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Starlikeness of Nonlinear Integral Transforms

S. Ponnusamy and P. Vasundhra

Abstract. For n ≥ 1, let An denote the family of all normalized analytic
functions f in the unit disk ∆ of the form

f(z) = z +

∞
∑

k=n+1

akzk.

For λ > 0 and µ > 0, we consider the family Un(λ, µ) consisting of functions
f ∈ An, f(z)/z 6= 0 in ∆, and satisfying the condition
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< λ, z ∈ ∆.

For a real-valued, nonnegative integrable function ϕ(t) satisfying the nor-

malized condition
∫ 1

0
ϕ(t) dt = 1, and µ > 0, we define

[V µ
ϕ (f)](z) = z

[
∫ 1

0

ϕ(t)

(

tz

f(tz)

)µ

dt

]1/µ

, f ∈ Un(λ, µ).

In this paper, we obtain conditions on the parameters λ and µ, and on
the function ϕ(t), such that the transform V µ

ϕ (f) is univalent or starlike.
Our investigation leads to interesting special integral transforms that arise
naturally in the setting of the Hadamard product of z2/f(z) with special
families of functions such as the hypergeometric functions, polylogarithms
and Hurwitz functions.

Keywords. Univalent, close-to-convex, starlike and convex functions, in-
tegral transforms, Hadamard product.
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1. Introduction and Preliminaries

Denote by A the family of functions f , normalized by f(0) = f ′(0)− 1 = 0,
that are analytic in the unit disk ∆ = {z : |z| < 1} and by S the subfamily
of A consisting of univalent functions in ∆. For α < 1, let S∗(α) (resp. K(α))
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represent the subfamily of functions in A that are starlike (resp. convex) of
order α. Analytically, they are defined as follows:

S∗(α) =

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

> α, z ∈ ∆

}

and

K(α) = {f ∈ A : zf ′(z) ∈ S∗(α)} .
It is well known that S∗(α) ⊆ S∗(0) ≡ S∗ for 0 ≤ α < 1 and K(α) ( K(0) ≡ K
for 0 ≤ α < 1 and K ⊆ K(−1/2) ( S, see [20] and [19, p. 71, Theorem
2.24;p.73]. Members of S∗ (resp. K) are called normalized starlike (resp.
convex) functions. For λ > 0 and µ ∈ R, we let

U(λ, µ) =

{

f ∈ A :
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< λ,
f(z)

z
6= 0, z ∈ ∆

}

,

and U(λ, 1) =: U(λ). Also, for n ≥ 1, we let Un(λ) = U(λ)∩An and Un(λ, µ) =
U(λ, µ) ∩An, where

An =

{

f ∈ A : f(z) = z +

∞
∑

k=n+1

akz
k

}

.

1.1. The Class U(λ) . Typical members of U(1) and U2(1) are z/(1− z)2

and z/(1−z2), respectively. These two functions are also in S∗. In [9] (see also
[1]), Ozaki and Nunokawa showed that U(1) =: U ⊂ S. Although we have the
strict inclusion U ( S, functions in U and U ∩ A2 are not necessarily starlike
in ∆ (see for instance, [8]). In view of this observation radii problems have
also been discussed recently in Obradović and Ponnusamy [7, 14]. However,
because U ⊂ S, we have

U(λ) ( S for 0 < λ ≤ 1

and for λ > 1, a function in U(λ) is not necessarily univalent in ∆. We
include here a simple example to illustrate that the inclusion is strict. Consider
g(z) = z+(λ/2)z2, where λ > 0. Then g′(z) = 1+λz so that g is not univalent
whenever λ > 1. On the other hand, a computation gives
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∣
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∣

∣

∣

∣

→ λ2/4

(1 − λ/2)2
as z → −1−.

Note that for λ > 1, λ2/4
(1−λ/2)2

> 1, from which we conclude that functions in

U(λ) need not be univalent when λ > 1. More recently, the present authors
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[17, 18] discussed a general problem from which one obtains conditions on λ
such that

U(λ) ( S∗(α), U(λ) ( R(α),

where R(α) = {f ∈ A : Ref ′(z) > α for z ∈ ∆}.

1.2. The Class U(λ, µ) . In [6, 10, 11, 15], the problem of finding conditions
on λ and µ so that each function in U(λ, µ) is in S∗ or in some subfamilies of
S is considered. For example, Ponnusamy and Singh [11] have shown that

U(λ, µ) ⊆ S∗ if µ < 0 and 0 < λ ≤ 1 − µ
√

(1 − µ)2 + µ2
:= λ∗(µ)

and in [6], Obradović proved that the above inclusion continues to hold for
0 < µ < 1 and with the same bound for λ. Recently, Fournier and Ponnusamy
[4] settled sharpness questions. For a ready reference, we recall these results
here.

Theorem A. [4] Let µ ∈ C with Re (µ) < 1. Then, we have

1. U(λ, µ) ⊂ S∗ iff 0 ≤ λ ≤ |1 − µ|
√

|1 − µ|2 + |µ|2
.

2. U(λ, µ) ⊂ Sp iff 0 ≤ λ ≤ min

(

1,
|1 − µ|
|µ|

)

, where Sp denotes the class of

spirallike functions in A.

Clearly U(1, µ) ⊂ S∗ iff µ = 0 and U(1, µ) ⊂ Sp iff Re(µ) ≤ 1
2
.

1.3. Transformations and the Main Problem . One of the classical
problems in geometric function theory is to consider transformations that take
functions in a subset F of A into functions which are univalent or starlike or
convex. The subset F may include some non-univalent functions and some
univalent functions in ∆. Before we proceed further, it is important to recall
that,

F ∈ K ⇐⇒ zF ′ ∈ S∗,

or equivalently,

f ∈ S∗ ⇐⇒ Λ(f) ∈ K, Λ(f)(z) =

∫ 1

0

f(tz)

t
dt = z +

∞
∑

n=2

1

n
zn.

The operator Λ(f) is referred to as the Alexander transform of f . Although
Λ(S) 6⊂ S (see [3]), it was shown that there exist sets of functions, having
univalent as well as non-univalent functions, whose Alexander transforms are
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starlike (see for example [10, 5]). As a consequence, this result can be used
to generate functions in S∗ that are not convex. Results of this type in the
theory of univalent functions are known in the literature. For example, R.
Fournier and St. Ruscheweyh [5] studied the following integral transform which
obviously includes the Alexander transform as a special case:

(1.4) F (z) =

∫ 1

0

ϕ(t)
f(tz)

t
dt,

where ϕ is a real valued non-negative weight function defined on the unit in-

terval [0, 1] with the normalization
∫ 1

0
ϕ(t) dt = 1. The authors [5] determined

conditions so that F ∈ S∗. Our work is mainly motivated by this transforma-
tion.

The aim of this paper is to determine certain connections between Un(λ, µ)
and transforms of the type (1.4). More precisely, we shall be interested in the
following problem

Problem 1.5. Let ϕ be a real valued non-negative integrable function on [0, 1]

satisfying the normalized condition
∫ 1

0
ϕ(t) dt = 1. For f ∈ Un(λ, µ), define

(1.6) [V µ
ϕ (f)](z) = z

[
∫ 1

0

ϕ(t)

(

tz

f(tz)

)µ

dt

]1/µ

,

where for possible multiple-valued power functions principal branches are con-
sidered. Given ϕ(t) and µ ≤ n, find conditions on λ > 0 so that V µ

ϕ (f) is
starlike or convex.

1.7. Basic Results . Before we proceed to solve this problem, it would
be useful to list down a few basic properties. Observe that, if g = Λ(f) then
zg′(z) = f(z). Consequently, if f ∈ Un(λ, µ) for 0 < µ < n then we have the
following (see [17]):

(i) f(z) = zg′(z) ∈ S∗ for 0 < λ ≤ λ∗ = (n− µ)/
√

(n− µ)2 + µ2

(ii) Re

{(

z

f(z)

)µ}

> 1 − λµ

n− µ
, z ∈ ∆.

In particular, for f ∈ Un(λ) with λ ≤ (n− 1)/2 and n ≥ 2, one has,

Re

(

z

f(z)

)

>
1

2
, i.e. |g′(z) − 1| < 1, z ∈ ∆,

which in turn implies that Re (g′(z)) > 0 in ∆. Similarly from [13] it
follows that

f ∈ Un(λ, n) ⇒ Re

{(

z

f(z)

)n}

> 1 − n|f (n+1)(0)|
(n+ 1)!

− nλ, z ∈ ∆.
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In particular, for n = 1 and f ∈ U(λ) with λ ≤ (1 − |f ′′(0)|)/2, one has

Re

(

z

f(z)

)

>
1

2
, i.e. |g′(z) − 1| < 1 in ∆,

which in turn implies that Re (g′(z)) > 0 in ∆.
(iii) A simple computation yields

1 +
zg′′(z)

g′(z)
=
zf ′(z)

f(z)

and so
∣
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∣
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∣

∣
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zg′′(z)
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− 1
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∣

∣
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∣

∣

∣

∣
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∣

∣

∣

∣

∣

f ′(z)
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)µ+1

− 1

∣

∣

∣

∣

∣

,

where for possible multiple-valued power functions principal branches are
considered. For instance, this observation shows that if 0 < µ < n and
g ∈ An satisfies the condition

∣

∣

∣

∣

1 +
zg′′(z)

g′(z)
− (g′(z))µ

∣

∣

∣

∣

< b|g′(z)|µ

for 0 < b ≤ λ∗ = n−µ√
(n−µ)2+µ2

, then zg′(z) is starlike and hence g(z) is

convex. The sharpness part follows as in [4].

2. Main Results

The main aim of this paper is to discuss Problem 1.5. If f ∈ U(λ, µ) ∩ An,
then

f ′(z)

(

z

f(z)

)µ+1

= 1 + (n− µ)an+1z
n + · · ·

and therefore, the power series representation of functions associated with
U(λ, µ) ∩ An helps us to consider two cases, namely, µ < n and µ = n in-
dependently. In particular, we obtain conditions on ϕ(t), µ and α so that
V µ

ϕ (f) ∈ S∗(α) whenever f ∈ U(λ, µ). Finally, we introduce the family

S∗

α =

{

f ∈ S∗(α) :

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

< 1 − α, z ∈ ∆

}

.

Now we are in a position to state our result for the case µ < n.
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Theorem 2.1. For µ < n, let f ∈ Un(λ, µ). Suppose that α < 1, λ and ϕ(t)
satisfy the condition

(2.2) 0 < λ ≤ (1 − α)(n− µ)

(n+ µ(1 − α))
∫ 1

0
tnϕ(t) dt

.

If V µ
ϕ (f) is defined by (1.6), then V µ

ϕ (f) ∈ S∗

α.

If µ = 1, then, by Theorem 2.1, we have the following:

Corollary 2.3. Let f ∈ Un(λ) with n ≥ 2. Suppose that Vϕ(f) is defined by

(2.4) V 1
ϕ (f)(z) := Vϕ(f)(z) = z

∫ 1

0

ϕ(t)
tz

f(tz)
dt,

λ and ϕ(t) satisfy the condition

0 < λ ≤ (1 − α)(n− 1)

(n+ 1 − α)
∫ 1

0
tnϕ(t) dt

, α < 1.

Then Vϕ(f) ∈ S∗

α.

Example 2.5. Corollary 2.3 for α = 0 implies the following:

f ∈ Un(λ) (n ≥ 2) =⇒ Vϕ(f) ∈ S∗

1 if 0 < λ ≤ n− 1

(n+ 1)
∫ 1

0
tnϕ(t) dt

.

In particular, we have

(i) when the second coefficient of f is zero, we deduce that

f ∈ U2(λ) implies that Vϕ(f) ∈ S∗

1 whenever 0 < λ ≤ 1

3
∫ 1

0
t2ϕ(t) dt

.

(ii) If the second and the third coefficients of f are zero, then

f ∈ U3(λ) implies that Vϕ(f) ∈ S∗

1 whenever 0 < λ ≤ 1

2
∫ 1

0
t3ϕ(t) dt

.

Our next intention is to deal with the case µ = n and formulate the next
result.

Theorem 2.6. Let n ≥ 1, and f ∈ Un(λ, n) with an = f (n)(0)/n!. Suppose
that λ and ϕ(t) satisfy the condition

(2.7) 0 < λ ≤ 1 − α− n|an+1|(2 − α)
∫ 1

0
tnϕ(t) dt

(2n+ 1 − nα)
∫ 1

0
tn+1ϕ(t) dt

for some α < 1. If V n
ϕ (f) is defined by (1.6), then V n

ϕ (f) ∈ S∗

α.

If we apply Theorem 2.6 with n = 1, we immediately obtain
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Corollary 2.8. Let f ∈ U(λ) and Vϕ(f) be given by (2.4). If λ and ϕ(t)
satisfy the condition

0 < λ ≤ 1 − α− (2 − α)|a2|
∫ 1

0
tϕ(t) dt

(3 − α)
∫ 1

0
t2ϕ(t) dt

,

for α < 1. Then Vϕ(f) ∈ S∗

α.

The case α = 0 of Corollary 2.8 gives the following:

f ∈ U(λ) =⇒ Vϕ(f) ∈ S∗

1 if 0 < λ ≤ 1 − 2|a2|
∫ 1

0
tϕ(t) dt

3
∫ 1

0
t2ϕ(t) dt

.

Note that if a2 = 0, then the last implication leads to Example 2.5(i) but not
necessarily the converse.

3. Proofs of Main Theorems

3.1. Proof of Theorem 2.1. Let f ∈ Un(λ, µ) where µ < n. Then, we
can write

f ′(z)

(

z

f(z)

)µ+1

= 1 + λw(z) = 1 + (n− µ)an+1z
n + · · · ,

where w ∈ Bn, i.e. w is analytic in ∆, |w(z)| < 1 with w(0) = w′(0) = · · · =
wn−1(0) = 0. In view of the Schwarz lemma, we then have |w(z)| ≤ |z|n.
Further, it is easy to obtain that (see [17])

(3.2)

(

z

f(z)

)µ

= 1 − λ

∫ 1

0

w(s1/µz)

s2
ds.

Now, we define

P (z) = z

[
∫ 1

0

ϕ(t)

(

tz

f(tz)

)µ

dt

]

.

Then we have

(3.3) P (z) = z

(

[V µ
ϕ (f)](z)

z

)µ

where V µ
ϕ (f) is given by (1.6). In view of the representation (3.2), we may

write

P (z) = z

∫ 1

0

ϕ(t)

[

1 − λ

∫ 1

0

w(s1/µtz)

s2
ds

]

dt

= z − zλ

∫ 1

0

∫ 1

0

ϕ(t)
w(s1/µtz)

s2
ds dt.(3.4)
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By (3.4), we note that

∣

∣

∣

∣

P (z)

z
− 1

∣

∣

∣

∣

= λ

∣

∣

∣

∣

∫ 1

0

∫ 1

0

ϕ(t)
w(s1/µtz)

s2
ds dt

∣

∣

∣

∣

≤ λ

∫ 1

0

ϕ(t)tn
(

∫ 1

0

s(n/µ)−2 ds

)

dt

≤ λµ

n− µ

∫ 1

0

ϕ(t)tn dt

< λ ≤ 1, by the condition (2.2) on λ,

which shows that P (z)/z is nonvanishing for |z| < 1. In particular, P (z) is
analytic in ∆ and has a simple zero only at the origin and nowhere else. Taking
the logarithmic differentiation of (3.3) and taking into account of the proper
branch, it is clear that

z[V µ
ϕ (f)]′(z)

[V µ
ϕ (f)](z)

− 1 =
1

µ

[

zP ′(z)

P (z)
− 1

]

.

Hence, to complete the proof, it suffices to obtain the required conclusion about
the function P . Now, differentiating (3.4) with respect to z, we get

(3.5) P ′(z) = 1 − λµ

∫ 1

0

ϕ(t)w(tz) dt− λ(µ+ 1)

∫ 1

0

∫ 1

0

w(s1/µtz)

s2
ds dt.

From (3.4) and (3.5), it follows that

zP ′(z)

P (z)
− 1 = −

λµ

∫ 1

0

ϕ(t)w(tz) dt+ λµ

∫ 1

0

∫ 1

0

ϕ(t)
w(s1/µtz)

s2
ds dt

1 − λ

∫ 1

0

∫ 1

0

ϕ(t)
w(s1/µtz)

s2
ds dt

.

Again, as |w(z)| ≤ |z|n, we see that

1

µ

∣

∣

∣

∣

zP ′(z)

P (z)
− 1

∣

∣

∣

∣

<

nλ

∫ 1

0

tnϕ(t) dt

n− µ− λµ

∫ 1

0

tnϕ(t) dt

≤ 1 − α, by (2.2).

This gives the required conclusion.
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3.6. Proof of Theorem 2.6. Let f ∈ Un(λ, n). Then, it is a simple
exercise to see that

f ′(z)

(

z

f(z)

)n+1

= 1 + an+2z
n+1 + · · · = 1 + λw(z),

for some w ∈ Bn+1. By the Schwarz lemma we then have |w(z)| ≤ |z|n+1. It
follows easily that

(

z

f(z)

)n

= 1 − nan+1z
n − λ

∫ 1

0

w(s1/nz)

s2
ds.

Indeed, since f(z) 6= 0 in 0 < |z| < 1, we see that
(

z

f(z)

)n

−
(

z

f(z)

)n−1
[

−
(

z

f(z)

)2

f ′(z) +
z

f(z)

]

=

(

z

f(z)

)n+1

f ′(z).

By hypothesis, we can write

(3.7)

(

z

f(z)

)n

−
(

z

f(z)

)n−1
[

−
(

z

f(z)

)2

f ′(z) +
z

f(z)

]

= 1 + λw(z),

where w ∈ Bn+1. Suppose that
(

z

f(z)

)n

= 1 +
∞

∑

k=n

pkz
k and w(z) =

∞
∑

k=n+1

bkz
k.

Then
(

z

f(z)

)n

−
(

z

f(z)

)n−1
[

−
(

z

f(z)

)2

f ′(z) +
z

f(z)

]

= 1+
∞

∑

k=n+1

(

1 − k

n

)

pkz
k.

A comparison of the coefficient of zk on both sides of (3.7) shows that
(

1 − k

n

)

pk = λbk (k ≥ n + 1)

so that
(

z

f(z)

)n

= 1 − nan+1z
n + λ

∞
∑

k=n

bk
1 − k/n

zk.

We can rewrite the last equality in integral form
(

z

f(z)

)n

= 1 − nan+1z
n − λ

∫ 1

0

w(t1/nz)

t2
dt.

Now, as in the proof of Theorem 2.1, define

P (z) = z

[
∫ 1

0

ϕ(t)

(

tz

f(tz)

)n

dt

]

, f ∈ Un(λ, n).
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Therefore,

P (z) = z

∫ 1

0

ϕ(t)

[

1 − nan+1t
nzn − λ

∫ 1

0

w(s1/ntz)

s2
ds

]

dt

= z − nan+1z
n+1

∫ 1

0

tnϕ(t) dt− zλ

∫ 1

0

∫ 1

0

ϕ(t)
w(s1/ntz)

s2
ds dt.(3.8)

By hypothesis, we see that Re (P (z)/z) > 0 for all z ∈ ∆ and hence P (z)/z
has no zeros in ∆. Indeed, as |w(z)| ≤ |z|n+1 for z ∈ ∆, one has

∣

∣

∣

∣

P (z)

z
− 1

∣

∣

∣

∣

≤ n|an+1|
∫ 1

0

tnϕ(t) dt+ λ

∫ 1

0

∫ 1

0

ϕ(t)s1/n−1tn+1 ds dt

= n|an+1|
∫ 1

0

tnϕ(t) dt+ nλ

∫ 1

0

tn+1ϕ(t) dt

< λ ≤ 1, by (2.7).

Then, from (1.6) with µ = n, we see that

P (z) = z

(

[V n
ϕ (f)](z)

z

)n

.

Taking logarithmic differentiation, it is clear that

(3.9)
z[V n

ϕ (f)]′(z)

[V n
ϕ (f)](z)

− 1 =
1

n

[

zP ′(z)

P (z)
− 1

]

.

Differentiating both sides of (3.8) with respect to z, we get

P ′(z) = 1 − n(n + 1)an+1z
n

∫ 1

0

tnϕ(t) dt− λn

∫ 1

0

ϕ(t)w(tz) dt(3.10)

−λ(n+ 1)

∫ 1

0

∫ 1

0

ϕ(t)
w(s1/ntz)

s2
ds dt.

From (3.8) and (3.10), we can see easily that

zP ′(z)

P (z)
− 1 =

−n
2an+1z

n
∫ 1

0
tnϕ(t) dt+ λn

∫ 1

0
ϕ(t)w(tz) dt+ λn

∫ 1

0

∫ 1

0
ϕ(t)[w(s1/ntz)/s2] ds dt

1 − nan+1zn
∫ 1

0
tnϕ(t) dt− λ

∫ 1

0

∫ 1

0
ϕ(t)[w(s1/ntz)/s2] ds dt

.

Therefore, using the fact that |w(z)| ≤ |z|n+1, we get

1

n

∣

∣

∣

∣

zP ′(z)

P (z)
− 1

∣

∣

∣

∣

<
n|an+1|

∫ 1

0
tnϕ(t) dt+ (n+ 1)λ

∫ 1

0
tn+1ϕ(t) dt

1 − n|an+1|
∫ 1

0
tnϕ(t) dt− λn

∫ 1

0
tn+1ϕ(t) dt

≤ 1 − α, by (2.7).
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By (3.9), the proof is complete.

4. Special Integral Transforms

Our applications in Section 4 are stated in terms of the Hadamard product

(φ ∗ ψ)(z) =

∞
∑

n=0

anbnz
n (|z| < 1)

of analytic functions φ(z) =
∑

∞

n=0 anz
n and ψ(z) =

∑

∞

n=0 bnz
n in the unit disk

∆. We consider certain special integral transforms that can be represented as
a Hadamard product with Gaussian hypergeometric functions, polylogarithms
and Hurwitz functions. These functions are defined as follows:

(i) For a > −1, b > −1 and b > a, define

G(a, b; z) =

∞
∑

n=1

(1 + a)(1 + b)

(n + a)(n+ b)
zn = z

∫ 1

0

ϕ(t)

1 − tz
dt

where

(4.1) ϕ(t) =







(a+ 1)(b+ 1)
ta − tb

b− a
, for b 6= a

(a+ 1)2ta log(1/t), for b = a.

Because of the symmetry in (4.1), without loss of generality, we may
assume that b > a in this case.

(ii) For p ≥ 0 and a > −1, define

Φp(a; z) =

∞
∑

n=1

(1 + a)p

(n + a)p
zn = z

∫ 1

0

ϕ(t)

1 − tz
dt

where

(4.2) ϕ(t) =
(1 + a)p

Γ(p)

(

log
1

t

)p−1

ta.

(iii) For a > 0, b > 0 and c+1 > a+b, we consider the integral representation
proved in [2] for the classical Hypergeometric function F (a, b; c; z):

zF (a, b; c; z) = z

∫ 1

0

ϕ(t)

1 − tz
dt

where
(4.3)

ϕ(t) =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
tb−1(1 − t)c−a−bF

(

c− a, 1 − a
c− a− b+ 1

; 1 − t

)

.
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We note that each ϕ(t) satisfies the desired normalization conditions of Prob-
lem 1.5. Also, our choices of ϕ(t) above imply that for f ∈ A,

Vϕ(f(z)) = z

∫ 1

0

ϕ(t)
tz

f(tz)
dt =

z2

f(z)
∗ Θ(z),

where Θ is either G(a, b; z) or Φp(a; z) or zF (a, b; c; z). Thus, we have the
following special transformations in the settings of Problem 1.5.

Now we are in a position to use these three special transformations and
state the following results without proof.

Theorem 4.4. Let f ∈ Un(λ, n) (n ≥ 1). If a, b > −1, b ≥ a and where ϕ(t)
is given by (4.1), then G defined by

(4.5) G(z) := G(a, b; z) ∗ z2

f(z)
= z

∫ 1

0

ϕ(t)
tz

f(tz)
dt

belongs to S∗

α whenever λ, a, b and α < 1 are related by the inequality

0 < λ ≤ (1 − α) − n(2 − α)|an+1| |An+1|
(2n+ 1 − nα)|An+2|

where

An+1 =
(a+ 1)(b+ 1)

(a + n+ 1)(b+ n + 1)
.

Theorem 4.6. Let f ∈ Un(λ, n) (n ≥ 1), α < 1. If p ≥ 0, and ϕ(t) is given
by (4.2), then Φ defined by

(4.7) Φ(z) := Φp(a; z) ∗
z2

f(z)
= z

∫ 1

0

ϕ(t)
tz

f(tz)
dt

belongs to S∗

α whenever λ, a, p and α < 1 satisfy the inequality

λ ≤ (1 − α) − n(2 − α)|an+1| |An+1|
(2n+ 1 − nα)|An+2|

,

where

An+1 =
(a+ 1)p

(a+ n + 1)p
.

Theorem 4.8. Let f ∈ Un(λ, n) (n ≥ 1). If a > 0, b > 0, c + 1 > a+ b, and
ϕ(t) is given by (4.3), then H defined by

(4.9) H(z) := zF (a, b; c; z) ∗ z2

f(z)
= z

∫ 1

0

ϕ(t)
tz

f(tz)
dt

belongs to S∗

α whenever λ, a, b, c and α < 1 satisfy the inequality

λ ≤ (1 − α) − n(2 − α)|an+1| |An+1|
(2n+ 1 − nα)|An+2|
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where

An+1 =
(a)n(b)n

(c)nn!
.

Remark 4.10. It is interesting to note that all the operators coincide in some
special cases. For example p = 1 in Case (ii) is the same as Case (iii) if we set
a = 1 and then replace b and c by a+ 1 and a+ 2, respectively. Similarly, the
limiting case b→ ∞ in Case (i) is equivalent to p = 1 in Case (ii). �

As indicated in Remark 4.10, the following corollary follows from either of
these three Theorems.

Corollary 4.11. [13] Let f ∈ Un(λ, n) with α < 1, λ > 0, c > 0, n ≥ 1 and
let Fc be defined by

(4.12) Fc(z) =
c

zc−1

∫ z

0

ζc

f(ζ)
dζ.

Then Fc ∈ S∗

α, in particular, Fc ∈ S∗(α), whenever c, λ are related by

0 < λ ≤ c + n+ 1

c+ n

(

(1 − α)(c+ n) − |an+1|n(2 − α)c

c(2n + 1 − nα)

)

.

The case n = 1 of Corollary 4.11 gives a result of the authors in [17].

Similarly, for µ = 1 and ϕ(t) defined by (4.1), (4.2) and (4.3), we have the
following special case of Theorem 2.8. These theorems can also be obtained
from Theorems 4.4, and 4.8, respectively.

Theorem 4.13. Let λ > 0, a > −1, b > −1, α < 1 and b ≥ a. If f ∈ U(λ),
then G defined by (4.5) belongs to S∗

α whenever λ, a, b and α < 1 are related
by the inequality 0 < λ ≤ λ0, where

λ0(a, b) =
[(1 − α) − (2 − α)|A2|](a+ 3)(b+ 3)

(3 − α)(a+ 1)(b+ 1)
.

Here A2 = a2
(a+ 1)(b+ 1)

(a+ 2)(b+ 2)
.

In particular, we have

(i) G ∈ S∗ if f ∈ U(λ) with 0 < λ ≤ (1 − 2|A2|)(a+ 3)(b+ 3)

3(a+ 1)(b+ 1)
.

(ii) G ∈ S∗ if f ∈ U2(λ) := U(λ) ∩A2 with 0 < λ ≤ (a+ 3)(b+ 3)

3(a+ 1)(b+ 1)
.
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Theorem 4.14. Let λ > 0, a > −1 and p > 0. If f ∈ U(λ), then Φ defined
by (4.7) belongs to S∗

α whenever λ, a, p and α < 1 satisfy the inequality

λ ≤ [(1 − α) − (2 − α)|A2|](a+ 3)p

(3 − α)(a+ 1)p
, where A2 = a2

(

a+ 1

a+ 2

)p

.

In particular,

(i) Φ ∈ S∗ if f ∈ U(λ) with 0 < λ ≤ (1 − 2|A2|)(a+ 3)p

3(a+ 1)p
.

(ii) Φ ∈ S∗ if f ∈ U2(λ) with 0 < λ ≤ 1

3

(

a+ 3

a+ 1

)p

.

Theorem 4.15. Let α < 1, a > 0, b > 0 and c + 1 > a + b. If f ∈ U(λ),
then H defined by (4.9) belongs to S∗

α whenever λ, a, b, c and α < 1 satisfy
the inequality

λ ≤ [(1 − α) − (2 − α)|A2|]2c(c+ 1)

(3 − α)a(a+ 1)b(b+ 1)
,

where A2 = a2 (ab/c). In particular, we have the following:

(i) H ∈ S∗ if f ∈ U(λ) with 0 < λ ≤ (1 − 2|A2|)2c(c+ 1)

3a(a+ 1)b(b+ 1)
.

(ii) H ∈ S∗ if f ∈ U2(λ) with 0 < λ ≤ 2c(c+ 1)

3a(a+ 1)b(b+ 1)
.

In the special case n = 1, α = 0 and µ = 1, Theorems 4.4, 4.6, and 4.8
coincide with Theorems 4.13(i), 4.14(i), 4.15(i), respectively.

For ϕ(t) as in (4.1), (4.2) and (4.3), we have the following special case of
Theorem 2.1 in case of missing Taylor coefficients.

Theorem 4.16. For µ < n, let f ∈ Un(λ, µ). Then G defined by (4.5) belongs
to S∗

α whenever λ, a, b and α < 1 are related by the inequality

λ ≤ (1 − α)(n− µ)(a+ n+ 1)(b+ n + 1)

(a+ 1)(b+ 1)(n + µ(1 − α))
.

Theorem 4.17. For µ < n, let f ∈ Un(λ, µ), then Φ defined by (4.7) belongs
to S∗

α whenever λ, a, p and α < 1 satisfy the inequality

λ ≤ (1 − α)(n− µ)(a+ n + 1)p

(n + µ(1 − α))(a+ 1)p
.

Theorem 4.18. For µ < n, let f ∈ Un(λ, µ), then H defined by (4.9) belongs
to S∗

α whenever λ, a, b, c and α < 1 satisfy the inequality

λ ≤ (1 − α)(n− µ)(c)nn!

(n+ µ(1 − α))(a)n(b)n
.
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In particular, when n = 2, α = 0 and µ = 1, Theorems 4.16, 4.17 and 4.18
imply Theorems 4.13(ii), 4.14(ii) and 4.15(ii), respectively, but not necessarily
the converse.

As indicated in Remark 4.10, the following corollary follows from one of
these two Theorems above.

Corollary 4.19. [13] For µ < n, let f ∈ Un(λ, µ) with α < 1, λ > 0, c > 0
and let Fc be defined by (4.12). Then, Fc ∈ S∗

α, and in particular, Fc ∈ S∗(α),
whenever c, λ are related by

0 < λ ≤ (1 − α)(c+ n)(n− µ)

c(n + 1 − α)
.

For µ = 1, one has corresponding results when f ∈ Un(λ) with n > 1.

5. Conclusion

In this paper the problem of starlikeness of V µ
ϕ (f) has been solved when f ∈

U(λ, µ). The problem of convexity is still open except for the transformation
Fc defined by (4.12), see [16]. Moreover, the transformation V µ

ϕ (f) has not
been studied for other subfamilies of the family of analytic functions in the
unit disk.
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