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Some Properties of Prestarlike and Universally

Prestarlike Functions

Stephan Ruscheweyh

Abstract. The classes Ru

α
of normalized universally prestarlike functions of

order α ≤ 1 (in the slit domain C \ [1,∞]) have recently been introduced in
[5]. In this note we show that, except for certain Moebius transforms, there
are no rational functons in Ru

α
, α < 1. A consequence of this is that there are

no numbers t = tu(α) > 0 such that f ∈ Ru

1
implies that f(tz)/t ∈ Ru

α
. This

is in sharp contrast to the situation with the (classical) prestarlike functions
in the unit disc where such numbers t(α) > 0 exist (and will be determined in
this paper).
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1. Introduction

1.1. Prestarlike functions. Let H(Ω) denote the set of analytic functions in
a domain Ω. For domains Ω containing the origin H0(Ω) stands for the set of
functions f ∈ H(Ω) with f(0) = 1. We also use the notation H1(Ω) := {zf :
f ∈ H0(Ω)}. In the special case that Ω is the unit disc D := {z ∈ C : |z| < 1}
we use the abbreviations H,H0,H1, respectively.

A function f ∈ H1 is called starlike of order α (with α < 1) if

Re
zf ′(z)

f(z)
≥ α, z ∈ D,

and the set of such functions is denoted by Sα. Then, finally, a function f ∈ H1

is called prestarlike of order α if

(1.1)
z

(1 − z)2−2α
∗ f(z) ∈ Sα,
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where ‘∗’ stands for the Hadamard product of two functions in H:

g(z) =
∞

∑

k=0

gkz
k, h(z) =

∞
∑

k=0

hkz
k ⇒ (g ∗ h)(z) :=

∞
∑

k=0

gkhkz
k.

The sets of these functions are denoted by Rα. For certain reasons one also
introduces the set R1 to consist of the functions f ∈ H1 with

Re
f(z)

z
≥

1

2
, z ∈ D.

Prestarlike functions have a number of interesting geometric properties. For
instance, the set C of univalent functions in H1 which map D onto convex domains
equals R0, and obviously we also have R1/2 = S1/2. We refer to Ruscheweyh [3]
and Sheil-Small [7] for a description of the essentials of the theory of prestarlike
functions. A non-obvious and crucial property is given in the following lemma.

Lemma 1.1. For α < β ≤ 1 we have Rα ⊂ Rβ.

To define prestarlike functions intrinsically we use the operators

(Dβf)(z) :=
z

(1 − z)β
∗ f, β ≥ 0.

Then one can see that a function f ∈ H1 is prestarlike of order α ≤ 1 if and only
if

(1.2) z
D3−2αf

D2−2αf
∈ R1.

1.2. Universally prestarlike functions. In [5] the notion of prestarlike func-
tions has been extended from the unit disc to other discs and half-planes con-
taining the origin. Let Ω be one such disc or half-plane. Then there are two
unique parameters γ ∈ C \ {0} and ρ ∈ [0, 1] such that

Ω = {wγ,ρ(z) : z ∈ D} =: Ωγ,ρ,

where

wγ,ρ(z) :=
γz

1 − ρz
.

Note that 1 6∈ Ωγ,ρ if and only if |γ + ρ| ≤ 1.

Definition 1.2. Let α ≤ 1 and Ω = Ωγ,ρ for some admissible pair (γ, ρ). A
function f ∈ H1(Ω) is called prestarlike of order α in Ω if

fγ,ρ(z) :=
1

γ
f(wγ,ρ(z)) ∈ Rα.

The set of these functions f is denoted by Rα(Ω).
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Let Λ := C \ [1,∞]. In this paper we are mainly concerned with the following
objects (see [5, Def. 1.2] and [4] for further results).

Definition 1.3. Let α < 1. A function f ∈ H1(Λ) is called universally prestar-

like of order α if and only if f is prestarlike of order α in all sets Ωγ,ρ for which
1 6∈ Ωγ,ρ. The set of these functions is denoted by Ru

α.

Let M[a, b] denote the set of probability measures on the interval [a, b], and
set

(1.3) T :=

{
∫ 1

0

dµ(t)

1 − tz
: µ ∈ M[0, 1]

}

.

Note that T ⊂ H0(Λ) and that z · T ⊂ R1.

The main result in [5] was

Theorem 1.4. Let α ≤ 1 and f ∈ H1(Λ). Then f ∈ Ru
α if and only if

(1.4)
D3−2αf

D2−2αf
∈ T .

From this and Lemma 1.1 it follows immediately that for α < 1

(1.5) f ∈ Ru
α ⇒

f(z)

z
∈ T .

Note that the functions

(1.6)
z

1 − tz
, t ∈ [0, 1],

belong to Ru
α for all α ≤ 1 (actually one can show that they are the only functions

with this property). Our first result in this note is

Theorem 1.5. Let α < 1. Then the functions (1.6) are the only rational func-

tions in Ru
α.

For α ≤ 1
2

this result has already been established in [5]. Note that Ru
1 has

many additional rational members (for instance f0(z) := 1
2
(z + z

1−z
)).

Theorem 1.5 has an interesting general consequence. From Theorem 1.4 it
follows immediately that for t ∈ [0, 1] we have

f ∈ Ru
α ⇒

1

t
f(tz) ∈ Ru

α.

However, there is no positive ‘radius of universal prestarlikeness of order α < 1’
in Ru

1 :

Corollary 1.6. Let α < 1. Then there is no t = t(α) ∈ (0, 1] such that f ∈ Ru
1

implies f(tz)/t ∈ Ru
α.
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Figure 1. t(α), α = −6, . . . , 1.

For a proof just recall that for the function f0 from above the function f0(tz)/t,
with t ∈ (0, 1], is also rational, but certainly not of the form (1.6). Theorem 1.5
completes the proof.

Corollary 1.6 in its ‘radius of...’ interpretation sounds a bit unusual at first
glance, in particular when compared with the following unit disc situation. How-
ever, a closer look at the geometry of the domain Λ sort of explains the difference.

We introduce the function α : [0, 1] → [−∞, 1] by

α(t) := 1 − inf
ϕ∈(0,π/2]

arctan
(

1−t2

2t sin(ϕ)

)

2 arctan
(

t sin(ϕ)
1−t cos(ϕ)

) .

α(t) is surjective, concave and strictly increasing. Let t(α) denote its inverse
function.

Theorem 1.7. Let f ∈ R1. Then, for α ∈ (−∞, 1) we have f(t(α)z)/t(α) ∈ Rα.

This result is sharp for each α.

Fig. 1 gives a partial graph of t(α). We note in passing that the value t(0) is
the radius of convexity in R1, and a numerical evaluation gives

t(0) = 0.4035150 . . . .

For similar results we refer to Jankovics [1].
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A simple but perhaps useful corollary of Theorem 1.7 is as follows. Let

Vβ(t) :=

{
∫ 2π

0

z dµ(ϕ)

(1 − t eiϕ z)β
: µ ∈ M[0, 2π]

}

.

Corollary 1.8. For α < 1 we have

(1.7) V1(t(α)) ⊂ Rα ⊂ V1(1),

and

(1.8) V2−2α(t(α)) ⊂ Sα ⊂ V2−2α(1).

t(α) is the largest possible number, for each α, in both, (1.7) and(1.8) .

Note that (1.8) follows from (1.7) by convolution with z
(1−z)2−2α .

2. Proof of Theorem 1.5

As mentioned above, the cases of α ≤ 1
2

of Theorem 1.5 have already been
established in [5]. Therefore we now assume 1

2
< α < 1. Let f ∈ Ru

α be rational,

and set F (z) := f(z)
z

, so that by (1.5) we have F ∈ T . This implies that F can
have poles only on [1,∞]. Furthermore, since the functions in T map the upper
(lower) half-plane into itself, it is clear that all poles can be of order 1 only, with
positive residues. Hence F is of the form

F (z) =

n
∑

k=1

µk

1 − tkz
, 0 < µk, ≤ 1, 0 ≤ tk ≤ 1,

n
∑

k=1

µk = 1.

We may assume that n ≥ 2, t1 = max1≤k≤n tk, and set

qγ(z) :=
n

∑

k=1

µk

µ1

1

(1 − tkz)γ
.

Then the condition f ∈ Ru
α can be rewritten as

(2.1) R(z) :=
qβ+1(z)

qβ(z)
∈ T ,

where 0 < β := 2 − 2α < 1. After a rearrangement we find

R(z) =
1

1 − t1z
+

1

(1 − t1z)1−β
Q(z),

where

Q(z) :=

∑n
k=2

µk

µ1

(tk−t1)z
(1−tkz)β+1

1 −
∑n

k=2
µk

µ1

(1−t1z)β

(1−tkz)β

.
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Now set

z :=
1

t1
+ ρeiϕ,

with ρ > 0 but small, and ϕ ∈ (0, π). By construction

Q(z) = −c + O(ρ),

with c := −Q(1/t1) > 0. Writing δ := π − ϕ we now find

R(z) =
1

ρ
eiδ − ρβei(1−β)δ(c + O(ρ)).

We now restrict δ to the interval ( π
2−2β

, π) and choose M > 0 so that for the

quantity O(ρ) from above we have |O(ρ)| ≤ Mρ, independently of δ. Then

ρ

sin((1 − β)δ)
Im R(z) ≤

sin(δ)

sin((1 − β)δ)
− ρβc +

ρβ+1M

sin((1 − β)π)
.

Now choose ρ so small that

ρM

sin((1 − β)π)
≤

1

2
c,

and then δ < π (but close to π) so that

sin(δ)

sin((1 − β)δ)
<

1

2
ρβc.

Then we can conclude that for this z, which is in the upper half-plane, we have
Im R(z) < 0, a contradiction to (2.1).

3. Proof of Theorem 1.7

We first note that the convex set R1 = V1(1) satisfies the condition of the
main theorem in [2], which for the present case can be stated as follows:

Lemma 3.1. Let λ1, λ2 be two continuous linear functionals on R1 and assume

that 0 6∈ λ2(R1). Then the range of the functional λ(f) := λ1(f)
λ2(f)

over R1 equals

the set

λ

(

ρ z

1 − xz
+

(1 − ρ) z

1 − yz

)

, ρ ∈ [0, 1], |x| = |y| = 1.

Taking this lemma into account we have to show that for any t ∈ (0, 1) and
|z| ≤ t we have

(3.1) Re
Dβ+1

(

ρ z
1−xz

+ (1−ρ) z
1−yz

)

Dβ
(

ρ z
1−xz

+ (1−ρ) z
1−yz

) ≥
1

2
, ρ ∈ [0, 1], |x| = |y| = 1, β ≤ 2 − 2α(t),
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which is easily seen to be equivalent to

Re

1
(1−x)β

(

1
1−x

− 1
2

)

+ λ
(1−y)β

(

1
1−y

− 1
2

)

1
(1−x)β + λ

(1−y)β

≥ 0, λ ≥ 0, |x| = |y| = t,

and, with γ := β + 1,

1 − t2

|1 − x|2γ
+ λ2 1 − t2

|1 − y|2γ
+ 2λ Re

1 − xy

(1 − x)γ(1 − y)γ
≥ 0 λ ≥ 0, |x| = |y| = t,

and the same range for β (respectively γ). Taking the minimum with respect to
λ we arrive at the necessary and sufficient condition

(3.2) Re
1 − xy

1 − t2

(

|1 − x||1 − y|

(1 − x)(1 − y)

)γ

≥ −1, |x| = |y| = t, γ ≤ 3 − 2α(t).

Since (3.2) is certainly true if Re b(x, y, γ) > 0, where

b(x, y, γ) =
1 − xy

(1 − x)γ(1 − y)γ
,

and certainly false for b(x, y, γ) < 0 we conclude that the critical cases for x, y, γ
are those with arg b(x.y, γ) ∈ (−π, 0). Fixing z := xy and γ it is not difficult
to see that under these restrictions the left hand side of (3.2) is smallest when
arg(x, z/x, γ) is smallest, and a simple application of calculus shows that this
is the case for x = z/x, and hence for x = y. We can therefore restrict our
attention to this case, and start over again.

Our necessary and sufficient condition is now, after some rewriting, that for
β ≤ 2 − 2α(t) we have

(3.3) Re
(1 + x)(1 − x)

1 − t2

(

|1 − x|

1 − x

)2β

≥ −1, |x| = t.

Let x = t eiϕ and note that the expression on the left of (3.3) is invariant under
x → x so that we can restrict our attention to ϕ ∈ (0, π). Then, for arg(1−x) =:
µ = µ(t, ϕ) we have µ < 0 and we find the equivalent conditions

cos(2βµ) +
2t sin(ϕ)

1 − t2
sin(2βµ) ≥ −1,

and

tan(βµ) ≥ −
1 − t2

2t sin(ϕ)
.

Using

µ = arctan

(

−t sin(ϕ)

1 − t cos(ϕ)

)



254 S. Ruscheweyh ICGFT06

we finally arrive at the necessary and sufficient condition

β ≤
arctan

(

1−t2

2t sin(ϕ)

)

arctan
(

t sin(ϕ)
1−t cos(ϕ)

) =: g(t, ϕ)

for every ϕ ∈ (0, π). Actually, since obviously g(t, ϕ) ≤ g(t, π−ϕ) for ϕ ∈ (0, π
2
],

we are left with the condition

β ≤ inf
ϕ∈(0, π

2
]
g(t, ϕ),

which is equivalent to our assertion.
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