Proceedings of the International Conference on Geometric Function Theory, Special Functions and Applications (ICGFT)

Editors: R. W. Barnard and S. Ponnusamy

J. Analysis

Volume 15 (2007), 239-245

Neighbourhoods of a certain subclass of $SP(\beta)$

T. Ram Reddy and P. Thirupathi Reddy

Abstract. The aim of this paper is to introduce the class $SP_s(\beta)$ which is a subclass of $SP(\beta)$ ($0 < \beta < \infty$) satisfying the condition

$$\left| \frac{2zf'(z)}{f(z) - f(-z)} - \beta \right| \le \operatorname{Re} \left\{ \frac{2zf'(z)}{f(z) - f(-z)} \right\} + \beta,$$

for all $z \in E = \{z : |z| < 1\}$. We study neighbourhoods of this class and also prove a necessary and sufficient condition in terms of convolutions for a function f to be in $SP_s(\beta)$. Further more, it is shown that the class $SP_s(\beta)$ is closed under convolution with functions f which are convex univalent in E.

Keywords. Neighbourhood, starlike, convex and subordination.

2000 MSC. 30C45.

1. Introduction

Let \mathcal{A} denote the class of function f analytic in the unit disc $E = \{z : |z| < 1\}$ normalized by f(0) = f'(0) - 1 = 0. Any $f \in \mathcal{A}$ has the Taylor's expansion $f(z) = z + a_2 z^2 + \cdots$ in E. Let \mathcal{S} be the subclass of \mathcal{A} that are univalent in E. Let CV and ST denote the subclasses of \mathcal{S} consisting of convex and starlike functions respectively. The convolution or Hadamard product of

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$

is defined as

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

It is observed that

$$f(z) * \frac{z}{(1-z)^2} = zf'(z)$$
 and $f(z) * \frac{z}{(1-z^2)} = \frac{[f(z) - f(-z)]}{2}$.

Goodman [1, 2] defined the following subclasses of CV and ST as follows.

Definition A. A function f is uniformly convex (starlike) in E if f is in CV(ST) and has the property that for every circular arc γ with centre at ς contained in E then the arc $f(\gamma)$ is convex (starlike w.r.t. $f(\varsigma)$).

Goodman [1, 2] gave the following two variable analytic characterizations of these classes denoted respectively by UCV and UST.

Theorem A. A function f in \mathcal{A} is in UCV if and only if

Re
$$\left\{1 + (z - \varsigma)\frac{f''(z)}{f'(z)}\right\} > 0, \quad z \neq \varsigma$$

for all z and ς is in E.

Theorem B. A function f in A is in UST if and only if

Re
$$\left\{ \frac{f(z) - f(\varsigma)}{(z - \varsigma)f'(z)} \right\} > 0$$

for every pair z, ς lying in E.

It is clear that if $f \in UST$, then $f \in ST$, the class of starlike univalent functions and if $f \in UCV$, then $f \in CV$, the class of convex univalent functions. However, the classical Alexander Theorem that $f \in CV$ if and only if zf'(z) is in ST is no longer hold between the classes UCV and UST. Ronning [6] defined a subclass of starlike functions S_p with the property that a function $f \in UCV$ if and only $zf' \in S_p$.

Ma and Minda [3] and Ronning [6], independently found a more applicable one variable characterization for UCV.

Theorem C. A function f in \mathcal{A} is in UCV if and only if

Re
$$\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right|, \quad z \in E.$$

Ronning [6] proved a one-variable characterization for S_p as follows.

Theorem D. A function f in \mathcal{A} is in S_p if and only if

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\}, \quad z \in E.$$

Ronning [7] generalized the class S_p by introducing a parameter β and defined the class $S_p(\beta)$ by

$$\left| \frac{zf'(z)}{f(z)} - \beta \right| \le \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} + \beta, \quad 0 < \beta < \infty.$$

The notion of δ -neighbourhood was first introduced by Ruscheweyh [8].

Definition B. For $\delta \geq 0$ the δ -neighbourhood of $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ analytic in E is defined by

$$N_{\delta}(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n : \sum_{n=2}^{\infty} n|a_n - b_n| \le \delta \right\}.$$

T- δ neighborhood was given by Sheil-Small and Silvia [10] as.

Definition C. For $\delta \geq 0$, and $T = \{t_n\}_{n=2}^{\infty}$ a sequence of non negative reals a T- δ neighbourhood of $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ analytic in E is defined by

$$TN_{\delta}(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n : \sum_{n=2}^{\infty} t_n |a_n - b_n| \le \delta \right\}.$$

Padmanabhan [4] has introduced the neighbourhoods of functions in the class S_p . Parvatham and Premabai [5] has introduced the following class of functions SP_s and studied T- δ , neighborhoods in this class

Definition D. Any function $f \in \mathcal{A}$ is said to be in the class SP_s of uniformly starlike with respect to symmetric points if for all $z \in E$.

$$\left| \frac{zf'(z)}{f(z) - f(-z)} - 1 \right| \le \operatorname{Re} \left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\}.$$

In this paper we introduce a new class of functions and study properties of T- δ neighbourhoods of functions in this class.

Definition 1.1. A function f(z) in \mathcal{A} is said to be in the class $SP_s(\beta)$ if for all $z \in E$,

$$\left| \frac{2zf'(z)}{f(z) - f(-z)} - \beta \right| \le \operatorname{Re} \left\{ \frac{2zf'(z)}{f(z) - f(-z)} \right\} + \beta \text{ for } 0 < \beta < \infty.$$

This implies that $f \in SP_s(\beta)$ if and only if (2zf'(z))/(f(z) - f(-z)) lies in the region Ω bounded by a parabola with vertex at the origin and parameterized by $(t^2+4i\beta t)/4\beta$ for any real t. It is known. Ronning [7] shown that the function

$$Q_{\beta}(z) = \beta \left[1 + \frac{4}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2 \right]$$

maps the unit disc E onto the parabolic region Ω . (The branch of square root is chosen so that $\text{Im } \sqrt{z} \geq 0$). Then from the above definition $f \in \mathcal{A}$ is in the class $SP_s(\beta)$ if and only if

$$\frac{2zf'(z)}{f(z) - f(-z)} \prec Q_{\beta}(z),$$

where \prec denotes subordination.

First let us state a Lemma due to Ruscheweyh and Sheil-Small [9], which is needed to establish our results.

Lemma A. If ϕ is convex univalent function with $\phi(0) = 0 = \phi'(0) - 1$ in the unit disc E and g is starlike univalent in E, then for any analytic function F in E, the image of E under $\frac{\phi*Fg(z)}{\phi*g(z)}$ is a subset of the convex hull of F(E).

Definition 1.2. Let $SP'_s(\beta)$ be the class of all functions $h_{\beta}(z)$ in \mathcal{A} of the form

$$h_{\beta}(z) = \frac{4\beta}{4\beta - 4i\beta t - t^2} \left[\frac{z}{(1-z)^2} - \frac{t^2 + 4i\beta t}{4\beta} \frac{z}{(1-z^2)} \right].$$

We now give the characterization for function f in \mathcal{A} to be in $SP_s(\beta)$.

Theorem 1.3. A function f in \mathcal{A} is in $SP_s(\beta)$ if and only if for all z in E for all

$$h_{\beta} \in SP's(\beta)$$
 and $\frac{f * h_{\beta}(z)}{z} \neq 0$.

Proof. Let us assume that for $f \in \mathcal{A}$ and $\frac{f*h_{\beta}(z)}{z} \neq 0$, for all $h_{\beta} \in SP'_{s}(\beta)$ and for $z \in E$. From the definition of $h_{\beta}(z)$ it follows that

$$\frac{f * h_{\beta}(z)}{z} = \frac{4\beta}{4\beta - 4\beta it - t^2} \left[zf'(z) - \frac{t^2 + 4\beta it}{4\beta} \left[\frac{f(z) - f(-z)}{2} \right] \right] \neq 0$$

or equivalently

$$\frac{2zf'(z)}{f(z) - f(-z)} \neq \frac{t^2 + 4\beta it}{4\beta}, \text{ for } t \in \mathbb{R}.$$

This means that $\frac{2zf'(z)}{f(z)-f(-z)}$ lies completely either inside Ω_{β} or complement of Ω_{β} for all z in E. At z=0, $\frac{2zf'(z)}{f(z)-f(-z)}=1 \in \Omega_{\beta}$. So that $\frac{2zf'(z)}{f(z)-f(-z)} \subset \Omega_{\beta}$, which shows that $f \in SP_s(\beta)$.

Conversely let $f \in SP'_s(\beta)$. Hence $\frac{2zf'(z)}{f(z)-f(-z)}$ lies with in the parabola with vertex at the origin and where boundary is given by $\frac{t^2+4i\beta t}{4\beta}$, for $t \in \mathbb{R}$.

$$f \in SP_s(\beta)$$
 only if $\frac{2zf'(z)}{f(z) - f(-z)} \neq \frac{t^2 + 4\beta it}{4\beta}$,

or equivalently

$$f(z) * \left[\frac{z}{(1-z)^2} - \frac{t^2 + 4\beta it}{4\beta} \left(\frac{z}{1-z^2} \right) \right] \neq 0, \ \forall \ z \in E - \{0\}.$$

Normalizing the function with in the brackets we get

$$\frac{f(z) * h_{\beta}(z)}{z} \neq 0, \quad z \in E$$

where $h_{\beta}(z)$ is the function in Definition 1.2.

In order to establish the T- δ neighbourhoods of functions belonging to the class $SP_s(\beta)$ we need the following Lemmas.

Lemma 1.4. Let
$$h_{\beta}(z) = z + \sum_{k=2}^{\infty} c_k z^k \in SP'_s(\beta)$$
, then $|c_k| \leq k, k = 2, 3, ...$

Proof. Let $h_{\beta}(z) \in SP'_{s}(\beta)$, then for any real t.

$$h_{\beta}(z) = \frac{4\beta}{4\beta - 4\beta it - t^2} \left[\frac{z}{(1-z)^2} - \frac{t^2 + 4\beta it}{4\beta} \left(\frac{z}{1-z^2} \right) \right]$$

$$= \frac{4\beta}{4\beta - 4\beta it - t^2} \left[(z + 2z^2 + \dots) - \frac{t^2 + 4\beta it}{4\beta} \left(z + z^3 + \dots \right) \right]$$

$$= z + \sum_{k=2}^{\infty} c_k z^k,$$

where

$$c_k = \begin{cases} \frac{4\beta k}{4\beta - 4\beta it - t^2} & \text{when } k \text{ is even,} \\ \frac{4\beta k - 4\beta it - t^2}{4\beta - 4\beta it - t^2} & \text{when } k \text{ is odd.} \end{cases}$$

and so

$$|c_k|^2 \le \frac{(4k\beta - t^2)^2 + 16\beta^2 t^2}{(4\beta + t^2)^2} \quad \text{if } \beta \ge 1$$

$$= \frac{16\beta^2 k^2 - 8k\beta t^2 + t^4 + 16\beta^2 t^2}{(4\beta + t^2)^2}$$

$$= \frac{16\beta^2 (k+1)(k-1) - 8\beta t^2)k + 1 - 2\beta}{(4\beta + t^2)^2} + 1$$

$$\le \frac{16\beta^2 (k-1)(k+1-2\beta) + 32\beta^3 (k-1)}{16\beta^2} + 1$$

$$= k^2.$$

Hence, $|c_k| \le k \quad \forall \ k \ge 2$.

Lemma 1.5. For $f \in A$ and for every $\epsilon \in \mathbb{C}$ such that $|\epsilon| < \delta$ if

$$F_{\epsilon}(z) = \left\{ \frac{f(z) + \epsilon z}{1 + \epsilon} \right\} \in SP_{s}(\beta),$$

then for every $h_{\beta} \in SP'_s(\beta)$ implies $\left| \frac{f * h_{\beta}(z)}{z} \right| \neq \delta$, $\forall z \in E$.

Proof. Let $F_{\epsilon}(z) \in SP_s(\beta)$, then by Theorem 1.3

$$(f * h_{\beta}(z))/z \neq 0, \quad \forall h_{\beta} \in SP'_{s}(\beta)$$

and $z \in E$. Equivalently

$$\frac{f * h_{\beta}(z) + \varepsilon z}{(1 + \varepsilon)(z)} \neq 0 \text{ or } \frac{f * h_{\beta}(z)}{z} \neq -\varepsilon.$$

Hence

$$\left| \frac{f * h_{\beta}(z)}{z} \right| \ge \delta, \quad \forall \ z \in E.$$

Theorem 1.6. Let $f \in \mathcal{A}$ and $\epsilon \in \mathbb{C}$ and for $|\epsilon| < \delta < 1$, if $F\epsilon(z) \in SP_s(\beta)$. Then $TN_{\delta}(f) \subset SP_s(\beta)$.

Proof. Let $h_{\beta} \in SP'_s(\beta)$ and $g(z) = z + \sum_{m=2}^{\infty} b_n z^n$ is in $TN_{\delta}(f)$. Then

$$\left| \frac{(g * h_{\beta})(z)}{z} \right| = \left| \frac{(f * h_{\beta})(z)}{z} + \frac{(g - f) * h_{\beta})(z)}{z} \right|$$

$$\geq \left| \frac{(f * h_{\beta})(z)}{z} \right| - \left| \frac{(g - f)(z) * h_{\beta}(z)}{z} \right|$$

$$\geq \delta - \left| \sum_{n=2}^{\infty} \frac{(b_n - a_n)c_n z^n}{z} \right|.$$

Hence, by Lemma 1.5 we have

$$\left| \frac{g * h_{\beta}(z)}{z} \right| \ge \delta - |z| \sum_{n=2}^{\infty} |c_n| |b_n - a_n|$$

$$\ge \delta - \sum_{n=2}^{\infty} t_n |b_n - a_n|$$

$$> \delta - \delta = 0, \quad \text{by Lemma 1.4.}$$

Thus

$$(g * h_{\beta}(z))/z \neq 0,$$

for all $z \in E$ and for all $h_{\beta} \in SP'_s(\beta)$. Also by Theorem 1.3, we have $g \in SP_s(\beta)$. Hence $TN_{\delta}(f) \subset SP_s(\beta)$.

Next we will prove that the class $SP_s(\beta)$ is closed under convolution with functions of which are convex univalent in E.

Lemma 1.7. If $g \in SP_s(\beta)$ then $G(z) \in SP_s(\beta) \subset ST$ where

$$G(z) = \frac{g(z) - g(-z)}{2}.$$

Proof. Since $g \in SP_s(\beta)$, $\frac{2zg'(z)}{g(z)-g(-z)} \in \Omega_{\beta}$. Now

$$\frac{zG'(z)}{G(z)} = \frac{zg'(z)}{2G(z)} + \frac{(-z)g'(-z)}{2G(-z)} = \frac{\varsigma_1}{2} + \frac{\varsigma_2}{2} = \varsigma_3,$$

where ς_1 and $\varsigma_2 \in \Omega_{\beta}$.

Since Ω_{β} is convex $\varsigma_3 \in \Omega_{\beta}$ and hence $zG'(z)/G(z) \in \Omega_{\beta}$ it can be easily seen that $SP_s(\beta) \subset ST$. Thus $G(z) \in SP_s(\beta) \subset ST$.

Theorem 1.8. Let $f(z) \in CV$ the class of convex functions and $g(z) \in SP_s(\beta)$. Then $(f * g)(z) \in SP_s(\beta)$.

Proof. Let $f(z) \in CV$ and $g(z) \in SP_s(\beta)$, G(z) = (g(z) - g(-z))/2 and Ω_{β} is a convex domain. Since $g \in SP_s(\beta)$, $G(z) \in ST$ by Lemma 1.7. Hence by an application of Lemma A we get

$$\frac{z(f*g)'(z)}{(f*G)(z)} = \frac{(f*zg')(z)}{(f*G)(z)} = \frac{f*\frac{zg'(z)}{G(z)} \cdot G(z)}{(f*G)(z)} \subset \overline{Co}\left(\frac{zg'(z)}{G(z)}\right) \subset \Omega_{\beta}.$$

Since Ω_{β} is convex and $g \in SP_s(\beta)$. This proves that $(f * g)(z) \in SP_s(\beta)$.

References

- [1] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56(1991), 87–92.
- [2] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364–370.
- [3] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(1992), 165–175.
- [4] K. S. Padmanabhan, On uniformly convex functions in the unit disk, J. Analysis 2(1994), 87–96.
- [5] R. Parvatham and M. Premabai, Neighbourhoods of uniformly starlike functions with respect to symmetric points, Bull. Cal. Math. Soc. 88(1996), 155–160.
- [6] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189–196.
- [7] F. Ronning, Integral representations of bounded starlike functions, Ann. Polon. Math. **60**(1995), 289–297.
- [8] St. Ruscheweyh, Neighbourhoods of univalent functions, Proc. Amer. Math. Soc. 81(1981), 521–527.
- [9] St. Ruscheweyh and T. Sheil-Small, *Hadamard Products of schlicht functions and the Polya-Schoanberg Conjecture*, Comment. Math. Helv. **48**(1973), 119–135.
- [10] T. Sheil-Small and E. M. Silvia, *Neighbourhoods of analytic functions*, J. Analyse Math. **52**(1989), 210–240.

T. Ram Reddy

Address:

Department of Mathematics,

Kakatiya University,

Warangal-506 009, A.P., India

P. Thirupathi Reddy

Address:

Department of Mathematics,

Kakatiya University,

Warangal-506 009, A.P., India

E-MAIL: reddytr2@yahoo.com

E-MAIL: ptreddysravi@yahoo.co.in