Proceedings of the International Conference on Geometric Function Theory, Special Functions and Applications (ICGFT)

Editors: R. W. Barnard and S. Ponnusamy

J. Analysis

Volume 15 (2007), 211-219

Local Geometry of Circles and Loxodromes

R. Michael Porter

Abstract. A two-valued Möbius invariant is discussed in terms of differential invariants of smooth curves in the Riemann sphere with respect to Möbius transformations

Keywords. projective structure, circle, loxodrome, conformal invariant, Möbius transformation.

2000 MSC. Primary 30F10; Secondary 32G15.

The purpose of this note is to present some observations on the local spaces of circular and loxodromic arcs, and to draw attention to a specific Möbius invariant expression (3). In particular, we are presenting in an elementary way some material which was expressed more abstractly in [1]. Our belief is that there may be many interesting things to discover in the local geometry underlying this invariant.

In the action of the group Aut $\widehat{\mathbb{C}}$ of Möbius transformations $z\mapsto (az+b)/(cz+d)$, $a,b,c,d\in\mathbb{C}$, ad-bc=1, on the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ the Schwarzian derivative

$$S_f = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2$$

has special relevance. In particular, we point out two of the many well-known elementary invariance properties for $T \in \operatorname{Aut} \widehat{\mathbb{C}}$.

(1)
$$T(x) - T(y) = (x - y)T'(x)^{1/2}T'(y)^{1/2},$$

$$\mathcal{S}_{T \circ f} = \mathcal{S}_f.$$

Of course in (1) one needs to define the square root of T' consistently, which is done by choosing a, b, c, d in the formula for T and then noting that $T(z)^{-1/2} = cz + d$.

Research supported by CONACyT grant 46936.

1. Two-Valued Möbius Invariant

The Möbius invariant which interests us here is given as follows. Let $z:(-\varepsilon,\varepsilon)\to\widehat{\mathbb{C}}$ be a smooth (C^3) curve. Consider the following third-order differential operator.

(3)
$$p, q = z - \frac{2z'^2}{z'' \pm z'\sqrt{-2S_z}}.$$

Proposition A. The pair $\{p,q\}$ is a (2-valued) Möbius invariant: let w(t) = T(z(t)) for any fixed $T \in \operatorname{Aut} \widehat{\mathbb{C}}$. Then

(4)
$$T\left(z - \frac{2z'^2}{z'' \pm z'\sqrt{-2S_z}}\right) = w - \frac{2w'^2}{w'' \pm w'\sqrt{-2S_w}}.$$

Proof: Abbreviate $r = \pm \sqrt{\frac{1}{2}S_z} = \pm \sqrt{\frac{1}{2}S_w}$. Write x = z, $y = z - \frac{2z'^2}{z'' - 2rz'}$.

Then (1) says

(5)
$$T(x) - T(y) = \frac{2z'^2}{z'' - 2rz'} T'(z)^{1/2} T'(z - \frac{2z'^2}{z'' - 2rz'})^{1/2}$$
$$= \frac{2T'(z)^{1/2}}{T''(z)^2 z'^2 + T'(z)z'' - 2rT'(z)z'}.$$

In detail, this is because

$$\left(c\left(z - \frac{2z'^2}{z'' - 2rz'}\right) + d\right) (z'' - 2rz')$$

$$= (cz + d)^3 \left(\frac{-2c}{(cz + d)^3}z'^2 + \frac{z''}{(cz + d)^2} + \frac{2rz'}{(cz + d)^2}\right)$$

by simple algebra, and

$$T'\left(z - \frac{2z'^2}{z'' - 2rz'}\right)^{-1/2} (z'' - 2rz')$$

$$= T'\left(z - \frac{2z'^2}{z'' - 2rz'}\right)^{-3/2} (T''(z)^2 z'^2 + T'(z)z'' - 2rT'(z)z')$$

which can be seen by identifying certain appearances of 1/(cz+d) with $T'(z)^{1/2}$ and others with T''(z)/(-2c). Finally, combining (5) with (1), (2) and the Chain

Rule we have

$$w - \frac{2w'^2}{w'' \pm w'\sqrt{-2S_w}} = T(z) - \frac{2T'(z)^2 z'^2}{T''(z)^2 z'^2 + T'(z)z'' - 2rT'(z)z'}$$
$$= T(z) - \left(T(z) - T(z - \frac{2z'^2}{z'' \pm z'\sqrt{-2S_z}}\right)$$
$$= T\left(z - \frac{2z'^2}{z'' \pm z'\sqrt{-2S_z}}\right).$$

as desired. \square

2. Circle and Loxodrome Germs

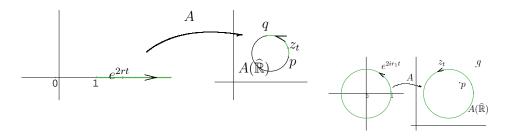
The invariant $\{p,q\}$ deserves some explanation. For a moment let $z_t = e^{2rt}$, r > 0, serve as sort of a "model" curve in $\widehat{\mathbb{C}}$. Note that the Schwarzian derivative

$$S_z(t) = -2r^2$$

is constant. For this curve the invariants (3) are

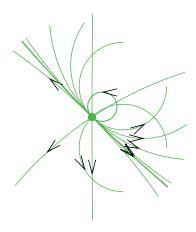
$$p, q = e^{2rt} - \frac{2(4r^2)e^{4rt}}{4r^2e^{2rt} \pm 2(2r)e^{2rt}r}$$
$$= e^{2rt} - \begin{cases} e^{2rt} \\ \infty \end{cases}$$
$$= \begin{cases} 0 \\ \infty \end{cases}.$$

Thus this curve is also special because p, q are constant as well. We now examine a somewhat more general curve, by moving $0, \infty$ to an arbitrary pair of points. Let $A \in \text{Aut } \widehat{\mathbb{C}}$ and define $w = A(e^{2rt})$. Here w is a standard "hyperbolic" parametrization of a circular arc. By (2) we have the same Schwarzian derivative, $S_w(t) = 2r^2$. Similarly, for $w = A(e^{2rt})$, $r = ir_1$ imaginary, we obtain an elliptic parametrization of the circle.



We will use this construction to define "circular germs." A circle $K\subseteq\widehat{\mathbb{C}}$ is an image $A(\widehat{\mathbb{R}}),\ A\in \mathrm{Aut}\ \widehat{\mathbb{C}}$ of the real circle $\widehat{\mathbb{R}}=\mathbb{R}\cup\infty$. In this way circles have natural parameterizations $A(e^{2rt})$. Given a point $z\in\widehat{\mathbb{C}}$, consider all circular paths passing through z parameterized in this way.

Definition. The bundle \mathcal{B} over $\widehat{\mathbb{C}}$ is comprised of all germs α of curves $A(e^{2rt})$ at t=0, where $A\in \operatorname{Aut}\widehat{\mathbb{C}},\ r\in\mathbb{C}$. The projection of α is the point $\pi(\alpha)=A(1)\in\mathbb{C}$.



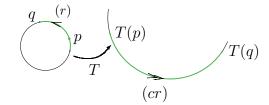
The real-differentiable structure on $\mathcal B$ comes from A and r since Aut $\widehat{\mathbb C}$ is a manifold in a natural way.

The value r will be called the "invariant velocity" of the curve or germ. This is hyperbolic for r real, elliptic for r imaginary, and parabolic for r = 0. We will now look at the natural "circular flow" $\mathcal{B} \times \mathbb{R} \to \mathcal{B}$ which is described in more detail in [1]. Each trajectory of this flow has a constant invariant velocity.

Consider $\alpha \in \mathcal{B}$ lying over $\pi(\alpha) = z_0 \in \widehat{\mathbb{C}}$, with invariant velocity r, and trajectory on the circle $K \ni z_0$. We can create a new germ $\beta \in \mathcal{B}$ in two rather obvious ways: multiplying r by a constant c, and moving to a new circle T(K). Thus we have

$$\beta = (T, c) \cdot \alpha \in \mathcal{B}$$

which is the germ of $TA(e^{crt})$ at $T(z_0)$. We will call the pair $(T, c) \in \text{Aut } \widehat{\mathbb{C}} \times \mathbb{R}$ a multiplier. All this does is move the circle (and base point) by applying T, while multiplying the invariant velocity by c.



It is a pleasant fact that for germs of the same type and based at the same point, we can *divide* one by the other. Thus we recover the multiplier

(7)
$$\frac{\beta}{\alpha} = (T, c)$$

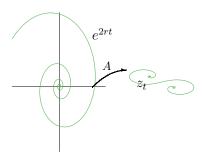
in terms of α and β . Further, given a parameterized family of multipliers we can take *derivatives*:

(8)
$$\frac{d}{dt}\Big|_{t=0} (T(t), c(t)) = (\dot{T}(t), \dot{c}(t))$$

Lastly, we mention the operation of exponentiation:

(9)
$$\exp(\dot{T}, \dot{c}) = (\exp(\dot{T}), e^{\dot{c}}).$$

The not-so-pleasant reality is that not all germs can be divided, because not all curves are of the same type. Observe also that to deal with general smooth curves z_t as in Proposition A, the Schwarzian derivative S_z will not necessarily be real or purely imaginary. So we are led to consider r in \mathbb{C} instead of \mathbb{R} . This gives the notion of loxodrome, $z_t = A(e^{2rt})$, $r \in \mathbb{C} \setminus \{0\}$, $A \in \text{Aut } \widehat{\mathbb{C}}$.



The bundle \mathcal{B}^* of loxodromic germs is defined analogously to \mathcal{B} . It is also a real manifold. In \mathcal{B}^* we can divide any loxodromic germ by any nonsingular germ (that is, one for which $r \neq 0$).

A natural 1-parameter family of Möbius transformations such as $z \mapsto e^{2rt}z$ can in fact be thought of as describing a movement of every $z \in \widehat{\mathbb{C}}$. Thus there is a natural flow on $\widehat{\mathbb{C}}$, and in fact as we will describe below, on \mathcal{B}^* . Since ∞ is

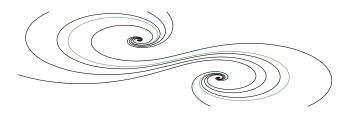
more natural than 1 as a base point in $\widehat{\mathbb{C}}$ we will henceforth use $\coth rt$ in place of e^{2rt} to describe the natural germs. Thus A(z) is replaced by A((z+1)/(z-1)) in the description of α . With this change in mind we define trajectory as follows.

Definition. The trajectory of $\alpha \in \mathcal{B}^*$ through $z \in \widehat{\mathbb{C}}$ is

(10)
$$\Phi_{\alpha,t}(z) = A\left(\frac{(\cosh rt)z + \sinh rt}{(\sinh rt)z + \cosh rt}\right).$$

The principal trajectory of α is the trajectory through $A(\infty)$,

$$\Phi_{\alpha,t}(\infty) = A(\coth rt).$$



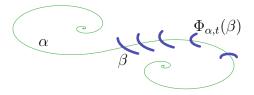
3. Local Loxodrome Geometry

We can imitate in \mathcal{B}^* many constructions which are done with the differential geometry of geodesics on Riemannian manifolds.

Primitive Parallel Transport. Let $\alpha \in \mathcal{B}^*$ and consider any $\beta \in \mathcal{B}^*$ based at the same point $z_0 \in \widehat{\mathbb{C}}$. The trajectory $\Phi_{\beta,u}(\infty)$ of β is moved by α in a natural way as follows. As in (10) write the trajectory of α as $z_t = \Phi_{\alpha,t}(\infty)$, so $z_0 = A(\infty)$. Let β have invariant velocity s, based also at $B(\infty) = z_0$. Then the germ $\beta_t \in \mathcal{B}^*$ based at z_t is characterized by its trajectories,

$$\Phi_{\beta_t,u}(z) = \Phi_{\alpha,t}(\Phi_{\beta_t,u}(\Phi_{\alpha,t}^{-1}(z))).$$

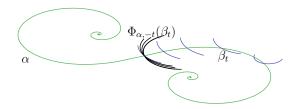
The principal trajectory of β_t is $\Phi_{\alpha,t}(\Phi_{\beta,u}(\infty))$.



Definition. The family β_t described above is the *primitive parallel transport* $\Phi_{\alpha,t}(\beta) = \beta_t \in \mathcal{B}^*$ of β along α .

Now suppose more generally, that $\beta_t \in \mathcal{B}^*$ is based at $z_t = \Phi_{\alpha,t}(\infty)$ on the principal trajectory of α , but β_t is not necessarily equal to $\Phi_{\alpha,t}(\beta)$. How can we measure how much β_t differs from $\Phi_{\alpha,t}(\beta)$? To make the comparison, we first transport β_t along α back to z(0); that is, we look at $\Phi_{\alpha,-t}(\beta_t)$. Then divide by β_0 :

$$\frac{\Phi_{\alpha,-t}(\beta_t)}{\beta_0} = (T_t, c_t).$$



Then take the derivative, thus defining

$$\frac{d\beta}{d\alpha} = \frac{d}{dt} \Big|_{0} \frac{\Phi_{\alpha,-t}(\beta_{t})}{\beta_{0}}$$

$$= \left(\frac{d}{dt} \Big|_{0} T_{t}, \frac{d}{dt} \Big|_{0} c_{t}\right)$$

$$= (\dot{T}, \dot{c}) \in \operatorname{sl}_{2} \mathbb{C} \times \mathbb{C}.$$

Definition. The covariant derivative of β_t along α is

$$D_{\alpha}\beta = \exp\left(\frac{d\beta}{d\alpha}\right) \cdot \beta_0.$$

Here $\alpha \in \mathcal{B}^*$ is fixed, $t \mapsto \beta_t \in \mathcal{B}^*$ is any smooth parametrization, and $D_{\alpha}\beta \in \mathcal{B}^*$.

From these definitions we have immediately the invariance of the covariant derivative:

(11)
$$D_{T\alpha}(T\beta) = T(D_{\alpha}\beta).$$

Further, the covariant derivative measures how β_t differs from the parallel transport of β_0 : if β_t were a primitive parallel transport $\beta_t = \Phi_{\alpha,t}(\beta_0)$, then we would have

$$\frac{\Phi_{\alpha,-t}(\beta_t)}{\beta_0} = (I,1)$$

and then

$$\frac{d\beta}{d\alpha} = (0,0).$$

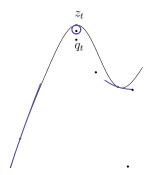
Expressed a different way, we have $D_{\alpha}\beta = \exp(0,0) \cdot \beta_0 = (1,1) \cdot \beta_0 = \beta_0$.

Parallel Transport. First we explain the Möbius invariants p, q given in (3). Let $z: (-\varepsilon, \varepsilon) \to \widehat{\mathbb{C}}$ be any smooth curve.

Definition. The contact germ $\alpha \in \mathcal{B}^*$ to the curve z_t at z_0 is the germ whose principal trajectory has third-order contact with z_t at t = 0, i.e.,

$$\frac{d^k}{dt^k}\Big|_{t=0} z_t = \frac{d^k}{dt^k}\Big|_{t=0} \Phi_{\alpha,t}(A(\infty))$$

for k = 0, 1, 2, 3.



We define the associated fixed point set $\{p_t, q_t\}$ and invariant velocity r_t at time t to be those of the unique contact germ at z_t (valid at nonsingular points, i.e., $r_t \neq 0$). By construction the contact germ is a Möbius invariant; that is, the contact germ to $w_t = T(z_t)$ is $T\alpha = (T, 1)\alpha$ when α is the contact germ to z_t . This is the content of Proposition A.

The notion of contact germ permits us to relax the condition that z_t be the trajectory of α in the definition of parallel transport.

Definition. Given $z:(-\varepsilon,\varepsilon)\to\widehat{\mathbb{C}}$, at each z_t let $\beta_t\in\mathcal{B}^*$ a loxodrome germ, varying smoothly. Define the *change of* β *along* z as the germ derivative

$$\left. \frac{d\beta_t}{dz_t} \right|_{t=0} = \left. \frac{d\beta_t}{d\alpha} \right|_{t=0}$$

where α is the contact loxodrome germ to z_t at z_0 . We say β_t is parallel along z_t when $d\beta/dz = (0,0)$ along z_t . When this is the case, call β_t the parallel transport of β_0 along z_t .

The following statements are analogous to well-known results in differential geometry.

Proposition 1. Suppose that the invariant velocity $r_t \in \mathbb{C}$ of the nonsingular curve z in $\widehat{\mathbb{C}}$ is constant. Then z is a loxodrome with a natural parametrization.

Proposition 2. Along a nonsingular curve, there exists a unique parallel transport for any loxodrome germ.

Proposition 3. The only self-parallel curves are the loxodromes.

Proposition 4. Parallel transport preserves angles.

4. Questions about Loxodromes

- 1. There is a natural Möbius-invariant inner product $\alpha_t \cdot \beta_t$ on loxodrome germs based at the same point (see [1] for the precise definition). Strangely, parallel translate does *not* preserve this inner product. Why not?
- 2. To prove Proposition 2 one uses only the contact of order k=1, and Proposition 4 uses k=2. What Proposition would result from interpreting k=3?
- 3. Take a smooth curve $z:(-\varepsilon,\varepsilon)\to\widehat{\mathbb{C}}$, and fix $x_0,x_1,x_2\in\widehat{\mathbb{C}}$. Let $C_t\in \operatorname{Aut}\widehat{\mathbb{C}}$ take these three points to $z_t,\ p_t,\ q_t$. Then one sees that $\dot{C}_tC_t^{-1}\in\operatorname{sl}_2\mathbb{C}$ and that this product is a Möbius-invariant which does not depend on the choice of x_0,x_1,x_2 . One calculates

$$\det(C_t C_t^{-1}) = -r^2 + \frac{r'^2}{4r^2},$$

Explain the term $r'^2/4r^2$, which involves d^4z/dt^4 .

4. On Riemannian manifolds, one can always reparameterize a curve to have constant velocity. By Proposition 1 this is not possible for invariant velocity for curves in $\widehat{\mathbb{C}}$. Is there a "best" reparameterization for a smooth curve in the context of Möbius transformations?

References

[1] R. Michael Porter, Differential invariants in Möbius geometry, J. Natur. Geom. 3(1993), no. 2, 97–123.

R. Michael Porter

E-MAIL: mike@math.cinvestav.mx

Address:

Department of Mathematics,

Centro de Investigación y de Estudios Avanzados del I.P.N.,

Apdo. Postal 14-740, 07000 México, D.F., Mexico