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invariants of smooth curves in the Riemann sphere with respect to Möbius
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transformation.

2000 MSC. Primary 30F10; Secondary 32G15.

The purpose of this note is to present some observations on the local spaces
of circular and loxodromic arcs, and to draw attention to a specific Möbius
invariant expression (3). In particular, we are presenting in an elementary way
some material which was expressed more abstractly in [1]. Our belief is that there
may be many interesting things to discover in the local geometry underlying this
invariant.

In the action of the group Aut Ĉ of Möbius transformations z 7→ (az+b)/(cz+

d), a, b, c, d ∈ C, ad−bc = 1, on the Riemann sphere Ĉ = C∪{∞} the Schwarzian
derivative

Sf =

(
f ′′

f ′

)
′

− 1

2

(
f ′′

f ′

)2

has special relevance. In particular, we point out two of the many well-known

elementary invariance properties for T ∈ Aut Ĉ.

T (x) − T (y) = (x − y)T ′(x)1/2 T ′(y)1/2,(1)

ST◦f = Sf .(2)

Of course in (1) one needs to define the square root of T ′ consistently, which is
done by choosing a, b, c, d in the formula for T and then noting that T (z)−1/2 =
cz + d.
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1. Two-Valued Möbius Invariant

The Möbius invariant which interests us here is given as follows. Let z :

(−ε, ε) → Ĉ be a smooth (C3) curve. Consider the following third-order differ-
ential operator.

(3) p, q = z − 2z′2

z′′ ± z′
√
−2Sz

.

Proposition A.The pair {p, q} is a (2-valued) Möbius invariant: let w(t) =

T (z(t)) for any fixed T ∈ Aut Ĉ. Then

(4) T

(
z − 2z′2

z′′ ± z′
√
−2Sz

)
= w − 2w′2

w′′ ± w′

√
−2Sw

.

Proof: Abbreviate r = ±
√

1

2
Sz = ±

√
1

2
Sw. Write x = z, y = z − 2z′2

z′′ − 2rz′
.

Then (1) says

T (x) − T (y) =
2z′2

z′′ − 2rz′
T ′(z)1/2 T ′(z − 2z′2

z′′ − 2rz′
)1/2

=
2T ′(z)1/2

T ′′(z)2z′2 + T ′(z)z′′ − 2rT ′(z)z′
.(5)

In detail, this is because

(
c

(
z − 2z′2

z′′ − 2rz′

)
+ d

)
(z′′ − 2rz′)

= (cz + d)3

( −2c

(cz + d)3
z′2 +

z′′

(cz + d)2
+

2rz′

(cz + d)2

)

by simple algebra, and

T ′

(
z − 2z′2

z′′ − 2rz′

)
−1/2

(z′′ − 2rz′)

= T ′

(
z − 2z′2

z′′ − 2rz′

)
−3/2

(T ′′(z)2z′2 + T ′(z)z′′ − 2rT ′(z)z′)

which can be seen by identifying certain appearances of 1/(cz + d) with T ′(z)1/2

and others with T ′′(z)/(−2c). Finally, combining (5) with (1), (2) and the Chain
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Rule we have

w − 2w′2

w′′ ± w′

√
−2Sw

= T (z) − 2T ′(z)2z′2

T ′′(z)2z′2 + T ′(z)z′′ − 2rT ′(z)z′

= T (z) −
(

T (z) − T (z − 2z′2

z′′ ± z′
√
−2Sz

)

= T

(
z − 2z′2

z′′ ± z′
√
−2Sz

)
.

as desired.

2. Circle and Loxodrome Germs

The invariant {p, q} deserves some explanation. For a moment let zt = e2rt,

r > 0, serve as sort of a “model” curve in Ĉ. Note that the Schwarzian derivative

Sz(t) = −2r2

is constant. For this curve the invariants (3) are

p, q = e2rt − 2(4r2)e4rt

4r2e2rt ± 2(2r)e2rtr

= e2rt −
{

e2rt

∞

=

{
0
∞ .

Thus this curve is also special because p, q are constant as well. We now examine
a somewhat more general curve, by moving 0,∞ to an arbitrary pair of points.

Let A ∈ Aut Ĉ and define w = A(e2rt). Here w is a standard “hyperbolic”
parametrization of a circular arc. By (2) we have the same Schwarzian derivative,
Sw(t) = 2r2. Similarly, for w = A(e2rt), r = ir1 imaginary, we obtain an elliptic
parametrization of the circle.

10
e2rt

-
A

A(R̂) p
zt

q

10

e2ir1t

q
A

A(R̂)

p

zt q
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We will use this construction to define “circular germs.” A circle K ⊆ Ĉ is an

image A(R̂), A ∈ Aut Ĉ of the real circle R̂ = R ∪∞. In this way circles have

natural parameterizations A(e2rt). Given a point z ∈ Ĉ, consider all circular
paths passing through z parameterized in this way.

Definition. The bundle B over Ĉ is comprised of all germs α of curves A(e2rt)

at t = 0, where A ∈ Aut Ĉ, r ∈ C. The projection of α is the point π(α) =
A(1) ∈ C.

The real-differentiable structure on B comes from A and r since Aut Ĉ is a
manifold in a natural way.

The value r will be called the “invariant velocity” of the curve or germ. This
is hyperbolic for r real, elliptic for r imaginary, and parabolic for r = 0. We will
now look at the natural “circular flow” B × R → B which is described in more
detail in [1]. Each trajectory of this flow has a constant invariant velocity.

Consider α ∈ B lying over π(α) = z0 ∈ Ĉ, with invariant velocity r, and
trajectory on the circle K ∋ z0. We can create a new germ β ∈ B in two rather
obvious ways: multiplying r by a constant c, and moving to a new circle T (K).
Thus we have

(6) β = (T, c) · α ∈ B

which is the germ of TA(ecrt) at T (z0). We will call the pair (T, c) ∈ Aut Ĉ× R

a multiplier. All this does is move the circle (and base point) by applying T ,
while multiplying the invariant velocity by c.
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(r)

p

q

�
T

T (p)
T (q)

(cr)

It is a pleasant fact that for germs of the same type and based at the same
point, we can divide one by the other. Thus we recover the multiplier

(7)
β

α
= (T, c)

in terms of α and β. Further, given a parameterized family of multipliers we can
take derivatives:

(8)
d

dt

∣∣∣∣
t=0

(T (t), c(t)) = (Ṫ (t), ċ(t))

Lastly, we mention the operation of exponentiation:

(9) exp(Ṫ , ċ) = (exp(Ṫ ), eċ).

The not-so-pleasant reality is that not all germs can be divided, because not
all curves are of the same type. Observe also that to deal with general smooth
curves zt as in Proposition A, the Schwarzian derivative Sz will not necessarily
be real or purely imaginary. So we are led to consider r in C instead of R. This

gives the notion of loxodrome, zt = A(e2rt), r ∈ C \ {0}, A ∈ Aut Ĉ.

zt

e2rt

-A

The bundle B∗ of loxodromic germs is defined analogously to B. It is also
a real manifold. In B∗ we can divide any loxodromic germ by any nonsingular
germ (that is, one for which r 6= 0).

A natural 1-parameter family of Möbius transformations such as z 7→ e2rtz

can in fact be thought of as describing a movement of every z ∈ Ĉ. Thus there

is a natural flow on Ĉ, and in fact as we will describe below, on B∗. Since ∞ is
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more natural than 1 as a base point in Ĉ we will henceforth use coth rt in place
of e2rt to describe the natural germs. Thus A(z) is replaced by A((z+1)/(z−1))
in the description of α. With this change in mind we define trajectory as follows.

Definition. The trajectory of α ∈ B∗ through z ∈ Ĉ is

(10) Φα,t(z) = A

(
(cosh rt)z + sinh rt

(sinh rt)z + cosh rt

)
.

The principal trajectory of α is the trajectory through A(∞),

Φα,t(∞) = A(coth rt).

3. Local Loxodrome Geometry

We can imitate in B∗ many constructions which are done with the differential
geometry of geodesics on Riemannian manifolds.

Primitive Parallel Transport. Let α ∈ B∗ and consider any β ∈ B∗ based at the

same point z0 ∈ Ĉ. The trajectory Φβ,u(∞) of β is moved by α in a natural way
as follows. As in (10) write the trajectory of α as zt = Φα,t(∞), so z0 = A(∞).
Let β have invariant velocity s, based also at B(∞) = z0. Then the germ βt ∈ B∗

based at zt is characterized by its trajectories,

Φβt,u(z) = Φα,t(Φβt,u(Φ
−1

α,t(z))).

The principal trajectory of βt is Φα,t(Φβ,u(∞)).

α
β

Φα,t(β)

Definition. The family βt described above is the primitive parallel transport
Φα,t(β) = βt ∈ B∗ of β along α.
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Now suppose more generally, that βt ∈ B∗ is based at zt = Φα,t(∞) on the
principal trajectory of α, but βt is not necessarily equal to Φα,t(β). How can we
measure how much βt differs from Φα,t(β)? To make the comparison, we first
transport βt along α back to z(0); that is, we look at Φα,−t(βt). Then divide by
β0:

Φα,−t(βt)

β0

= (Tt, ct).

α

Φα,−t(βt)

βt

Then take the derivative, thus defining

dβ

dα
=

d

dt

∣∣∣∣
0

Φα,−t(βt)

β0

=

(
d

dt

∣∣∣∣
0

Tt,
d

dt

∣∣∣∣
0

ct

)

= (Ṫ , ċ) ∈ sl2 C × C.

Definition. The covariant derivative of βt along α is

Dαβ = exp

(
dβ

dα

)
· β0.

Here α ∈ B∗ is fixed, t 7→ βt ∈ B∗ is any smooth parametrization, and
Dαβ ∈ B∗.

From these definitions we have immediately the invariance of the covariant
derivative:

(11) DTα(Tβ) = T (Dαβ).

Further, the covariant derivative measures how βt differs from the parallel trans-
port of β0: if βt were a primitive parallel transport βt = Φα,t(β0), then we would
have

Φα,−t(βt)

β0

= (I, 1)

and then
dβ

dα
= (0, 0).



218 R. Michael Porter ICGFT06

Expressed a different way, we have Dαβ = exp(0, 0) · β0 = (1, 1) · β0 = β0.

Parallel Transport. First we explain the Möbius invariants p, q given in (3). Let

z : (−ε, ε) → Ĉ be any smooth curve.

Definition. The contact germ α ∈ B∗ to the curve zt at z0 is the germ whose
principal trajectory has third-order contact with zt at t = 0, i.e.,

dk

dtk

∣∣∣∣
t=0

zt =
dk

dtk

∣∣∣∣
t=0

Φα,t(A(∞))

for k = 0, 1, 2, 3.
zt

qt

We define the associated fixed point set {pt, qt} and invariant velocity rt at
time t to be those of the unique contact germ at zt (valid at nonsingular points,
i.e., rt 6= 0). By construction the contact germ is a Möbius invariant; that is, the
contact germ to wt = T (zt) is Tα = (T, 1)α when α is the contact germ to zt.
This is the content of Proposition A.

The notion of contact germ permits us to relax the condition that zt be the
trajectory of α in the definition of parallel transport.

Definition. Given z : (−ε, ε) → Ĉ, at each zt let βt ∈ B∗ a loxodrome germ,
varying smoothly. Define the change of β along z as the germ derivative

dβt

dzt

∣∣∣∣
t=0

=
dβt

dα

∣∣∣∣
t=0

where α is the contact loxodrome germ to zt at z0. We say βt is parallel along zt

when dβ/dz = (0, 0) along zt. When this is the case, call βt the parallel transport
of β0 along zt.

The following statements are analogous to well-known results in differential
geometry.

Proposition 1. Suppose that the invariant velocity rt ∈ C of the nonsingular

curve z in Ĉ is constant. Then z is a loxodrome with a natural parametrization.
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Proposition 2. Along a nonsingular curve, there exists a unique parallel trans-
port for any loxodrome germ.

Proposition 3. The only self-parallel curves are the loxodromes.

Proposition 4. Parallel transport preserves angles.

4. Questions about Loxodromes

1. There is a natural Möbius-invariant inner product αt · βt on loxodrome
germs based at the same point (see [1] for the precise definition). Strangely,
parallel translate does not preserve this inner product. Why not?

2. To prove Proposition 2 one uses only the contact of order k = 1, and
Proposition 4 uses k = 2. What Proposition would result from interpreting
k = 3?

3. Take a smooth curve z : (−ε, ε) → Ĉ, and fix x0, x1, x2 ∈ Ĉ. Let Ct ∈ Aut Ĉ

take these three points to zt, pt, qt. Then one sees that ĊtC
−1

t ∈ sl2 C and
that this product is a Möbius-invariant which does not depend on the choice of
x0, x1, x2. One calculates

det(CtC
−1

t ) = −r2 +
r′2

4r2
,

Explain the term r′2/4r2, which involves d4z/dt4.

4. On Riemannian manifolds, one can always reparameterize a curve to have
constant velocity. By Proposition 1 this is not possible for invariant velocity

for curves in Ĉ. Is there a “best” reparameterization for a smooth curve in the
context of Möbius transformations?
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