

∣

≤ 2|z|
1 − |z|2 .

As

p(z, z) = 1 +
zf ′′(z)

f ′(z)
− 2zf ′(z)f(z)

1 + |f(z)|2 ,

the nonholomorphic function p(z, z) still satisfies the inequality (4.1), which is
well known for the class consisting of holomorphic functions p(z) in D with
p(0) = 1 and Re {p(z)} > 0. Note that

∣

∣

∣

∣

p(z, z) − 1 + |z|2
1 − |z|2

∣

∣

∣

∣

≤ 2|z|
1 − |z|2

also characterizes spherically convex functions and implies the inequality (2.1),
see [3].
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We use this idea to derive a number of results for spherically convex functions.
Recall that a holomorphic and univalent function f in D with f(0) = f ′(0)−1 =
0 is called starlike of order β ≥ 0 if Re {zf ′(z)/f(z)} > β in D. By using
Theorem 2.1, we show that spherically convex functions are closely related to
starlike functions.

Theorem 4.1. If f is a spherically convex univalent function and f(0) = 0, then

for every ζ ∈ D,

Fζ(z) =
zζ

f(ζ)

f(z) − f(ζ)

(z − ζ)
(

1 + f(ζ)f(z)
)

is starlike of order 1/2.

Proof. Direct calculations yield

2zF ′
ζ(z)

Fζ(z)
− 1 = p(z, ζ),

so Theorem 2.1 implies the result.

Since Re {F (z)/z} > 1/2 and F (z)2/z is starlike if F is starlike of order 1/2
(see [11, p. 49]), we get the following results as corollaries of Theorem 4.1.

Corollary 4.2. If f is a spherically convex univalent function and f(0) = 0,
then for every ζ ∈ D,

Re







ζ

f(ζ)

f(z) − f(ζ)

(z − ζ)
(

1 + f(ζ)f(z)
)







>
1

2

for all z in D.

Corollary 4.3. If f is a spherically convex univalent function and f(0) = 0,
then for every ζ ∈ D,

F 2
ζ (z)

z
=

zζ2

f(ζ)2

(f(z) − f(ζ))2

(z − ζ)2
(

1 + f(ζ)f(z)
)2

is starlike in D.

Mejia and Pommerenke [9] obtained a number of results for spherically convex
functions by observing that f is Euclidean convex if f is spherically convex and
f(0) = 0. We now provide the sharp order of Euclidean convexity for such
spherically convex univalent functions.



158 Ma and Minda ICGFT06

Corollary 4.4. Let f(z) = αz + a2z
2 + . . ., 0 < α < 1, be a spherically convex

univalent function. Then for all z in D

(4.2) Re

{

1 +
zf ′′(z)

f ′(z)

}

>

(

α

1 +
√

1 − α2

)2

.

This result is best possible for each α.

Proof. By letting ζ → z in Corollary 4.2, we get

Re

{

zf ′(z)

f(z)

}

≥ 1 + |f(z)|2
2

.

By using (2.1), we obtain

(4.3) u(z) := Re

{

1 +
zf ′′(z)

f ′(z)

}

≥ 2|f(z)|2
1 + |f(z)|2Re

{

zf ′(z)

f(z)

}

≥ |f(z)|2.

If u(z) is identically 1, then inequality (4.2) clearly holds. If u(z) is not a con-
stant, then inequality (4.3) implies

Re

{

1 +
zf ′′(z)

f ′(z)

}

> inf {|w|2 : w 6∈ f(D)}

since u(z) is harmonic in D. The result then follows from the fact that |w| ≥
α

1+
√

1−α2
if w 6∈ f(D) [8].

Sharpness follows by considering the function kα.

inf

{

Re

{

1 +
zk′′

α(z)

k′
α(z)

}

: z ∈ D

}

=

(

α

1 +
√

1 − α2

)2

.

Next, we give the sharp lower bound on Re {a2f(z)} for spherically convex
univalent functions f(z) = αz + a2z

2 + . . .. Similar results hold for Euclidean
convex univalent functions [1] and hyperbolically convex univalent functions [5].

Theorem 4.5. Let f(z) = αz + a2z
2 + ..., 0 < α ≤ 1, be a spherically convex

univalent function. Then for all z in D

Re {a2f(z)} ≥ 1 − α2 −
√

1 − α2.

This result is best possible for all α ∈ (0, 1].

Proof. For any fixed ζ ∈ D, we consider the function pζ(z) = p(z, ζ) given in
(2.3). Then pζ(0) = 1 and Re {pζ(z)} > 0 in D from Theorem 2.1. Differentiation
of pζ(z) with respect to z produces

1

2
p′ζ(0) = − α

f(ζ)
+

1

ζ
− αfζ)
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and

1

8

(

p′′ζ(0) − p′ζ(0)
2
)

= (1 + |f(ζ)|2)
(

− a2

f(ζ)
+

α2

f(ζ)2

(

f(ζ)

αζ
− 1

))

.

By using the inequality
∣

∣p′′ζ (0) − p′ζ(0)2
∣

∣+ |p′ζ(0)|2 ≤ 4 [5], we obtain

(1 + |f(ζ)|2)
∣

∣

∣

∣

− a2

f(ζ)
+

α2

f(ζ)2

(

f(ζ)

αζ
− 1

)
∣

∣

∣

∣

≤ 1

2

(

1 −
∣

∣

∣

∣

− α

f(ζ)
+

1

ζ
− αf(ζ)

∣

∣

∣

∣

2
)

,

or,
∣

∣

∣

∣

a2f(ζ) − α2

(

f(ζ)

αζ
− 1

)
∣

∣

∣

∣

≤ 1

2(1 + |f(ζ)|2)

(

|f(ζ)|2 −
∣

∣

∣

∣

f(ζ)

ζ
− α(1 + |f(ζ)|2)

∣

∣

∣

∣

2
)

.

This implies

Re {a2f(ζ)} ≥ α2Re

{

f(ζ)

αζ
− 1

}

− 1

2(1 + |f(ζ)|2)

(

|f(ζ)|2 −
∣

∣

∣

∣

f(ζ)

ζ
− α(1 + |f(ζ)|2)

∣

∣

∣

∣

2
)

=
1

2

∣

∣

∣

∣

f(ζ)

ζ

∣

∣

∣

∣

2
1 − |ζ |2

1 + |f(ζ)|2 − 1

2
α2 +

1

2
α2|f(ζ)|2

> −1

2
α2 +

1

2
α2|f(ζ)|2.

Because Re {a2f(ζ)} is harmonic for ζ ∈ D, we obtain

Re {a2f(ζ)} ≥ −1

2
α2 +

1

2
α2inf {|w|2 : w 6∈ f(D)}.

The desired inequality follows from the fact that |w| ≥ α

1+
√

1−α2
if w 6∈ f(D) [8].

It is easy to see that for the spherically convex univalent function kα(z) the
infimum of Re {a2kα(z)} over z ∈ D is 1 − α2 −

√
1 − α2, so the lower bound is

sharp for each α ∈ [0, 1).

5. Hyperbolically convex univalent functions and regions

A simply connected region Ω in the hyperbolic plane D is called hyperbolically

convex if for all points a, b ∈ Ω the arc of the hyperbolic geodesic in D connect-
ing a and b also lies in Ω. A holomorphic and univalent function f defined on
D with f(D) ⊂ D is called hyperbolically convex if its image f(D) is a hyperbol-
ically convex subset of D. In this section, we establish properties of hyperbolic
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polar coordinates in hyperbolically convex regions in the hyperbolic plane. It is
convenient to introduce the notation

νΩ(w) =
λΩ(w)|dw|
λD(w)|dw| =

1

2
(1 − |w|2)λΩ(w)

for the density of the hyperbolic metric of a region Ω ⊂ D relative to the hy-
perbolic metric λD(w)|dw|. The quantity νΩ is invariant A(D), the group of all
isometries of the hyperbolic plane.

There are several known characterizations of hyperbolically convex functions.
For example, a holomorphic and locally univalent function f with f(D) ⊂ D is
hyperbolically convex if and only if for all z in D [4]

(5.1) Re

{

1 +
zf ′′(z)

f ′(z)
+

2zf ′(z)f(z)

1 − |f(z)|2

}

≥ 0.

Mejia and Pommerenke [10] (also see [5]) proved that a holomorphic and locally
univalent function f with f(D) ⊂ D is hyperbolically convex if and only if

(5.2) Re

{

2zf ′(z)

f(z) − f(ζ)
− z + ζ

z − ζ
+

2zf ′(z)f(ζ)

1 − f(ζ)f(z)

}

> 0

for all z, ζ in D. Similar to the proof of Corollary 2.2, we get the following
characterization of hyperbolically convex functions from (5.2).

Theorem 5.1. A holomorphic and locally univalent function f with f(D) ⊂ D

is hyperbolically convex if and only if

(5.3) Re

{

zf ′(z) − ζf ′(ζ)

f(z) − f(ζ)
+

zf ′(z)f(ζ) + ζf ′(ζ)f(z)

1 − f(ζ)f(z)

}

> 0

for all z, ζ in D.

Now we use these characterizations to derive properties of hyperbolic polar
coordinates for hyperbolically convex regions in D.

Theorem 5.2. Let Ω ⊂ D be simply connected.

(a) If Ω is hyperbolically convex and a ∈ Ω, then dD(w(s, θ), a) is an increasing

function of s ≥ 0 for all θ in R. Moreover, we have the following sharp
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bounds:

2 tanh(s/2)

νΩ(a)(1 + tanh(s/2)) +
√

ν2
Ω(a)(1 + tanh(s/2))2 − 4 tanh(s/2)

≤ tanh
1

2
dD(w(s, θ), a)

≤ 2 tanh(s/2)

νΩ(a)(1 − tanh(s/2)) +
√

ν2
Ω(a)(1 − tanh(s/2))2 + 4 tanh(s/2)

.

(b) If dD(w(s, θ), a) is an increasing function of s ≥ 0 for each a in Ω and all

θ in R, then Ω is hyperbolically convex.

Proof. Since the proof of the equivalence between dD(w(s, θ), a) being an in-
creasing function of s and Ω being hyperbolically convex parallels the proof of
Theorem 3.1, using (5.2) instead of (2.2), we omit this part of the proof.

Assume that Ω is hyperbolically convex, we derive the sharp bounds on
dD(w(s, θ), a). Let f : D → Ω be the conformal mapping with f(0) = a
and f ′(0) > 0. Then f is hyperbolically convex. This implies that g(z) =
(f(z) − a)/(1 − āf(z)) is hyperbolically convex with g(0) = 0 and

g′(0) =
f ′(0)

1 − |a|2 =
2

λΩ(a)(1 − |a|2) > 0.

We know that [4]

2g′(0)|z|
1 + |z| +

√

(1 + |z|)2 − 4g′(0)2|z|
≤ |g(z)| ≤ 2g′(0)|z|

1 − |z| +
√

(1 − |z|)2 + 4g′(0)2|z|
.

That is,

2|z|
νΩ(a)(1 + |z|) +

√

ν2
Ω(a)(1 + |z|)2 − 4|z|

≤
∣

∣

∣

∣

f(z) − a

1 − āf(z)

∣

∣

∣

∣

≤ 2|z|
νΩ(a)(1 − |z|) +

√

ν2
Ω(a)(1 − |z|)2 + 4|z|

.

As

tanh
1

2
dD(w(s, θ), a) =

∣

∣

∣

∣

w(s, θ) − a

1 − āw(s, θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(z(s, θ)) − a

1 − āf(z(s, θ))

∣

∣

∣

∣

and |z(s, θ)| = tanh(s/2), this gives the bounds in Theorem 5.2(a).
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For 0 < α ≤ 1, the hyperbolic half-plane

Hα = D \
{

w :

∣

∣

∣

∣

w +
1

α

∣

∣

∣

∣

≤
√

1 − α2

α

}

is hyperbolically convex and

Kα(z) =
2αz

1 − z +
√

(1 − z)2 + 4α2z

maps D conformally onto Hα. When a = 0, νHα
(0) = 1/α, w(s, 0) = Kα(tanh(s/2))

is the hyperbolic arc length parametrization of [0, 1), and the upper bound is
equal to

2α tanh(s/2)

1 − tanh(s/2) +
√

(1 − tanh(s/2))2 + 4α2 tanh(s/2)
= tanh

1

2
dD(w(s, 0), 0).

This shows that the upper bound is sharp. Similarly, w(s, π) = Kα(− tanh(s/2))

is the hyperbolic arc length parametrization of
(

−1+
√

1−α2

α
, 0
]

, and the lower

bound is equal to

2α tanh(s/2)

1 + tanh(s/2) +
√

(1 + tanh(s/2))2 − 4α2 tanh(s/2)
= tanh

1

2
dD(w(s, π), 0).

Thus, the lower bound is also sharp.

By using the characterization (5.3) for hyperbolically convex univalent func-
tions, we can prove the following theorem in the same manner as Theorem 3.2
was proved.

Theorem 5.3. Suppose Ω ⊂ D.

(a) If Ω is hyperbolically convex and a ∈ Ω, then dD(w(s, θ1), w(s, θ2)) is an

increasing function of s ≥ 0 for all θ2 6= θ1 + 2nπ.

(b) If there exists a ∈ Ω such that dD(w(s, θ1), w(s, θ2)) is an increasing func-

tion of s ≥ 0 whenever eiθ2 6= eiθ1, then Ω is hyperbolically convex.

Theorem 5.4. Let Ω ⊂ D be simply connected.

(a) If Ω is hyperbolically convex and a ∈ Ω, then

∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣
/(1 − |w(s, θ)|2) is

an increasing function of s ≥ 0 for all θ in R. Furthermore, we have the
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following sharp estimates:

tanh(s/2)

(1 + tanh(s/2))
√

ν2
Ω(a)(1 + tanh(s/2))2 − 4 tanh(s/2)

≤ |∂w(s, θ)/∂θ|
1 − |w(s, θ)|2

≤ tanh(s/2)

(1 − tanh(s/2))
√

ν2
Ω(a)(1 − tanh(s/2))2 + 4 tanh(s/2)

.

(b) If there exists a ∈ Ω such that

∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣

1 − |w(s, θ)|2

is an increasing function of s ≥ 0 for all θ in R, then Ω is hyperbolically

convex.

Proof. We again omit the proof of the equivalence between Ω being hyperboli-
cally convex and

∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣

1 − |w(s, θ)|2

being an increasing function of s since it parallels the proof of Theorem 3.3, using
(5.1) instead of (2.1). Assume that Ω is hyperbolically convex. We establish the
sharp bounds on the quantity

∣

∣

∣

∂w(s,θ)
∂θ

∣

∣

∣

1 − |w(s, θ)|2 .

Let f : D → Ω be the conformal mapping with f(0) = a and f ′(0) > 0. Then f
is hyperbolically convex, w(s, θ) = f(z(s, θ)), and g(z) = (f(z) − a)/(1− āf(z))
is hyperbolically convex with g(0) = 0 and

g′(0) =
f ′(0)

1 − |a|2 =
2

λΩ(a)(1 − |a|2) > 0.

Note that

|∂w(s, θ)/∂θ|
1 − |w(s, θ)|2 =

|z(s, θ)f ′(z(s, θ))|
1 − |f(z(s, θ))|2 =

|z(s, θ)g′(z(s, θ))|
1 − |g(z(s, θ))|2 .
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In [4], we established

g′(0)

(1 + |z|)
√

(1 + |z|)2 − 4g′(0)2|z|
≤ |g′(z)|

1 − |g(z)|2

≤ g′(0)

(1 − |z|)
√

(1 − |z|)2 + 4g′(0)2|z|
.

Since |z(s, θ)| = tanh(s/2), we have

tanh(s/2)

(1 + tanh(s/2))
√

ν2
Ω(a)(1 + tanh(s/2))2 − 4 tanh(s/2)

≤ |z(s, θ)g′(z(s, θ))|
1 − |g(z(s, θ))|2

=
|∂w(s, θ)/∂θ|
1 − |w(s, θ)|2

≤ tanh(s/2)

(1 − tanh(s/2))
√

ν2
Ω(a)(1 − tanh(s/2))2 + 4 tanh(s/2)

.

Therefore, the bounds in part (a) are valid.

Now, we verify the sharpness of the bounds. For 0 < α ≤ 1, the conformal
map Kα of D onto the hyperbolic half-plane Hα is hyperbolically convex. When
a = 0, w(s, θ) = Kα(tanh(s/2)eiθ), and

|∂w(s, θ)/∂θ|
1 − |w(s, θ)|2 =

tanh(s/2)|K ′
α(tanh(s/2)eiθ)|

1 − |Kα(tanh(s/2)eiθ)|2 .

When θ = 0,

|∂w(s, θ)/∂θ|
1 − |w(s, θ)|2 =

tanh(s/2)|K ′
α(tanh(s/2))|

1 − |Kα(tanh(s/2))|2

=
α tanh(s/2)

(1 − tanh(s/2))
√

(1 − tanh(s/2))2 + 4α2 tanh(s/2)
,

which equals the upper bound in this case since νHα
(0) = 1/α. For θ = π,

|∂w(s, θ)/∂θ|
1 − |w(s, θ)|2 =

tanh(s/2)|K ′
α(− tanh(s/2))|

1 − |Kα(− tanh(s/2))|2

=
α tanh(s/2)

(1 + tanh(s/2))
√

(1 + tanh(s/2))2 − 4α2 tanh(s/2)
,

which is equal to the lower bound in this case since νHα
(0) = 1/α.
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