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Hyperbolic geometric characterizations of convex regions

W. Ma and D. Minda

Abstract. There are a number of known characterizations of convex regions
in terms of the density of the hyperbolic metric. For instance, Ω is convex
if and only if 1/λΩ is a concave function, where λΩ denotes the density of
the hyperbolic metric on Ω. Several new characterizations of convex regions
in terms of hyperbolic geometry are given. For example, log λΩ is hyperbol-
ically convex in the sense that it is convex along each hyperbolic geodesic
parameterized by hyperbolic arclength if and only if Ω is convex. There are
also characterizations in terms of hyperbolic curvature. For instance, Ω is
convex if and only each Euclidean segment in Ω parameterized by hyperbolic
arclength has absolute hyperbolic curvature at most 1.
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1. Introduction

A region Ω in the complex plane C is hyperbolic if C \Ω contains at least two
points. Throughout this paper, we assume that Ω is hyperbolic unless stated oth-
erwise. The hyperbolic metric on a hyperbolic region Ω is denoted by λΩ(w)|dw|
and is normalized to have curvature

K(w) = −∆ log λΩ(w)

λ2
Ω(w)

= −1,

where w = u + iv and

∆ =
∂2

∂u2
+

∂2

∂v2
= 4

∂2

∂w∂w̄

denotes the usual Laplacian. The hyperbolic metric on the unit disk D is

λD(z)|dz| = 2|dz|/(1 − |z|2).
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If f : D → Ω is any holomorphic universal covering projection, then the density
λΩ of the hyperbolic metric is determined from

(1.1) λΩ(f(z))|f ′(z)| = 2/(1 − |z|2).

This paper is concerned with characterizations of convex regions in terms of
convexity properties of the density of the hyperbolic metric. Various charac-
terizations of this type are known. For instance, Kim and Minda [3] showed
that 1/λΩ is concave along every Euclidean segment parameterized by Euclidean
arclength if and only if Ω is convex. A simply connected region Ω on the Rie-
mann sphere C∞ = C∪ {∞} is called a Nehari region if any conformal mapping
f : D → Ω satisfies (1 − |z|2)2|Sf(z)| ≤ 2 for z in D, where

Sf =
f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

is the Schwarzian derivative of f . Chuaqui, Osgood and Pommerenke [1] proved

that a simply connected region Ω in C∞ is Nehari if and only if λ
1/2
Ω is hyperbol-

ically convex on Ω and on every Möbius image of Ω. To say that a real-valued
function F defined on Ω is hyperbolically convex means that if γ : w = w(s) is
any hyperbolic geodesic in Ω parameterized by hyperbolic arclength, then the
function F (w(s)) is convex; that is, has nonnegative second derivative. Because
convex regions are a special type of Nehari region, there should be an analogous
characterization of convex regions by a stronger property. We provide such a
characterization: a hyperbolic region Ω in C is convex if and only if log λΩ is hy-
perbolically convex. Moreover, unless the convex region Ω is a strip or a sector
with angular opening βπ, where 0 < β ≤ 1, then log λΩ is strictly hyperboli-
cally convex in the sense that the second derivative is positive along hyperbolic
geodesics. This result is sharp in the following sense. Set

vα =

{

λα

Ω
−1

α
if α 6= 0,

log λΩ if α = 0.

It is elementary that if vα is hyperbolically convex, then so is vβ for all α ≤ β.
Hence, if Ω is a convex region, then the hyperbolic convexity of v0 implies the
hyperbolic convexity of vα for all α > 0. On the other hand, there are no regions
with vα hyperbolically convex for any α < 0; equivalently, there are no regions
with 1/λα

Ω hyperbolically concave for any α > 0.

The organization of this paper is as follows. Invariant differential operators
for holomorphic functions and differential expressions related to the hyperbolic
metric are introduced in Section 2. In Section 3 various characterizations of con-
vex regions in terms of conformal maps from the unit disk onto the region are
given. That the hyperbolic convexity of log λΩ characterizes convex regions is



Hyperbolic geometric characterizations of convex regions 169

established in Section 4. Characterizations of convex regions in terms of proper-
ties of Euclidean geodesics are presented in Section 5. For instance, a hyperbolic
region is convex if and only if every Euclidean segment in Ω has absolute hyper-
bolic curvature at most 1. Uniformly perfect regions are characterized in terms
of the uniform boundedness of the rate of change of hyperbolic curvature along
Euclidean geodesics. A hyperbolic region Ω is uniformly perfect if there exists
c = c(Ω) > 0 such that c ≤ λΩ(z)δΩ(z) for all z ∈ Ω, where δΩ(z) is the Eu-
clidean distance from z to ∂Ω. The hyperbolic convexity of λα

Ω for any α > 0
is considered in Section 6. The rate of change of Euclidean curvature along hy-
perbolic geodesics parameterized by hyperbolic arclength is covered in Section
7. The final section deals with hyperbolic geodesics parameterized by Euclidean
arclength.

2. Preliminaries

It is convenient to introduce certain invariant differential operators defined for
holomorphic functions on the unit disk. For f is holomorphic on D, set

D1f(z) = (1 − |z|2)f ′(z),

D2f(z) = (1 − |z|2)2f ′′(z) − 2z̄(1 − |z|2)f ′(z),

D3f(z) = (1 − |z|2)3f ′′′(z) − 6z̄(1 − |z|2)2f ′′(z) + 6z̄2(1 − |z|2)f ′(z).

These differential operators satisfy an important invariance property: if S(z) =
eiφ(z− b), a Euclidean motion of C, and T (z) = eiθ(z − a)/(1− āz), a conformal
automorphism of D, then |Dj(S ◦ f ◦ T )| = |Djf | ◦ T , j = 1, 2, 3. For more
information on these operators, see [5]. Certain combinations of these operators
occur frequently. The first is

D2f(z)

D1f(z)
= (1 − |z|2)f

′′(z)

f ′(z)
− 2z̄.

The other combination is

D3f(z)

D1f(z)
− 3

2

(

D2f(z)

D1f(z)

)2

= (1 − |z|2)2Sf(z).

Two useful differential quantities for the hyperbolic metric are defined as
follows. The first is the connection

ΓΩ(w) = 2
∂ log λΩ(w)

∂w
,

and the second is the Schwarzian

SΩ(w) =
∂ΓΩ(w)

∂w
− 1

2
Γ2

Ω(w) = 2

(

∂2 log λΩ(w)

∂w2
−
(

∂ log λΩ(w)

∂w

)2
)

.(2.1)
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Note that

(2.2)
∂ΓΩ(w)

∂w
= SΩ(w) +

1

2
Γ2

Ω(w).

The identity

(2.3)
∂ΓΩ(w)

∂w̄
=

1

2
λ2

Ω(w)

is a direct consequence of the fact that the hyperbolic metric has curvature −1.

There are important relationships between the differential operators and the
two differential metric quantities. Suppose f : D → Ω is a holomorphic universal
covering projection. Then (1.1) gives

log λΩ(f(z)) +
1

2
log f ′(z) +

1

2
log f ′(z) = log 2 − log(1 − zz̄).

By applying the operator ∂/∂z to this identity, we obtain

(2.4)
∂ log λΩ(f(z))

∂w
f ′(z) +

1

2

f ′′(z)

f ′(z)
=

z̄

1 − |z|2 .

This yields the first relationship

(2.5)
ΓΩ(f(z))

λΩ(f(z))
= −1

2

|f ′(z)|
f ′(z)

D2f(z)

D1f(z)
.

Next, we relate the Schwarzian of the hyperbolic metric to the differential
operators for holomorphic functions. From (2.4), we have

(2.6) ΓΩ(f(z))f ′(z) = −f ′′(z)

f ′(z)
+

2z̄

1 − zz̄
.

If we apply the operator ∂/∂z to this identity, we obtain

∂ΓΩ(f(z))

∂w
f ′(z)2 + ΓΩ(f(z))f ′′(z) = −f ′′′(z)

f ′(z)
+

(

f ′′(z)

f ′(z)

)2

+
2z̄2

(1 − |z|2)2
.

By using (2.6), we find

∂ΓΩ(f(z))

∂w
f ′(z)2 = −f ′′′(z)

f ′(z)
+ 2

(

f ′′(z)

f ′(z)

)2

− 2z̄

1 − |z|2
f ′′(z)

f ′(z)
+

2z̄2

(1 − |z|2)2
.

From (2.6) we obtain

1

2
Γ2

Ω(f(z))f ′(z)2 =
1

2

(

f ′′(z)

f ′(z)

)2

− 2z̄

1 − |z|2
f ′′(z)

f ′(z)
+

2z̄2

(1 − |z|2)2
,

and so

SΩ(f(z))f ′(z)2 =
∂ΓΩ(f(z))

∂w
f ′(z)2 − 1

2
Γ2

Ω(f(z))f ′(z)2 = −Sf(z).
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Consequently,

(2.7)
SΩ(f(z))

λ2
Ω(f(z))

= −1

4

( |f ′(z)|
f ′(z)

)2

(1 − |z|2)2Sf(z).

We introduce notation for standard conformal maps of the unit disk onto
strips and sectors. For β ∈ [0, 1] define Fβ : D → C by

Fβ(z) =

{

1
2β

(

(

1+z
1−z

)β − 1
)

if 0 < β ≤ 1,
1
2
log 1+z

1−z
if β = 0.

Then Fβ is a normalized (Fβ(0) = 0 and F ′

β(0) = 1) convex univalent function.
For 0 < β ≤ 1, the image Fβ(D) is a sector with angular opening βπ that is
symmetric about the real axis. When β = 1, F1(D) is a half-plane. For 0 < β < 1,
the real axis is the centerline of symmetry for the sector. In case β = 1, any
horizontal line is considered a centerline of symmetry. For β = 0, F0(D) is
a horizontal strip of width π/2 which is symmetric about the real axis. The
centerline of the strip is a line of symmetry; we ignore the vertical line segments
about which the strip is symmetric. For any sector with angular opening βπ,
there exist constants A and B so that AFβ + B maps D conformally onto the
sector. The general conformal map of D onto the sector is A(Fβ ◦T )+B, where T
is an arbitrary conformal automorphism of the unit disk. Similarly, the general
conformal map of D onto a strip has the form A(F0 ◦ T ) + B. Any strip or
convex sector, except a half-plane, has a unique centerline of symmetry. For a
half-plane, any line perpendicular to the edge of the half-plane is considered a
centerline of symmetry.

3. Characterizations of convex regions

In this section, we derive several characterizations of convex regions and con-
vex univalent functions that are used in later sections.

Theorem 3.1. Suppose f is holomorphic and locally univalent on D. Then each

of the following is equivalent to f being convex univalent.

(a) The invariant form of Trimble’s inequality

(3.1) (1 − |z|2)2|Sf(z)| + 1

2

∣

∣

∣

∣

D2f(z)

D1f(z)

∣

∣

∣

∣

2

≤ 2

holds for all z in D.

(b) For all z in D,

(3.2)

∣

∣

∣

∣

∣

(1 − |z|2)2Sf (z) +
1

2

(

D2f(z)

D1f(z)

)2
∣

∣

∣

∣

∣

≤ 2.
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(c) For all z in D and any α ≥ 0,

(3.3) (α + 1)

∣

∣

∣

∣

D2f(z)

D1f(z)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

2(1 − |z|2)2Sf(z) + α

(

D2f(z)

D1f(z)

)2
∣

∣

∣

∣

∣

≤ 4(2α + 1).

(d) For all z in D and any α ≥ 0,

(3.4) (α + 1)

∣

∣

∣

∣

D2f(z)

D1f(z)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

2(1 − |z|2)2Sf (z) − α

(

D2f(z)

D1f(z)

)2
∣

∣

∣

∣

∣

≤ 4(2α + 1).

Moreover, for a convex univalent function strict inequalities hold unless f maps

onto a sector or strip. For a conformal mapping onto a half-plane these inequal-

ities become identities, while for a conformal mapping onto a strip or a sector

with angular opening βπ, where 0 < β < 1, equality holds if and only if the point

z lies on the hyperbolic geodesic in D that maps onto the centerline.

Proof. The equivalence of f being convex univalent and (3.1) is well known (see
[2], [9]). We will prove that (3.1) implies (3.2), (3.3), and (3.4). Then we will
show that f is convex univalent if one of (3.2), (3.3) and (3.4) holds. Finally, we
will deal with the sharpness of the inequalities.

If (3.1) holds, then f is a convex univalent function and

(3.5)

∣

∣

∣

∣

D2f(z)

D1f(z)

∣

∣

∣

∣

≤ 2.

It is well known that (3.5) characterizes convexity of f [7]. By using the triangle
inequality, (3.2), (3.3) and (3.4) follow from (3.1) and (3.5).

Next, we show that each of (3.2), (3.3) and (3.4) implies (3.5). Because all
inequalities are invariant under Koebe transformations, it suffices to show

(3.6)

∣

∣

∣

∣

f ′′(0)

f ′(0)

∣

∣

∣

∣

≤ 2

in order to conclude that f is convex univalent. In all cases, we will study the
behavior of the function

(3.7) Hθ(s) = eiθ D2f(z(s))

D1f(z(s))
= eiθ

(

(1 − z(s)z̄(s))
f ′′(z(s))

f ′(z(s))
− 2z̄(s)

)

,

where θ is a fixed real number and z(s) = tanh(s/2)eiθ, s ≥ 0, is a hyper-
bolic arclength parametrization of the hyperbolic geodesic ray [0, eiθ); this means
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z′(s) = 1
2
(1 − |z(s)|2)eiθ. Now,

d

ds

D2f(z(s))

D1f(z(s))
= (1 − z(s)z̄(s))

(

f ′′′(z(s))

f ′(z(s))
−
(

f ′′(z(s))

f ′(z(s))

)2
)

z′(s)

− (z′(s)z̄(s) + z(s)z̄′(s))
f ′′(z(s))

f ′(z(s))
− 2z̄′(s)

=
eiθ

2
(1 − |z(s)|2)2

(

Sf (z(s)) +
1

2

(

f ′′(z(s))

f ′(z(s))

)2
)

− |z(s)|(1 − |z(s)|2)f
′′(z(s))

f ′(z(s))
− (1 − |z(s)|2)e−iθ.

As
(

D2f(z)

D1f(z)

)2

= (1 − |z|2)2

(

f ′′(z)

f ′(z)

)2

− 4z̄(1 − |z|2)f
′′(z)

f ′(z)
+ 4z̄2,

we obtain

d

ds

(

eiθ D2f(z(s))

D1f(z(s))

)

=
e2iθ

2

(

(1 − |z(s)|2)2Sf(z(s)) +
1

2

(

D2f(z(s))

D1f(z(s))

)2
)

− 1.

Thus,

(3.8) H ′

θ(s) =
1

2
ei2θ(1 − |z(s)|2)2Sf(z(s)) +

1

4
H2

θ (s) − 1.

Now, we show that (3.2) implies (3.6). Suppose (3.6) were not valid. Then by
considering a rotation of f if necessary, we may assume

A =
f ′′(0)

f ′(0)
< −2.

By using (3.8), condition (3.2) can be rewritten as |1 + H ′

θ(s)| ≤ 1. This implies

d

ds
Re {Hθ(s)} ≤ 0.

Consequently, for all real θ the function Re {Hθ(s)} is weakly decreasing for
s ≥ 0 and lims→+∞ Re {Hθ(s)} exists, either as a real number or as −∞, for all
real θ. Also,

Re {Hθ(s)} ≤ Re {Hθ(0)} = Re (eiθA) = A cos θ.

Because A < −2, there is θ0 in (0, π/2) with cos θ0 = −2/A. Then for |θ| < θ0,
A cos θ < A cos θ0 = −2 and

Re

{

(1 − r2)
eiθf ′′(reiθ)

f ′(reiθ)
− 2r

}

≤ A cos θ < −2,



174 Ma and Minda ICGFT06

so that

Re

{

reiθf ′′(reiθ)

f ′(reiθ)

}

≤ r(A cos θ + 2r)

1 − r2
<

r(−2 + 2r)

1 − r2
< 0.

The preceding results imply that

lim
r→1−

Re

{

reiθf ′′(reiθ)

f ′(reiθ)

}

= −∞

and that the function Re {zf ′′(z)/f ′(z)} is bounded above by 0 on the sector

z = reiθ, 0 ≤ r < 1, |θ| < θ0.

Now consider the function F (z) = exp(zf ′′(z)/f ′(z)). This function is holomor-
phic on D, bounded by 1 on the sector z = reiθ, 0 ≤ r < 1, |θ| < θ0 and has
radial limit 0 for |θ| < θ0. Plessner’s Theorem asserts that for almost all points
ζ on the unit circle either F has a finite angular limit at ζ or else F (S) is dense
in C for every Stolz angle S at ζ [8]. Because F is bounded on the sector, it
follows that F has a finite angular limit at almost all points eiθ with |θ| < θ0.
Hence, F has angular limit 0 at almost all points eiθ with |θ| < θ0. By Privalov’s
Uniqueness Theorem [8], F is identically zero, a contradiction.

Next, we verify that (3.3) implies (3.6) by contradiction. Note that when
α = 0, (3.3) is equivalent to (3.1), so we only need to investigate the case when
α > 0. We consider Hθ(s) and assume A < −2. From (3.8), the inequality (3.3)
becomes

(α + 1) |Hθ(s)|2 +
∣

∣4 + 4H ′

θ(s) + (α − 1)H2
θ (s)

∣

∣ ≤ 4(2α + 1).

This implies that

(α + 1) |Hθ(s)|2 + 4 + 4
d

ds
Re {Hθ(s)} + (α − 1)Re

{

H2
θ (s)

}

≤ 4(2α + 1).

Therefore,

d

ds
Re {Hθ(s)} ≤ α

2

(

4 − Re2 {Hθ(s)}
)

− 1

2
Im2 {Hθ(s)} ≤ α

2

(

4 − Re2 {Hθ(s)}
)

.

Choose θ0 the same as above. Then for |θ| < θ0,

Re {Hθ(0)} = Re
{

Aeiθ
}

= A cos θ < A cos θ0 = −2.

This together with the inequality above imply that Re {Hθ(s)} is a decreasing
function of s when |θ| < θ0. Thus we get Re {Hθ(s)} < Re {Hθ(0)} < −2 and

d
ds

Re {Hθ(s)}
Re2 {Hθ(s)} − 4

≤ −α

2
.
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By integrating this inequality with respect to s, we obtain

1

4
log

Re {Hθ(s)} − 2

Re {Hθ(s)} + 2
− 1

4
log

Re {Hθ(0)} − 2

Re {Hθ(0)} + 2
≤ −αs

2
,

or equivalently,

Re {Hθ(s)} − 2

Re {Hθ(s)} + 2
≤ Re {Hθ(0)} − 2

Re {Hθ(0)} + 2
e−2αs.

Note that Re {Hθ(s)} < −2 implies

Re {Hθ(s)} − 2

Re {Hθ(s)} + 2
> 1.

By letting s → +∞, we see that the right-hand side tends to 0, a contraction.

We now prove that (3.4) yields (3.6). If not, then by performing a rotation if
necessary, we may assume A > 2. By using (3.8), the inequality (3.4) becomes

(α + 1) |Hθ(s)|2 +
∣

∣4 + 4H ′

θ(s) − (α + 1)H2
θ (s)

∣

∣ ≤ 4(2α + 1).

This implies that

(α + 1) |Hθ(s)|2 − 4 − 4
d

ds
Re {Hθ(s)} + (α + 1)Re

(

H2
θ (s)

)

≤ 4(2α + 1).

Therefore,
d

ds
Re {Hθ(s)} ≥ α + 1

2

(

Re2 {Hθ(s)} − 4
)

.

As A > 2, this time we choose θ0 in (0, π/2) with cos θ0 = 2/A. Then for |θ| < θ0,

Re {Hθ(0)} = Re
{

Aeiθ
}

= A cos θ > A cos θ0 = 2.

This together with the inequality above imply that Re {Hθ(s)} is an increasing
function of s when |θ| < θ0. Thus we get Re {Hθ(s)} > Re {Hθ(0)} > 2 and

d
ds

Re {Hθ(s)}
Re2 {Hθ(s)} − 4

≥ α + 1

2
.

By integrating this inequality with respect to s, we find

1

4
log

Re {Hθ(s)} − 2

Re {Hθ(s)} + 2
− 1

4
log

Re {Hθ(0)} − 2

Re {Hθ(0)} + 2
≥ (α + 1)s

2
,

or equivalently,

Re {Hθ(s)} − 2

Re {Hθ(s)} + 2
≥ Re {Hθ(0)} − 2

Re {Hθ(0)} + 2
e2(α+1)s.

The left-hand side is less than or equal to 1 while the right-hand side tends to
infinity as s → +∞, a contraction.
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Finally, we discuss the sharpness of these inequalities. From the example at
the end of Section 2, it is straightforward to verify that each of the inequalities
becomes an equality where as stated if f is a conformal mapping onto a sector
or a strip. So we need to show that f maps on to a sector or a strip if equality
holds in one of (3.1), (3.2), (3.3) and (3.4).

Clearly, equality must hold in (3.1) at the same point if one of the inequalities
becomes an equality. Assume equality holds at z0 ∈ D in (3.1). By performing a
Koebe transformation and a rotation if necessary, we may assume that z0 = 0,
f(0) = f ′(0) − 1 = 0 and f ′′(0) ≥ 0. Under our assumption, f(z) = z + az2 +
a3z

3 + · · · with 0 ≤ a ≤ 1 and

6
∣

∣a3 − a2
∣

∣+ 2a2 = 2.

If a = 1, then we know that f(z) = z/(1 − z) with f(D) a half-plane.

Now we consider the case when 0 ≤ a < 1. Define a holomorphic function
φ(z) in D with φ(0) = 0 and |φ(z)| < 1 by

1 +
zf ′′(z)

f ′(z)
=

1 + φ(z)

1 − φ(z)
.

Then φ(z) = b1z + b2z
2 + · · · , a = b1 ≥ 0 and 6(a3 − a2) = 2b2. Moreover, the

above equality is equivalent to |b2| = 1 − b2
1. If we apply the Schwarz Lemma to

the function
φ(z)/z − b1

1 − b1φ(z)/z
=

b2

1 − b2
1

z + · · · ,

we see that
φ(z)/z − b1

1 − b1φ(z)/z
= eiθz

for some θ ∈ R. Therefore,

φ(z) = z
eiθz + b1

1 + b1eiθz

and
f ′′(z)

f ′(z)
=

2a + 2eiθz

1 + a(eiθ − 1)z − eiθz2
.

Set B =
√

1 − a2 sin2(θ/2) + ia sin(θ/2). Note that |B| = 1. Calculations show
that

f ′′(z)

f ′(z)
=

aB − eiθ/2

√

1 − a2 sin2(θ/2)

1

1 + Beiθ/2z
+

aB̄ + eiθ/2

√

1 − a2 sin2(θ/2)

1

1 − B̄eiθ/2z
.
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Integration yields

log f ′(z) =
aB − eiθ/2

Beiθ/2
√

1 − a2 sin2(θ/2)
log
(

1 + Beiθ/2z
)

− aB̄ + eiθ/2

B̄eiθ/2
√

1 − a2 sin2(θ/2)
log
(

1 − B̄eiθ/2z
)

=

(

a cos(θ/2)
√

1 − a2 sin2(θ/2)
− 1

)

log
(

1 + Beiθ/2z
)

−
(

a cos(θ/2)
√

1 − a2 sin2(θ/2)
+ 1

)

log
(

1 − B̄eiθ/2z
)

.

Hence,

f ′(z) =

(

1 + Beiθ/2z
)a cos(θ/2)/

√
1−a2 sin2(θ/2)−1

(

1 − B̄eiθ/2z
)a cos(θ/2)/

√
1−a2 sin2(θ/2)+1

.

If a cos(θ/2) 6= 0, then direct integration gives us

f(z) =
e−iθ/2

2a cos(θ/2)





(

1 + Beiθ/2z

1 − B̄eiθ/2z

)a cos(θ/2)/
√

1−a2 sin2(θ/2)

− 1



 ,

so f(D) is a sector. If a cos(θ/2) = 0, then

f ′(z) =
B

2
√

1 − a2 sin2(θ/2)

1

1 + Beiθ/2z
+

B̄

2
√

1 − a2 sin2(θ/2)

1

1 − B̄eiθ/2z

and

f(z) =
e−iθ/2

2
√

1 − a2 sin2(θ/2)
log

1 + Beiθ/2z

1 − B̄eiθ/2z
,

so f(D) is a strip.

By using (2.5) and (2.7), we can restate Theorem 3.1 as characterizations of
convex regions.

Corollary 3.2. A hyperbolic region Ω is convex if and only if one of the following

holds.

(a) For all w ∈ Ω,

|SΩ(w)| + 1

2
|ΓΩ(w)|2 ≤ 1

2
λ2

Ω(w).

(b) For all w ∈ Ω,

(3.9)

∣

∣

∣

∣

SΩ(w) − 1

2
Γ2

Ω(w)

∣

∣

∣

∣

≤ 1

2
λ2

Ω(w).
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(c) For all w ∈ Ω and any α ≥ 0,

α + 1

2
|ΓΩ(w)|2 +

∣

∣

∣
SΩ(w) − α

2
Γ2

Ω(w)
∣

∣

∣
≤
(

α +
1

2

)

λ2
Ω(w).

(d) For all w ∈ Ω and any α ≥ 0,

α + 1

2
|ΓΩ(w)|2 +

∣

∣

∣
SΩ(w) +

α

2
Γ2

Ω(w)
∣

∣

∣
≤
(

α +
1

2

)

λ2
Ω(w).

Moreover, for a convex region strict inequalities hold unless Ω is a sector or strip.

For a half-plane the inequalities become identities, while for a strip or a sector

with angular opening βπ, where 0 < β < 1, equality holds if and only if the point

w lies on the centerline.

4. Hyperbolic convexity of log λΩ

In order to investigate the hyperbolic convexity of log λΩ, we calculate its
second derivative along a hyperbolic geodesic parameterized by hyperbolic ar-
clength. Suppose γ is a hyperbolic geodesic in Ω and γ : w = w(s) is a hyperbolic
arclength parametrization of γ, so w′(s) = eiθ(s)/λΩ(w(s)), where eiθ(s) is a Eu-
clidean unit tangent to γ at w(s). Set v(s) = log λΩ(w(s)). We calculate the
first and second derivatives of v.

v′(s) =
∂ log λΩ(w(s))

∂w
w′(s) +

∂ log λΩ(w(s))

∂w̄
w′(s)

= Re

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

.

Next, we find the second derivative.

v′′(s) = Re

{

eiθ(s)

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

− Re

{

eiθ(s)ΓΩ(w(s))

λ2
Ω(w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)}

+ Re

{

ΓΩ(w(s))ieiθ(s)θ′(s)

λΩ(w(s))

}

=
1

λ2
Ω(w(s))

Re

{

e2iθ(s) ∂ΓΩ(w(s))

∂w
+

∂ΓΩ(w(s))

∂w̄

}

− 1

λ2
Ω(w(s))

Re

{

1

2
e2iθ(s)Γ2

Ω(w(s)) +
1

2
|ΓΩ(w(s))|2

}

− θ′(s)

λΩ(w(s))
Im
{

ΓΩ(w(s))eiθ(s)
}

.
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Because γ is a hyperbolic geodesic arc, its hyperbolic curvature vanishes; that
is, κΩ(w(s), γ) = 0, where

(4.1) κΩ(w(s), γ) =
κe(w(s), γ) + Im

{

ΓΩ(w(s))eiθ(s)
}

λΩ(w(s))

and

κe(w(s), γ) =
1

|w′(s)|θ
′(s) = λΩ(w(s))θ′(s)

denotes the Euclidean curvature. Therefore,

(4.2) θ′(s) =
κe(w(s)), γ)

λΩ(w(s))
= −Im

{

ΓΩ(w(s))eiθ(s)
}

λΩ(w(s))

and so

v′′(s) =
1

λ2
Ω(w(s))

Re

{

e2iθ(s)

(

∂ΓΩ(w(s))

∂w
− 1

2
Γ2

Ω(w(s))

)}

+
1

λ2
Ω(w(s))

Re

{

∂ΓΩ(w(s))

∂w̄
− 1

2
|ΓΩ(w(s))|2

}

+
1

λ2
Ω(w(s))

Im2
{

ΓΩ(w(s))eiθ(s)
}

.

From (2.2) and (2.3), we obtain
v′′(s)

=
1

λ2
Ω(w(s))

(

Re
{

e2iθ(s)SΩ(w(s))
}

− 1

2
|ΓΩ(w(s))|2 + Im2

{

ΓΩ(w(s))eiθ(s)
}

)

+
1

2
.

By using −(1/2)|z|2 + Im2{z} = −(1/2)Re {z2}, we find

−1

2
|ΓΩ(w(s))|2 + Im2

{

ΓΩ(w(s))eiθ(s)
}

= −1

2
Re
{

e2iθ(s)Γ2
Ω(w(s))

}

.

Hence,

(4.3) v′′(s) =
1

λ2
Ω(w(s))

Re

{

e2iθ(s)

(

SΩ(w(s)) − 1

2
Γ2

Ω(w(s))

)}

+
1

2
.

Theorem 4.1. A hyperbolic region Ω is convex if and only if log λΩ(w) is hyper-

bolically convex. Moreover, log λΩ is strictly hyperbolically convex on any convex

region other than a strip or sector. For the exceptional cases it is strictly convex

along all hyperbolic geodesics except along centerlines of symmetry.

Proof. (3.9) provides a characterization of convex regions. From (4.3), we see
that v′′(s) ≥ 0 if and only if

−Re

{

e2iθ(s)

(

SΩ(w(s)) − 1

2
Γ2

Ω(w(s))

)}

≤ 1

2
λ2

Ω(w(s)).



180 Ma and Minda ICGFT06

This holds for all unit vectors eiθ(s) at w(s) if and only if (3.9) holds. Thus, Ω
is convex if and only if log λΩ(w) is hyperbolically convex. The strict convexity
result follows from the case of strict inequality in (3.9) that was asserted in
Corollary 3.2.

Example 4.2. The density of the hyperbolic metric on the upper half-plane H

is λH(w) = 1/Im{w}. The function w(s) = u + ie−s, s ∈ R, is a hyperbolic
arclength parametrization of the intersection of the vertical line Re{w} = u with
H; this is a hyperbolic geodesic in H. Then v(s) = log λH(w(s)) = log es = s and
v′′(s) = 0.

It is elementary that if log λΩ is hyperbolically convex, then so is λα
Ω for all

α > 0. Likewise, if λα
Ω is hyperbolically concave for some α < 0, then it is

straightforward to verify that log(1/λΩ) is hyperbolically concave, or equivalently,
log λΩ is hyperbolically convex. Thus, to show Theorem 4.1 is best possible we
show that λα

Ω is not hyperbolically concave on any hyperbolic region for any
α < 0. We employ formula (6.1) that is valid for α < 0. In this case, v′′

α(s) ≤ 0
along all hyperbolic geodesics in Ω if and only if

1

λ2
Ω(w(s))

∣

∣

∣

∣

SΩ(w(s)) +
α − 1

2
Γ2

Ω(w(s))

∣

∣

∣

∣

≤ α

2

|ΓΩ(w(s))|2
λ2

Ω(w(s))
+

1

2
.

This implies the inequality in Corollary 3.2(b). Hence, Ω must be convex. A
conformal map f : D → Ω is a convex univalent function. By using (2.5) and
(2.7), the inequality above is equivalent to

∣

∣

∣

∣

∣

(1 − |z|2)2Sf(z) +
1 − α

2

(

D2f(z)

D1f(z)

)2
∣

∣

∣

∣

∣

≤ α

2

∣

∣

∣

∣

D2f(z)

D1f(z)

∣

∣

∣

∣

2

+ 2.

Now we consider Hθ(s) defined in (3.7). From (3.8), we have
∣

∣

∣
2 + 2H ′

θ(s) −
α

2
H2

θ (s)
∣

∣

∣
≤ α

2
|Hθ(s)|2 + 2.

This yields

d

ds
Re {Hθ(s)} ≤ α

2
Re2 {Hθ(s)} ≤ 0.

As

sup

{∣

∣

∣

∣

D2f(z)

D1f(z)

∣

∣

∣

∣

: z ∈ D

}

= 2

for a convex function f [7], we may assume f(0) = 0, f ′(0) = 1 and f ′′(0) < 0
by using a suitable Koebe transformation and a rotation if necessary. Then



Hyperbolic geometric characterizations of convex regions 181

for |θ| < π
2
, Re {Hθ(s)} ≤ Re {Hθ(0)} = f ′′(0) cos θ/f ′(0) < 0. Moreover, by

integrating
d
ds

Re {Hθ(s)}
Re2 {Hθ(s)}

≤ α

2

with respect to s, we obtain

1

Re {Hθ(0)} − 1

Re {Hθ(s)}
≤ αs

2
.

Since Re {Hθ(s)} < 0 when |θ| < π
2
, we have 1/Re {Hθ(0)} < αs/2. By letting

s → +∞, we get a contradiction as α < 0.

5. Euclidean geodesics in hyperbolic regions

We begin by investigating hyperbolic curvature of Euclidean line segments.

Theorem 5.1. Let Ω be a hyperbolic region. Ω is convex if and only if every

Euclidean segment in Ω has absolute hyperbolic curvature at most 1.

Proof. First, by using (2.5) and (3.5), we see that Ω is convex if and only if
|ΓΩ(w)| ≤ λΩ(w) on Ω. Let γ be a Euclidean segment in Ω parameterized by
hyperbolic arclength, say w = w(s), where w′(s) = eiθ/λΩ(w(s)). Note that θ is
independent of s since γ is a Euclidean segment. As κe(w(s), γ) = 0, (4.1) gives

(5.1) κΩ(w(s), γ) = Im

{

eiθΓΩ(w(s))

λΩ(w(s))

}

.

Hence,

|κΩ(w(s), γ)| ≤ |ΓΩ(w(s))|
λΩ(w(s))

.

If Ω is convex, then |ΓΩ(w)| ≤ λΩ(w), and so |κΩ(w(s), γ)| ≤ 1 for any Euclidean
segment γ in Ω.

Conversely, assume that any Euclidean segment in Ω has absolute hyperbolic
curvature at most 1. Given w0 in Ω, choose a Euclidean segment γ through w0,
say w0 = w(0), which is parallel to eiθ at w0, where this unit vector is selected
so that

κΩ(w(0), γ) =
|ΓΩ(w(0))|
λΩ(w(0))

.

Then |κΩ(w(s), γ)| ≤ 1 produces |ΓΩ(w(0))| ≤ λΩ(w(0)). Since w0 = w(0) is
arbitrary in Ω, we conclude that Ω is convex.
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In a uniformly perfect region, a hyperbolic geodesic arc is not too far from
being a Euclidean geodesic. The next result shows that Euclidean geodesic arcs
in a uniformly perfect region are nearly hyperbolic geodesic arcs in the sense that
the absolute hyperbolic curvature is bounded by a fixed constant.

Theorem 5.2. Let Ω be a hyperbolic region. Ω is uniformly perfect if and only

if there is a finite constant K ≥ 1 such that every Euclidean segment in Ω has

absolute hyperbolic curvature at most K.

Proof. The proof of Theorem 5.1 shows that

K = sup

{ |ΓΩ(w)|
λΩ(w)

: w ∈ Ω

}

,

which is finite if and only if Ω is uniformly perfect [6].

Not only is the hyperbolic curvature of Euclidean segments uniformly bounded
in uniformly perfect regions, the rate of change of the hyperbolic curvature of
Euclidean segments is uniformly bounded.

Theorem 5.3. Let Ω be a hyperbolic region. Ω is uniformly perfect if and only if

there is a finite constant B ≥ 0 such that every Euclidean segment in Ω parame-

terized by hyperbolic arclength has absolute rate of change of hyperbolic curvature

at most B.

Proof. Consider any Euclidean segment γ contained in Ω. Then (5.1) holds,
from which we have

d

ds
κΩ(w(s), γ) = Im

{

eiθ

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

− Im

{

eiθΓΩ(w(s))

λ2
Ω(w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)}

= Im

{

e2iθ

λ2
Ω(w(s))

∂ΓΩ(w(s))

∂w
+

1

λ2
Ω(w(s))

∂ΓΩ(w(s))

∂w̄

}

− 1

2
Im

{

e2iθΓ2
Ω(w(s))

λ2
Ω(w(s))

+
|ΓΩ(w(s))|2
λ2

Ω(w(s))

}

.

As |ΓΩ(w(s))|/λΩ(w(s)) is real-valued, we obtain from (2.3)

d

ds
κΩ(w(s), γ) = Im

{

e2iθ

λ2
Ω(w(s))

(

∂ΓΩ(w(s))

∂w
− 1

2
Γ2

Ω(w(s))

)}

= Im

{

e2iθSΩ(w(s))

λ2
Ω(w(s))

}

.
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Thus
∣

∣

∣

∣

d

ds
κΩ(w(s), γ)

∣

∣

∣

∣

≤ |SΩ(w(s))|
λ2

Ω(w(s))
.

It is known that Ω is uniformly perfect if and only if [2]

(5.2) β(Ω) = sup

{

2
|SΩ(w)|
λ2

Ω(w)
: w ∈ Ω

}

< ∞.

Therefore,
∣

∣

∣

∣

d

ds
κΩ(w(s), γ)

∣

∣

∣

∣

≤ β(Ω)

2
.

Conversely, one can show that β(Ω) ≤ 2B, so in fact, β(Ω) = 2B.

Corollary 5.4. A hyperbolic region Ω in C is Nehari if and only if every Eu-

clidean segment γ in Ω parameterized by hyperbolic arclength satisfies
∣

∣

∣

∣

d

ds
κΩ(w(s), γ)

∣

∣

∣

∣

≤ 1

2
.

Next, we turn to the question of determining when log λΩ is hyperbolically
convex along Euclidean geodesics. Suppose γ is a Euclidean line segment in Ω
and γ : w = w(s) is a hyperbolic arclength parametrization of γ. We calculate
the first and second derivatives of v(s) = log λΩ(w(s)).

v′(s) =
∂ log λΩ(w(s))

∂w
w′(s) +

∂ log λΩ(w(s))

∂w̄
w′(s)

= Re

{

eiθ ΓΩ(w(s))

λΩ(w(s))

}

.

The second derivative is

v′′(s) = Re

{

eiθ

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

− Re

{

eiθΓΩ(w(s))

λ2
Ω(w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)}

=
1

λ2
Ω(w(s))

Re

{

e2iθ ∂ΓΩ(w(s))

∂w
+

∂ΓΩ(w(s))

∂w̄

}

− 1

2λ2
Ω(w(s))

Re
{

e2iθΓ2
Ω(w(s)) + |ΓΩ(w(s))|2

}

.

From (2.2) and (2.3), we have

(5.3) v′′(s) =
1

λ2
Ω(w(s))

(

Re
{

e2iθSΩ(w(s))
}

− 1

2
|ΓΩ(w(s))|2

)

+
1

2
.
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Theorem 5.5. Let Ω be a hyperbolic region. log λΩ(w) is hyperbolically convex

on Euclidean segments if and only if

(5.4) |SΩ(w)| + 1

2
|ΓΩ(w)|2 ≤ 1

2
λ2

Ω(w),

that is, if and only if Ω is convex.

Proof. From (5.3), we see that v′′(s) ≥ 0 if and only if

−Re
{

e2iθSΩ(w(s))
}

+
1

2
Γ2

Ω(w(s)) ≤ 1

2
λ2

Ω(w(s)).

This holds for all unit vectors eiθ at w(s) if and only if (5.4) holds, which char-
acterizes convex regions by Corollary 3.2.

Example 5.6. From Example 4.2, we see that for the upper half-plane H,
v′′(s) = 0 along vertical half-lines, so Theorem 5.5 is sharp.

Next, we consider the behavior of λ−α
Ω along Euclidean segments. Let vα(s) =

λ−α
Ω (w(s)), where γ is a Euclidean line segment in Ω and γ : w = w(s) is a

hyperbolic arclength parametrization of γ. We calculate the first and second
derivatives of vα.

v′

α(s) = −αλ−α−1
Ω (w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)

= −αvα(s)Re

{

eiθΓΩ(w(s))

λΩ(w(s))

}

.

Now, we calculate the second derivative.

v′′

α(s) = −αv′

α(s)Re

{

eiθΓΩ(w(s))

λΩ(w(s))

}

− αvα(s)Re

{

eiθ

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

+ αvα(s)Re

{

eiθΓΩ(w(s))

λ2
Ω(w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)}

= α2vα(s)Re2

{

eiθΓΩ(w(s))

λΩ(w(s))

}

− αvα(s)Re

{

e2iθ

λ2
Ω(w(s))

(

∂ΓΩ(w(s))

∂w
− 1

2
Γ2

Ω(w(s))

)}

− αvα(s)Re

{

1

λ2
Ω(w(s))

(

∂ΓΩ(w(s))

∂w̄
− 1

2
|ΓΩ(w(s))|2

)}

.
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From (2.2) and (2.3), we have

v′′

α(s) = α2vα(s)Re2

{

eiθΓΩ(w(s))

λΩ(w(s))

}

− αvα(s)Re

{

e2iθ

λ2
Ω(w(s))

SΩ(w(s))

}

− α

2
vα(s) +

α

2
vα(s)

|ΓΩ(w(s))|2
λ2

Ω(w(s))
.

By using Re2 z := (Re z)2 = 1
2
|z|2 + 1

2
Re {z2}, we get

v′′

α(s) =

(5.5)

αvα(s)

[

α + 1

2

|ΓΩ(w(s))|2
λ2

Ω(w(s))
− Re

{

e2iθ

λ2
Ω(w(s))

(

SΩ(w(s)) − α

2
Γ2

Ω(w(s))
)

}

− 1

2

]

.

Theorem 5.7. vα(s) = λ−α
Ω (w(s)), α > 0, satisfies v′′

α(s) ≤ α2vα(s) along all

Euclidean segments in Ω if and only if Ω is convex.

Proof. From (5.5), we see that v′′

α(s) ≤ α2vα(s) along all Euclidean segments in
Ω if and only if

α + 1

2
|ΓΩ(w(s))|2 − Re

{

e2iθ
(

SΩ(w(s)) − α

2
Γ2

Ω(w(s))
)}

≤
(

α +
1

2

)

λ2
Ω(w(s)),

which is equivalent to the inequality in Corollary 3.2(c) because θ is arbitrary.
Corollary 3.2 implies the equivalence with the convexity of Ω.

The differential inequality v′′ ≤ 4v (similar to those in Theorem 5.7) was
utilized in the characterization of hyperbolically convex regions by Kim and
Sugawa [4].

6. Hyperbolic convexity of λα
Ω

In order to study the hyperbolic convexity of λα
Ω, we perform similar calcu-

lations for the function vα(s) = λα
Ω(w(s)), where w(s) is a hyperbolic arclength

parametrization of a hyperbolic geodesic.

v′

α(s) = αλα−1
Ω (w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)

= αvα(s)Re

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

.
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Now, we calculate the second derivative.

v′′

α(s) = αv′

α(s)Re

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

+ αvα(s)Re

{

ΓΩ(w(s))ieiθ(s)θ′(s)

λΩ(w(s))

}

+ αvα(s)Re

{

eiθ(s)

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

− αvα(s)Re

{

ΓΩ(w(s))eiθ(s)

λ2
Ω(w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)}

= α2vα(s)Re2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

− αvα(s)θ′(s)Im

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

+ αvα(s)Re

{

1

λ2
Ω(w(s))

(

e2iθ(s) ∂ΓΩ(w(s))

∂w
+

∂ΓΩ(w(s))

∂w̄

)}

− αvα(s)

2
Re

{

1

λ2
Ω(w(s))

(

e2iθ(s)Γ2
Ω(w(s)) + |ΓΩ(w(s))|2

)

}

.

By using (4.2), (2.2) and (2.3), we obtain

v′′

α(s) = α2vα(s)Re2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

+ αvα(s))Im2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

+ αvα(s)Re

{

e2iθ(s)

λ2
Ω(w(s))

(

∂ΓΩ(w(s))

∂w
− 1

2
Γ2

Ω(w(s))

)}

+ αvα(s)Re

{

1

λ2
Ω(w(s))

(

∂ΓΩ(w(s))

∂w̄
− 1

2
|ΓΩ(w(s))|2

)}

= α2vα(s)Re2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

+ αvα(s)Re

{

e2iθ(s)

λ2
Ω(w(s))

SΩ(w(s))

}

+
α

2
vα(s) − α

2
vα(s)

|ΓΩ(w(s))|2
λ2

Ω(w(s))
+ αvα(s)Im2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

,

so that

v′′

α(s) = αvα(s)

(

αRe2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

}

+ Im2

{

ΓΩ(w(s))eiθ(s)

λΩ(w(s))

})

+ αvα(s)Re

{

e2iθ(s)

λ2
Ω(w(s))

SΩ(w(s))

}

+
α

2
vα(s) − α

2
vα(s)

|ΓΩ(w(s))|2
λ2

Ω(w(s))
.

From

αRe2 z + Im2 z =
1 + α

2
|z|2 +

α − 1

2
Re {z2},
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we get

v′′

α(s) = αvα(s)

(

1 + α

2

|ΓΩ(w(s))|2
λ2

Ω(w(s))
+

α − 1

2
Re

{

Γ2
Ω(w(s))e2iθ(s)

λ2
Ω(w(s))

})

+ αvα(s)Re

{

e2iθ(s)

λ2
Ω(w(s))

SΩ(w(s))

}

+
α

2
vα(s) − α

2
vα(s)

|ΓΩ(w(s))|2
λ2

Ω(w(s))
.

Finally,

v′′

α(s) =

(6.1)

αvα(s)

(

α

2

|ΓΩ(w(s))|2
λ2

Ω(w(s))
+ Re

{

e2iθ(s)

λ2
Ω(w(s))

(

SΩ(w(s)) +
α − 1

2
Γ2

Ω(w(s))

)}

+
1

2

)

.

Theorem 6.1. Let Ω be a hyperbolic region. For α > 0, λα
Ω is hyperbolically

convex if and only if

(6.2)

∣

∣

∣

∣

SΩ(w(s)) +
α − 1

2
Γ2

Ω(w(s))

∣

∣

∣

∣

≤ α

2
|ΓΩ(w(s))|2 +

1

2
λ2

Ω(w(s)).

In particular, for any α > 0, λα
Ω is hyperbolically convex if Ω is convex.

Proof. From (6.1), we see that vα(s) is convex along all hyperbolic geodesics in
Ω if and only if

α

2

|ΓΩ(w(s))|2
λ2

Ω(w(s))
+

1

2
− 1

λ2
Ω(w(s))

∣

∣

∣

∣

SΩ(w(s)) +
α − 1

2
Γ2

Ω(w(s))

∣

∣

∣

∣

≥ 0,

or equivalently (6.2).

If Ω is convex, (3.9) holds by Corollary 3.2. (6.2) then follows from (3.9).

Observe that (6.2) becomes (3.9) when α = 0. Also, if Ω is a Nehari region in

C, we see that (6.2) holds for α = 1/2 by using (2.7), so λ
1/2
Ω is hyperbolically

convex as established by Chuaqui, Osgood and Pommerenke [1].

If γ is a hyperbolic geodesic parameterized by hyperbolic arclength w = w(s)
and vα(s) = λα

Ω(w(s)), then (6.1) holds. Rather than asking when vα(s) is
hyperbolically convex, we ask when vα(s) is α-hyperbolically concave in the sense
that

v′′

α(s) ≤ α2vα(s)

for some α ≥ 0. By (6.1), this holds if and only if

α

2
|ΓΩ(w(s))|2+Re

{

e2iθ(s)

(

SΩ(w(s)) +
α − 1

2
Γ2

Ω(w(s))

)}

≤
(

α − 1

2

)

λ2
Ω(w(s)).
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Because this holds for all θ(s), we must have

(6.3)
α

2
|ΓΩ(w(s))|2 +

∣

∣

∣

∣

SΩ(w(s)) +
α − 1

2
Γ2

Ω(w(s))

∣

∣

∣

∣

≤
(

α − 1

2

)

λ2
Ω(w(s)).

For α ≥ 1 and Ω a convex region, Corollary 3.2(d) implies that v′′

α(s) ≤ α2vα(s).

Example 6.2. For the upper half-plane H, we have from Example 4.2 vα(s) =
eαs for any vertical half-line and v′′

α(s) = α2vα, so the differential inequality
v′′

α(s) ≤ α2vα(s) for α ≥ 1 is best possible.

Theorem 6.3. λα
Ω, α ≥ 1, is α-hyperbolically concave if and only if Ω is convex.

Proof. Preceding work shows that v′′

α(s) ≤ α2vα(s) for a convex region. That
is, λα

Ω is α-hyperbolically concave for convex Ω. Now, suppose v′′

α(s) ≤ α2vα(s)
holds along all hyperbolic geodesics in a hyperbolic region. This means that (6.3)
holds. Corollary 3.2 then implies that Ω is convex.

7. Rate of change of Euclidean curvature of hyperbolic

geodesics

We investigate the Euclidean curvature of hyperbolic geodesics. In any disk
or half-plane, the hyperbolic geodesics are circular arcs and so have constant
Euclidean curvature κe(w(s), γ). Then the rate of change of Euclidean curvature
vanishes. It is plausible that in convex regions, the rate of change of Euclidean
curvature of hyperbolic geodesics should not be too large. We show that the rate
of change of the quantity κe(w(s), γ)/λΩ(w(s)) is bounded in a convex region.

If γ is a hyperbolic geodesic, then κΩ(w(s), γ) vanishes and (4.1) gives

κe(w(s), γ)

λΩ(w(s)
= −Im

{

eiθ(s)ΓΩ(w(s))

λΩ(w(s))

}

.
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We are interested in the rate of change of the quantity κe(w(s), γ)/λΩ(w(s)),
where γ is a hyperbolic geodesic parameterized by hyperbolic arclength. Now,

d

ds

κe(w(s), γ)

λΩ(w(s))
= −Im

{

eiθ(s)

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

+ Im

{

eiθ(s)ΓΩ(w(s))

λ2
Ω(w(s))

(

∂λΩw(s)

∂w
w′(s) +

∂λΩw(s)

∂w̄
w′(s)

)}

− Im

{

ieiθ(s)θ′(s)ΓΩ(w(s))

λΩ(w(s))

}

= −Im

{

e2iθ(s)

λ2
Ω(w(s))

∂ΓΩ(w(s))

∂w
+

1

λ2
Ω(w(s))

∂ΓΩ(w(s))

∂w̄

}

+
1

2
Im

{

e2iθ(s)Γ2
Ω(w(s))

λ2
Ω(w(s))

+
|ΓΩ(w(s))|2
λ2

Ω(w(s))

}

− θ′(s)Re

{

eiθ(s)ΓΩ(w(s))

λΩ(w(s))

}

.

Because |ΓΩ(w(s))|/λΩ(w(s)) is real-valued, (2.3) and (4.2) give

d

ds

κe(w(s), γ)

λΩ(w(s))
= −Im

{

e2iθ(s)

λ2
Ω(w(s))

(

∂ΓΩ(w(s))

∂w
− 1

2
Γ2

Ω(w(s))

)}

+ Im

{

eiθ(s)ΓΩ(w(s))

λΩ(w(s))

}

Re

{

eiθ(s)ΓΩ(w(s))

λΩ(w(s))

}

.

From Re{z}Im{z} = (1/2)Im{z2} and (2.2), we obtain

(7.1)
d

ds

κe(w(s), γ)

λΩ(w(s))
= −Im

{

e2iθ(s)

λ2
Ω(w(s))

(

SΩ(w(s)) − 1

2
Γ2

Ω(w(s))

)}

.

Theorem 7.1. Let Ω be a hyperbolic region. Ω is convex if and only if

(7.2)

∣

∣

∣

∣

d

ds

κe(w(s), γ)

λΩ(w(s))

∣

∣

∣

∣

≤ 1

2

for every hyperbolic geodesic γ in Ω parameterized by hyperbolic arclength.

Proof. From (7.1), we have
∣

∣

∣

∣

d

ds

κe(w(s), γ)

λΩ(w(s))

∣

∣

∣

∣

≤ 1

λ2
Ω(w(s))

∣

∣

∣

∣

SΩ(w(s)) − 1

2
Γ2

Ω(w(s))

∣

∣

∣

∣

.

If Ω is convex, then (7.2) follows from Corollary 3.2.
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Conversely, assume (7.2) holds. Given w0 in Ω choose a hyperbolic geodesic
γ through w0, say w(0) = w0, in a direction eiθ(0) so that

d

ds

κe(w(0), γ)

λΩ(w(0))
=

1

λ2
Ω(w(0))

∣

∣

∣

∣

SΩ(w(0)) − 1

2
Γ2

Ω(w(0))

∣

∣

∣

∣

.

Then (7.2) implies that
∣

∣

∣

∣

SΩ(w(0)) − 1

2
Γ2

Ω(w(0))

∣

∣

∣

∣

≤ 1

2
λ2

Ω(w(0)).

Because w0 = w(0) is arbitrary, Corollary 3.2 implies that Ω is convex.

Example 7.2. This result is sharp for H. Note that λH(w) = 1/Im {w}. For
any a ∈ R and b > 0, γ : w(s) = a + bei2 arctan es

is a hyperbolic geodesic in H

with κe(w(s), γ) = 1/b. Let t = 2 arctan es, then κe(w(s),γ)
λΩ(w(s))

= sin t, dt
ds

= sin t, and

d

ds

κe(w(s), γ)

λΩ(w(s))
= cos t sin t =

1

2
sin(2t),

which achieves its maximum value 1/2 when t = π/4.

In Theorem 7.1 we considered the rate of change of Euclidean curvature di-
vided by the density of the hyperbolic metric. Now, we consider the rate of
change of the Euclidean curvature.

Theorem 7.3. Let Ω be a hyperbolic region. Ω is uniformly perfect if and only

if there is a finite constant C ≥ 0 such that every hyperbolic geodesic in Ω
parameterized by hyperbolic arclength satisfies

∣

∣

∣

∣

d

ds
κe(w(s), γ)

∣

∣

∣

∣

≤ CλΩ(w(s)).

Proof. Consider any hyperbolic geodesic γ in Ω parameterized by hyperbolic
arclength by w = w(s). From (4.1),

κe(w(s), γ) = −Im
{

eiθ(s)ΓΩ(w(s))
}

.

Then by using (4.2),

d

ds
κe(w(s), γ)

= −Im

{

eiθ(s)

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)

+ ieiθ(s)θ′(s)ΓΩ(w(s))

}

= −Im

{

e2iθ(s)

λΩ(w(s))

∂ΓΩ(w(s))

∂w

}

+ Im

{

eiθ(s)ΓΩ(w(s))

λΩ(w(s))

}

Re
{

eiθ(s)ΓΩ(w(s))
}

.
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As Re{z}Im{z} = (1/2)Im{z2}, we obtain

d

ds
κe(w(s), γ) = −Im

{

e2iθ(s)

λΩ(w(s))

(

∂ΓΩ(w(s))

∂w
− 1

2
Γ2

Ω(w(s))

)}

= −Im

{

e2iθ(s)SΩ(w(s))

λΩ(w(s))

}

.

Hence,
∣

∣

∣

∣

d

ds
κe(w(s), γ)

∣

∣

∣

∣

≤ |SΩ(w(s))|
λΩ(w(s))

.

Identity (5.2) implies C = β(Ω)/2.

Corollary 7.4. A hyperbolic region Ω in C is Nehari if and only if every hyper-

bolic geodesic γ in Ω parameterized by hyperbolic arclength satisfies
∣

∣

∣

∣

d

ds
κe(w(s), γ)

∣

∣

∣

∣

≤ 1

2
λΩ(w(s)).

8. Hyperbolic geodesics with Euclidean parametrization

Finally, we consider the case of a hyperbolic geodesic with Euclidean ar-
clength parametrization. Let γ be a hyperbolic geodesic with Euclidean arclength
parametrization w = w(s), so w′(s) = eiθ(s). Set

vα(s) = λα
Ω(w(s)).

Then

v′

α(s) = αλα−1
Ω (w(s))

(

∂λΩ(w(s))

∂w
w′(s) +

∂λΩ(w(s))

∂w̄
w′(s)

)

= αvα(s)Re
{

eiθ(s)ΓΩ(w(s))
}

.

Next,

v′′

α(s) = αv′

α(s)Re
{

eiθ(s)ΓΩ(w(s))
}

+ αvα(s)Re
{

ieiθ(s)θ′(s)ΓΩ(w(s))
}

+ αvα(s)Re

{

eiθ(s)

(

∂ΓΩ(w(s))

∂w
w′(s) +

∂ΓΩ(w(s))

∂w̄
w′(s)

)}

= α2vα(s)Re2
{

eiθ(s)ΓΩ(w(s))
}

− αvα(s)θ′(s)Im
{

eiθ(s)ΓΩ(w(s))
}

+ αvα(s)Re

{

e2iθ(s) ∂ΓΩ(w(s))

∂w
+

∂ΓΩ(w(s))

∂w̄

}

.

From (2.3), (4.1), κΩ(w(s), γ) = 0 and θ′(s) = κe(w(s), γ), we have

θ′(s) = −Im
{

eiθ(s)ΓΩ(w(s))
}
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and

v′′

α(s) = αvα(s)
(

αRe2
{

eiθ(s)ΓΩ(w(s))
}

+ Im2
{

eiθ(s)ΓΩ(w(s))
})

+ αvα(s)

(

Re

{

e2iθ(s) ∂ΓΩ(w(s))

∂w

}

+
1

2
λ2

Ω(w(s))

)

.

As

αRe2{z} + Im2{z} =
α + 1

2
|z|2 +

α − 1

2
Re {z2},

we obtain

v′′

α(s) = αvα(s)

(

α + 1

2
|ΓΩ(w(s))|2 + Re

{

e2iθ(s) (SΩ(w(s))

+
α

2
Γ2

Ω(w(s))
)}

+
1

2
λ2

Ω(w(s))

)

.

For α = −1, this simplifies to

v′′

−1(s) = −v−1(s)

(

Re

{

e2iθ(s)

(

SΩ(w(s)) − 1

2
Γ2

Ω(w(s))

)}

+
1

2
λ2

Ω(w(s))

)

.

Consequently, v′′

−1(s) ≤ 0 if and only if

Re

{

e2iθ(s)

(

SΩ(w(s)) − 1

2
Γ2

Ω(w(s))

)}

+
1

2
λ2

Ω(w(s)) ≥ 0.

This holds for all unit vectors at w(s) if and only if the inequality in Corol-
lary 3.2(b) holds, which characterizes convex regions by Corollary 3.2. Thus, we
have established the following result.

Theorem 8.1. Let Ω be a hyperbolic region. 1/λΩ is Euclidean concave in the

sense that v′′

−1(s) ≤ 0 along all hyperbolic geodesics in Ω with Euclidean arclength

parametrization if and only if Ω is convex.

Example 8.2. This result is sharp for H. Since λH(w) = 1/Im(w) and w(s) =
u + is is a Euclidean arclength parametrization of a hyperbolic geodesic in H,
we have v−1(s) = s. Then v′′

−1(s) = 0.
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