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The p(x)-Laplacian and applications
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Abstract. This is a survey of the application of function spaces in the study of
differential equations. It includes a general introduction to the function spaces
approach to differential equations, some motivating examples for studying
variable exponent spaces, and an overview of recent results on the p(x)-Laplace
equation.
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1. Overview

We start in the next section with some basic PDE material which in this
context serves to motivate the study of function spaces. The section is concluded
by some classical results about the solution of the Laplace equation △φ = 0 and
some newer results on the non-linear case. In Section 3 we start by giving two
applications which lead to variable exponent function spaces. Then we give
the precise definitions of these spaces, and review some of the major differences
between variable and constant exponent spaces. In Section 4 we present some
results, mainly from [16, 18, 19, 20], on the p(x)-Laplacian.

If you want to learn more about variable exponent spaces then a good place
to start is the web-page

http://mathstat.helsinki.fi/analysis/varsobgroup/

Under “Publications” you will find two other overview articles, one by Harjulehto
and Hästö [15] and the other by Diening, Hästö and Nekvinda [9]. Mingione
has recently published an article [23] on the Calculus of Variations approach to
these problems which is also well-worth looking into. Furthermore, the web-page
contains links to the home-pages of several other researchers working in the area.

This article is the outgrowth of a talk I gave at the National Conference on

PDE and Applications in Coimbatore, in March 2005. It is aimed at graduate
students and researchers without an extensive background in the field. Sections 3
and 4 contain more recent material which might also be of interest to experts.
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2. PDE’s, function spaces and applications

Suppose that we are interested in studying the differential equation

(2.1) Du = f,

where D is a differential operator and f is a given function or mapping. We of
course need to specify on what set the differential operator acts. But actually
there are also good reasons for specifying more structure on this set, e.g. a topol-
ogy. For instance we might want to “solve” the equation numerically – if uε is
an approximate solution such that

sup
x

|Duε(x) − f(x)| < ε,

then what does this tell us about how near uε is to the true solution of (2.1),
e.g. about |uε(x) − u(x)|?

A second motivation for the function spaces that we are going to consider
is that they allow us to consider differential equations in a weak form. If we
are considering a k-th order differential operator, then it would be very nice if
we could work in the space Ck of k times continuously differentiable functions.
However, we know that this space is not closed. Thus in the example of the
previous paragraph uε in some sense gets closer and closer to a solution as ε
tends to 0, but it may happen that the function actually gets worse and worse
(e.g. its norm might increase to infinity) so that the limit limε→0 uε does not
exist in the function space. Obviously this severely limits the information we
can derive about the solution from this approximating sequence.

Weak solutions 1. Recall the definition of the distributional derivative: we say
that v : R

n → R
n is the distributional derivative of w : R

n → R if
∫

Rn

v ϕ dx = −

∫

Rn

w∇ϕ dx,

for all smooth and compactly supported test functions ϕ. Here ∇ = (∂1, . . . , ∂n)
denotes the gradient operator. Of course we use the notation ∇w for v also in
the case of distributional derivatives.

We can define a weak solution of a PDE in the same spirit. Suppose we can
decompose D as ∂1 ◦ D̃, where ∂1 is short for ∂

∂x1

. Then a weak solution of (2.1)
is a function ũ which satisfies

∫

Rn

D̃ũ ∂1ϕ dx = −

∫

Rn

fϕ dx

for the same class of test functions. Thus we have lowered the differentiabil-
ity requirement on u by one, and instead we have to impose an integrability
requirement on D̃ũ.
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Note that if u is a Ck solution of the equation Du = f , then certainly u
is a weak solution in this sense; this is shown by integration-by-parts. Let us
consider a more concrete example of this, the one dimensional Laplace operator.
This operator is defined as the formal dot product of the vector ∇ with itself,
i.e. △ = ∇ · ∇ =

∑

i
∂2

∂x2

i

; in one dimension this is just ∂2/∂x2. So our original

equation would be
∂2u
∂x2 (x) = f(x),

which would require u to be twice differentiable. We multiply by a test function
ϕ ∈ C∞

0 and integrate:
∫

R

∂2u
∂x2 (x)ϕ(x) dx =

∫

R

f(x)ϕ(x) dx.

Next we integrate the left-hand-side by parts, and use that ϕ has compact sup-
port (i.e. “ϕ(±∞) = 0”):

−

∫

R

∂u
∂x

(x)∂ϕ
∂x

(x) dx =

∫

R

f(x)ϕ(x) dx,

which is just our equation for the weak solution.

Weak solutions 2. For the Laplace problem it turns out that a slightly different
notion of weak solution is more convenient. We next recall the Laplace problem
and then explain this notion.

In the classical Laplacian Dirichlet boundary value problem we are given a
domain Ω in R

n and a continuous function w : ∂Ω → R. The problem is to find
a continuous function u : Ω → R which satisfies

{

−∆u(x) = 0, for x ∈ Ω,

u(x) = w(x), for x ∈ ∂Ω.

By Weyl’s lemma, such a u is always C2 in Ω, and hence the problem may be
considered in the classical sense.

The p-Dirichlet boundary value problem for fixed p ∈ (1,∞) is to find a
continuous function u on Ω so that the p-Laplace equation

(2.2) −div(|∇u|p−2∇u) = 0

is satisfied on Ω and u = w on ∂Ω (see [21] for a comprehensive treatment of this
and related problems). When p 6= 2, equation (2.2) is nonlinear and it must be
understood in a weak sense. The idea here is the following: if g is a C1 function,
then we know that ∇g(x) = 0 at the critical points of g. Even if g is not C1,
we call the critical points of g weak solutions of the equation ∇g(x) = 0. In the
p-Laplace equation (2.2) the “independent variable” is the unknown function u,
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so we need to use variational calculus. With these tools we see that (2.2) is the
Euler–Lagrange equation of the variational integral

(2.3)

∫

Ω

|∇u(x)|p dx,

which means that smooth minimizers of this integral satisfy (2.2). We call (2.3)
the p-Dirichlet energy integral on Ω.

In the non-linear case also the boundary values must be understood in a weak
sense, i.e. we look for a minimizer u ∈ W 1,p(Ω) of (2.3) with the property that
u − w ∈ W 1,p

0 (Ω), where w ∈ W 1,p(Ω) gives the boundary values. Here W 1,p(Ω)
denotes the Sobolev space, i.e. the space of functions u such that u and |∇u| are
both in the Lebesgue space Lp. The zero-boundary-value space W 1,p

0 (Ω) is de-
fined as the closure of C∞

0 (Ω) (=infinitely differentiable and compactly supported
functions in Ω) in W 1,p(Ω).

3. The variable exponent case

We have previously argued for using function spaces and weak formulations
of differential equations. We start this section with two examples motivating the
use of variable exponent function spaces in particular, and then give the formal
definitions of these spaces.

Example 1. Chen, Levine and Rao [5] proposed a framework for image restora-
tion based on a variable exponent Laplacian. To understand their ideas, it is
useful first to look at some more classical ideas on the same problem.

In the context of image restoration we are given an input I which represents
shades of gray, typically on a rectangle Ω in the plane. It is assumed that I is
made up of the true image corrupted by noise, furthermore, the noise is assumed
additive, i.e. I = T + η, where T is the true image and η is a random variable
with zero mean. Thus the effect of the noise can be eliminated by smoothing
the input, since this will cause the effect of the zero-mean random variables at
nearby locations to cancel. Smoothing corresponds to minimizing the energy

E2(u) =

∫

Ω

|∇u(x)|2 + |u(x) − I(x)|2 dx.

Unfortunately, the smoothing will also destroy all small details from the image,
so this procedure is not very useful.

A better approach is so-called total variation smoothing. In this approach,
the smoothing is always applied along the presumed intensity level-sets of the
image. Since an edge in the image gives rise to a very large gradient, the level-sets
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around the edge are very distinct, so this method does a good job of preserving
edges. Total variation smoothing corresponds to minimizing the energy

E1(u) =

∫

Ω

|∇u(x)| + |u(x) − I(x)|2 dx.

Unfortunately, total variation smoothing not only preserves edges, it also creates
edges where there were none in the original image (the so-called staircase effect).

As the strengths and weaknesses of these two methods for image restoration
are opposite, it is natural to try to combine them, which is what Chen, Levine
and Rao [5] did. Looking at E1 and E2 suggests that an appropriate energy
would be

E(u) =

∫

Ω

|∇u(x)|p(x) + |u(x) − I(x)|2 dx,

where p is a function varying between 1 and 2. This function should be close to
1 where there are likely to be edges, and close to 2 where there are likely not
to be edges. The approximate location of the edges can be determined by just
smoothing the input data and looking for where the gradient is large. Although
this model is conceptually simple and intuitively appealing, a theoretical analysis
of it turns out to be quite complicated, for reasons that we will discuss below.

Example 2. A second application which uses variable exponent type Laplacians
is modeling electrorheological fluids [7, 26]. The constitutive equation for the
motion of an electrorheological fluid is given by

(3.1) ∂
∂t

u + div S(u) + (u · ∇)u + ∇π = f,

where u : R
3+1 → R

3 is the velocity of the fluid at a point in space-time, ∇ =
(∂1, ∂2, ∂3) is the gradient operator, π : R

3+1 → R is the pressure, f : R
3+1 → R

3

represents external forces, and the stress tensor S : W 1,1
loc → R

3×3 is of the form

Su(x) = µ(x)(1 + |Du(x)|2)(p(x)−2)/2)Du(x),

where, finally, µ is a weight function and Du = 1
2
(∇u + ∇uT ) is the symmetric

part of the gradient of u. Note that if p ≡ 2, then this equation reduces to the
usual non-dimensionalized Navier-Stokes equation.

Although (3.1) is more complicated than the Laplace equations we looked at
previously, we see that the highest order differential term is quite similar, namely

div
(

(λ + |Du(x)|2)(p(x)−2)/2)Du(x)
)

,

where λ = 1. Then the degenerate case λ = 0 corresponds to the Laplace
operator that we considered previously.
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Variable exponent spaces. Let Ω ⊂ R
n be an open set, and let p : Ω → [1,∞)

be a measurable function, called the variable exponent on Ω. We write

p+ = ess supx∈Ω p(x) and p− = ess infx∈Ω p(x).

The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable func-
tions u : Ω → R such that ̺p(·)(λu) =

∫

Ω
|λu(x)|p(x) dx < ∞ for some λ > 0. We

define a Luxemburg-type norm on this space by the formula

‖u‖p(·) = inf
{

λ > 0: ̺p(·)(u/λ) 6 1
}

.

The variable exponent Sobolev space W 1,p(·)(Ω) consists of all u ∈ Lp(·)(Ω) such
that the absolute value of the distributional gradient ∇u is in Lp(·)(Ω). The norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·)

makes W 1,p(·)(Ω) a Banach space. For the basic theory of variable exponent
spaces see [22].

Most of the problems in the development of the theory of Lp(·) spaces arise
from the fact that these spaces are virtually never translation invariant. This
is easily seen by considering translating critical singularities to locations with
higher value of the exponent. The use of convolution is also limited: it was
shown in [8] that Young’s inequality ‖f ∗ g‖p(·) ≤ c ‖f‖p(·)‖g‖1 holds if and only
if p is constant. These two problems significantly restrict the techniques available
and slowed down the development of the theory.

If the Hardy–Littlewood maximal operator is bounded, then these problems
are alleviated to some extent, and for instance convolution becomes possible. If
one assumes that p is log-Hölder continuous, i.e. that the inequality

|p(x) − p(y)| ≤
c

log(1/|x − y|)

holds for all points with |x−y| < 1
2
, then the maximal operator is locally bounded

on Lp(·) [8]. This condition is in fact optimal in the sense of modulus of continuity
[25] – if it is weakened, then there exists an exponent p which satisfies the weaker
conditions for which M is not bounded on Lp(·)(Rn). Global boundedness results
were derived in [6, 24].

4. The p(x)-Laplacian

We have now seen that the p-Laplacian problem for p 6= 2 has to be understood
in a weak sense as the minimization of a certain energy integral, and we have
seen examples of problems which lead to variable exponent Laplacians. The
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generalization of (2.3) to the variable exponent case is immediate: we want to
minimize

(4.1)

∫

Ω

|∇u(x)|p(x) dx,

subject to the appropriate boundary conditions. The boundary values are again

understood in a weak sense, using the space W
1,p(·)
0 studied in [17].

Early work on this problem was done by Zhikov [27, 28] and Alkhutov [4]. This
work was carried on by Acerbi & Mingione and their collaborators e.g. [1, 2, 3, 10],
and, independently, by Fan and collaborators e.g. [11, 12, 13, 14]. Much of this
work was directed at proving regularity results or generalizing other classical
results in the case when the variable exponent satisfies certain quite strong reg-
ularity assumption (e.g. log-Hölder or α-Hölder continuity). Harjulehto, Hästö,
Koskenoja and Varonen [18] showed that it is possible to derive existence and
uniqueness results under much weaker conditions on the exponent.

If p+ < ∞ and if there exists δ > 0 such that for every x ∈ Ω either

p−B(x,δ) > n or p+
B(x,δ) 6

n p−B(x,δ)

n − p−B(x,δ)

holds, then the variable exponent p is said to satisfy the jump condition in
Ω. Here p−B(x,δ) denotes the infimum of p in the ball B(x, δ), and p+

B(x,δ) the

supremum. Roughly, the jump condition guarantees that p does not jump too
much locally in Ω. Note that if Ω is bounded and if p is uniformly continuous,
then p satisfies the jump condition in Ω.

Let us define an “energy integral” operator on the Sobolev space by

Ip(·)(u) = ̺p(·)(|∇u|).

The following is the main theorem from [18]:

Theorem 4.2. Let Ω ⊂ R
n be a bounded open set and w ∈ W 1,p(·)(Ω). Assume

that p satisfies the jump condition in Ω and that 1 < p− 6 p+ < ∞. Then Ip(·)

has a unique minimizer in the set
{

u : u − w ∈ W
1,p(·)
0 (Ω)

}

.

To shed further light on what assumptions on p are relevant, Harjulehto, Hästö
and Koskenoja [16] studied the Dirichlet problem in one dimension. In this case
the energy to minimize is

∫ b

a

|u′(x)|p(x) dx,

where (a, b) is an interval of the real line and the values of u(a) and u(b) are
given. Assuming that u(a) < u(b) we directly see that the minimizer should
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be chosen to be increasing. With this in mind we see that the Euler-Lagrange
equation is just p(x)u′(x)p(x)−1 = c, so we have the simple formula

u′(x) = (c/p(x))1/(p(x)−1)

for the derivative. Notice that in the fixed exponent case this implies that the
solution is linear.

In the variable exponent case, however, we can draw a number of interesting
conclusions which are relevant also for higher dimensions. First of all, if p → 1
somewhere, then we might be in trouble, because the exponent tends to ∞.
Assuming that p− > 1, we see that u ∈ C1 if p is continuous. In fact, for every
α ∈ [0, 1], u ∈ C1,α if p ∈ Cα. (Recall the definition of C1,α: this space consists
of those functions with α-Hölder continuous first derivative.)

Therefore, it is natural to look for existence results under weaker assumptions
also in higher dimensions. Recently, the results of [18] were complemented in
[20] in two ways: first, it was shown that the Dirichlet energy integral always has
a minimizer if the boundary values are in L∞:

Theorem 4.3. Let Ω be bounded and 1 < p− 6 p+ < ∞. Suppose that w ∈
W 1,p(·)(Ω) ∩ L∞(Ω). Then Ip(·) has a unique minimizer in the set

{

u : u − w ∈ W
1,p(·)
0 (Ω)

}

.

Note that this in some sense corresponds to the one-dimensional case, as the
boundary values are necessarily bounded in one dimension.

Second, an example was given which shows that if the boundary values are
allowed to be unbounded, and the “jump-condition” from [18] is violated, then
a minimizer need not exist:

Theorem 4.4. Let q1 ∈ (1, n/(n − 1)) and q2 ∈ (q∗1,∞). Then there exist

a smooth exponent p with p− = q1 and p+ = q2, a bounded domain Ω and a

boundary value function w ∈ W 1,p(·)(Ω) such that Ip(·) does not have a minimizer

in the set {u : u − w ∈ W
1,p(·)
0 (Ω)}.

Thus we have a fairly clear picture of the existence of minimizers in the case
when p− > 1. However, for applications to the image restoration problem men-
tioned above it is of critical importance that p approaches and equals 1 in some
parts of the domain.

It is well-known that the space W 1,1 is not reflexive. Similarly, it was shown
in [22] that the space W 1,p(·) is reflexive if and only if 1 < p− ≤ p+ < ∞.
This limits our ability to work with Laplacian Dirichlet problems in which the
exponent approaches 1. Moreover, the usual concept of a weak solution is not
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sufficient for the case p = 1, rather so-called viscosity solutions are needed. This
concept has not yet been successfully transferred to the variable exponent setting.

Another open problem is the minimal assumptions on the exponent needed to
give some regularity (e.g. continuity) of the solutions. By an example in [19], we
know that minimizers are not always continuous, even for uniformly continuous
exponents. On the other hand the results by Mingione et al. and Fan et al.

cited previously are derived under much stronger continuity assumptions on the
exponent, so there remains a gap to fill here.
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19. P. Hästö, Counter-examples of regularity in variable exponent Sobolev spaces, The p-

Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), Contemp.
Math. 367, Amer. Math. Soc., Providence, RI, 2005.

20. , On the variable exponent Dirichlet energy integral, Comm. Pure Appl.
Anal. 5(2006), no. 3, 413–420.

21. J. Heinonen, T. Kilpelnen and O. Martio, Nonlinear potential theory of degenerate elliptic

equations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.
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