Proceedings of the International Conference on Geometric Function Theory, Special Functions and Applications (ICGFT)

Editors: R. W. Barnard and S. Ponnusamy

J. Analysis

Volume 15 (2007), 247-254

Some Properties of Prestarlike and Universally Prestarlike Functions

Stephan Ruscheweyh

Abstract. The classes $\mathcal{R}^{\mathrm{u}}_{\alpha}$ of normalized universally prestarlike functions of order $\alpha \leq 1$ (in the slit domain $\mathbb{C} \setminus [1, \infty]$) have recently been introduced in [5]. In this note we show that, except for certain Moebius transforms, there are no rational functons in $\mathcal{R}^{\mathrm{u}}_{\alpha}$, $\alpha < 1$. A consequence of this is that there are no numbers $t = t_u(\alpha) > 0$ such that $f \in \mathcal{R}^{\mathrm{u}}_1$ implies that $f(tz)/t \in \mathcal{R}^{\mathrm{u}}_{\alpha}$. This is in sharp contrast to the situation with the (classical) prestarlike functions in the unit disc where such numbers $t(\alpha) > 0$ exist (and will be determined in this paper).

Keywords. Universally prestarlike functions, prestarlike functions, radius of prestarlikeness.

2000 MSC. Primary 30C45, Secondary 30C15.

1. Introduction

1.1. Prestarlike functions. Let $\mathcal{H}(\Omega)$ denote the set of analytic functions in a domain Ω . For domains Ω containing the origin $\mathcal{H}_0(\Omega)$ stands for the set of functions $f \in \mathcal{H}(\Omega)$ with f(0) = 1. We also use the notation $\mathcal{H}_1(\Omega) := \{zf : f \in \mathcal{H}_0(\Omega)\}$. In the special case that Ω is the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ we use the abbreviations $\mathcal{H}, \mathcal{H}_0, \mathcal{H}_1$, respectively.

A function $f \in \mathcal{H}_1$ is called *starlike of order* α (with $\alpha < 1$) if

$$\operatorname{Re} \frac{zf'(z)}{f(z)} \ge \alpha, \quad z \in \mathbb{D},$$

and the set of such functions is denoted by S_{α} . Then, finally, a function $f \in \mathcal{H}_1$ is called *prestarlike of order* α if

(1.1)
$$\frac{z}{(1-z)^{2-2\alpha}} * f(z) \in \mathcal{S}_{\alpha},$$

Partial support from FONDECYT (grant 7070131) and DGIP-UTFSM (grant 240721), and also from the German-Israeli Foundation (grant G-809-234.6/2003) is being acknowledged.

where '*' stands for the Hadamard product of two functions in \mathcal{H} :

$$g(z) = \sum_{k=0}^{\infty} g_k z^k, \ h(z) = \sum_{k=0}^{\infty} h_k z^k \ \Rightarrow (g * h)(z) := \sum_{k=0}^{\infty} g_k h_k z^k.$$

The sets of these functions are denoted by \mathcal{R}_{α} . For certain reasons one also introduces the set \mathcal{R}_1 to consist of the functions $f \in \mathcal{H}_1$ with

$$\operatorname{Re} \frac{f(z)}{z} \ge \frac{1}{2}, \quad z \in \mathbb{D}.$$

Prestarlike functions have a number of interesting geometric properties. For instance, the set \mathcal{C} of univalent functions in \mathcal{H}_1 which map \mathbb{D} onto convex domains equals \mathcal{R}_0 , and obviously we also have $\mathcal{R}_{1/2} = \mathcal{S}_{1/2}$. We refer to Ruscheweyh [3] and Sheil-Small [7] for a description of the essentials of the theory of prestarlike functions. A non-obvious and crucial property is given in the following lemma.

Lemma 1.1. For $\alpha < \beta \leq 1$ we have $\mathcal{R}_{\alpha} \subset \mathcal{R}_{\beta}$.

To define prestarlike functions intrinsically we use the operators

$$(D^{\beta}f)(z) := \frac{z}{(1-z)^{\beta}} * f, \quad \beta \ge 0.$$

Then one can see that a function $f \in \mathcal{H}_1$ is prestarlike of order $\alpha \leq 1$ if and only if

$$(1.2) z \frac{D^{3-2\alpha} f}{D^{2-2\alpha} f} \in \mathcal{R}_1.$$

1.2. Universally prestarlike functions. In [5] the notion of prestarlike functions has been extended from the unit disc to other discs and half-planes containing the origin. Let Ω be one such disc or half-plane. Then there are two unique parameters $\gamma \in \mathbb{C} \setminus \{0\}$ and $\rho \in [0,1]$ such that

$$\Omega = \{ w_{\gamma,\rho}(z) : z \in \mathbb{D} \} =: \Omega_{\gamma,\rho},$$

where

$$w_{\gamma,\rho}(z) := \frac{\gamma z}{1 - \rho z}.$$

Note that $1 \notin \Omega_{\gamma,\rho}$ if and only if $|\gamma + \rho| \leq 1$.

Definition 1.2. Let $\alpha \leq 1$ and $\Omega = \Omega_{\gamma,\rho}$ for some admissible pair (γ,ρ) . A function $f \in \mathcal{H}_1(\Omega)$ is called *prestarlike of order* α *in* Ω if

$$f_{\gamma,\rho}(z) := \frac{1}{\gamma} f(w_{\gamma,\rho}(z)) \in \mathcal{R}_{\alpha}.$$

The set of these functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.

Let $\Lambda := \mathbb{C} \setminus [1, \infty]$. In this paper we are mainly concerned with the following objects (see [5, Def. 1.2] and [4] for further results).

Definition 1.3. Let $\alpha < 1$. A function $f \in \mathcal{H}_1(\Lambda)$ is called *universally prestar-like of order* α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma,\rho}$ for which $1 \notin \Omega_{\gamma,\rho}$. The set of these functions is denoted by $\mathcal{R}^{\mathrm{u}}_{\alpha}$.

Let $\mathcal{M}[a,b]$ denote the set of probability measures on the interval [a,b], and set

(1.3)
$$\mathcal{T} := \left\{ \int_0^1 \frac{d\mu(t)}{1 - tz} : \mu \in \mathcal{M}[0, 1] \right\}.$$

Note that $\mathcal{T} \subset \mathcal{H}_0(\Lambda)$ and that $z \cdot \mathcal{T} \subset \mathcal{R}_1$.

The main result in [5] was

Theorem 1.4. Let $\alpha \leq 1$ and $f \in \mathcal{H}_1(\Lambda)$. Then $f \in \mathcal{R}^{\mathrm{u}}_{\alpha}$ if and only if

$$\frac{D^{3-2\alpha}f}{D^{2-2\alpha}f} \in \mathcal{T}.$$

From this and Lemma 1.1 it follows immediately that for $\alpha < 1$

$$(1.5) f \in \mathcal{R}^{\mathrm{u}}_{\alpha} \quad \Rightarrow \quad \frac{f(z)}{z} \in \mathcal{T}.$$

Note that the functions

$$\frac{z}{1 - tz}, \ t \in [0, 1],$$

belong to $\mathcal{R}^{\mathrm{u}}_{\alpha}$ for all $\alpha \leq 1$ (actually one can show that they are the only functions with this property). Our first result in this note is

Theorem 1.5. Let $\alpha < 1$. Then the functions (1.6) are the only rational functions in $\mathcal{R}^{\mathrm{u}}_{\alpha}$.

For $\alpha \leq \frac{1}{2}$ this result has already been established in [5]. Note that $\mathcal{R}_1^{\mathrm{u}}$ has many additional rational members (for instance $f_0(z) := \frac{1}{2}(z + \frac{z}{1-z})$).

Theorem 1.5 has an interesting general consequence. From Theorem 1.4 it follows immediately that for $t \in [0, 1]$ we have

$$f \in \mathcal{R}^{\mathrm{u}}_{\alpha} \quad \Rightarrow \quad \frac{1}{t} f(tz) \in \mathcal{R}^{\mathrm{u}}_{\alpha}.$$

However, there is no positive 'radius of universal prestarlikeness of order $\alpha < 1$ ' in $\mathcal{R}_1^{\mathrm{u}}$:

Corollary 1.6. Let $\alpha < 1$. Then there is no $t = t(\alpha) \in (0,1]$ such that $f \in \mathcal{R}_1^{\mathrm{u}}$ implies $f(tz)/t \in \mathcal{R}_{\alpha}^{\mathrm{u}}$.

FIGURE 1. $t(\alpha)$, $\alpha = -6, \dots, 1$.

For a proof just recall that for the function f_0 from above the function $f_0(tz)/t$, with $t \in (0,1]$, is also rational, but certainly not of the form (1.6). Theorem 1.5 completes the proof.

Corollary 1.6 in its 'radius of...' interpretation sounds a bit unusual at first glance, in particular when compared with the following unit disc situation. However, a closer look at the geometry of the domain Λ sort of explains the difference.

We introduce the function $\alpha:[0,1]\to[-\infty,1]$ by

$$\alpha(t) := 1 - \inf_{\varphi \in (0, \pi/2]} \frac{\arctan\left(\frac{1 - t^2}{2t \sin(\varphi)}\right)}{2 \arctan\left(\frac{t \sin(\varphi)}{1 - t \cos(\varphi)}\right)}.$$

 $\alpha(t)$ is surjective, concave and strictly increasing. Let $t(\alpha)$ denote its inverse function.

Theorem 1.7. Let $f \in \mathcal{R}_1$. Then, for $\alpha \in (-\infty, 1)$ we have $f(t(\alpha)z)/t(\alpha) \in \mathcal{R}_{\alpha}$. This result is sharp for each α .

Fig. 1 gives a partial graph of $t(\alpha)$. We note in passing that the value t(0) is the radius of convexity in \mathcal{R}_1 , and a numerical evaluation gives

$$t(0) = 0.4035150\dots$$

For similar results we refer to Jankovics [1].

A simple but perhaps useful corollary of Theorem 1.7 is as follows. Let

$$\mathcal{V}_{\beta}(t) := \left\{ \int_0^{2\pi} \frac{z \, d\mu(\varphi)}{(1 - t \, e^{i\varphi} \, z)^{\beta}} \, : \, \mu \in \mathcal{M}[0, 2\pi] \right\}.$$

Corollary 1.8. For $\alpha < 1$ we have

$$(1.7) \mathcal{V}_1(t(\alpha)) \subset \mathcal{R}_{\alpha} \subset \mathcal{V}_1(1),$$

and

$$(1.8) \mathcal{V}_{2-2\alpha}(t(\alpha)) \subset \mathcal{S}_{\alpha} \subset \mathcal{V}_{2-2\alpha}(1).$$

 $t(\alpha)$ is the largest possible number, for each α , in both, (1.7) and (1.8).

Note that (1.8) follows from (1.7) by convolution with $\frac{z}{(1-z)^{2-2\alpha}}$.

2. Proof of Theorem 1.5

As mentioned above, the cases of $\alpha \leq \frac{1}{2}$ of Theorem 1.5 have already been established in [5]. Therefore we now assume $\frac{1}{2} < \alpha < 1$. Let $f \in \mathcal{R}^{\mathrm{u}}_{\alpha}$ be rational, and set $F(z) := \frac{f(z)}{z}$, so that by (1.5) we have $F \in \mathcal{T}$. This implies that F can have poles only on $[1, \infty]$. Furthermore, since the functions in \mathcal{T} map the upper (lower) half-plane into itself, it is clear that all poles can be of order 1 only, with positive residues. Hence F is of the form

$$F(z) = \sum_{k=1}^{n} \frac{\mu_k}{1 - t_k z}, \quad 0 < \mu_k, \le 1, \ 0 \le t_k \le 1, \sum_{k=1}^{n} \mu_k = 1.$$

We may assume that $n \geq 2$, $t_1 = \max_{1 \leq k \leq n} t_k$, and set

$$q_{\gamma}(z) := \sum_{k=1}^{n} \frac{\mu_k}{\mu_1} \frac{1}{(1 - t_k z)^{\gamma}}.$$

Then the condition $f \in \mathcal{R}^{\mathrm{u}}_{\alpha}$ can be rewritten as

(2.1)
$$R(z) := \frac{q_{\beta+1}(z)}{q_{\beta}(z)} \in \mathcal{T},$$

where $0 < \beta := 2 - 2\alpha < 1$. After a rearrangement we find

$$R(z) = \frac{1}{1 - t_1 z} + \frac{1}{(1 - t_1 z)^{1 - \beta}} Q(z),$$

where

$$Q(z) := \frac{\sum_{k=2}^{n} \frac{\mu_k}{\mu_1} \frac{(t_k - t_1)z}{(1 - t_k z)^{\beta + 1}}}{1 - \sum_{k=2}^{n} \frac{\mu_k}{\mu_1} \frac{(1 - t_1 z)^{\beta}}{(1 - t_k z)^{\beta}}}.$$

Now set

$$z := \frac{1}{t_1} + \rho e^{i\varphi},$$

with $\rho > 0$ but small, and $\varphi \in (0, \pi)$. By construction

$$Q(z) = -c + \mathcal{O}(\rho),$$

with $c := -Q(1/t_1) > 0$. Writing $\delta := \pi - \varphi$ we now find

$$R(z) = \frac{1}{\rho} e^{i\delta} - \rho^{\beta} e^{i(1-\beta)\delta} (c + \mathcal{O}(\rho)).$$

We now restrict δ to the interval $(\frac{\pi}{2-2\beta}, \pi)$ and choose M > 0 so that for the quantity $\mathcal{O}(\rho)$ from above we have $|\mathcal{O}(\rho)| \leq M\rho$, independently of δ . Then

$$\frac{\rho}{\sin((1-\beta)\delta)}\operatorname{Im} R(z) \le \frac{\sin(\delta)}{\sin((1-\beta)\delta)} - \rho^{\beta}c + \frac{\rho^{\beta+1}M}{\sin((1-\beta)\pi)}.$$

Now choose ρ so small that

$$\frac{\rho M}{\sin((1-\beta)\pi)} \le \frac{1}{2}c,$$

and then $\delta < \pi$ (but close to π) so that

$$\frac{\sin(\delta)}{\sin((1-\beta)\delta)} < \frac{1}{2}\rho^{\beta}c.$$

Then we can conclude that for this z, which is in the upper half-plane, we have $\operatorname{Im} R(z) < 0$, a contradiction to (2.1).

3. Proof of Theorem 1.7

We first note that the convex set $\mathcal{R}_1 = \mathcal{V}_1(1)$ satisfies the condition of the main theorem in [2], which for the present case can be stated as follows:

Lemma 3.1. Let λ_1, λ_2 be two continuous linear functionals on \mathcal{R}_1 and assume that $0 \notin \lambda_2(\mathcal{R}_1)$. Then the range of the functional $\lambda(f) := \frac{\lambda_1(f)}{\lambda_2(f)}$ over \mathcal{R}_1 equals the set

$$\lambda \left(\frac{\rho z}{1 - xz} + \frac{(1 - \rho) z}{1 - yz} \right), \quad \rho \in [0, 1], |x| = |y| = 1.$$

Taking this lemma into account we have to show that for any $t \in (0,1)$ and $|z| \le t$ we have

(3.1) Re
$$\frac{D^{\beta+1}\left(\frac{\rho z}{1-xz} + \frac{(1-\rho)z}{1-yz}\right)}{D^{\beta}\left(\frac{\rho z}{1-xz} + \frac{(1-\rho)z}{1-yz}\right)} \ge \frac{1}{2}, \quad \rho \in [0,1], \ |x| = |y| = 1, \ \beta \le 2 - 2\alpha(t),$$

which is easily seen to be equivalent to

Re
$$\frac{\frac{1}{(1-x)^{\beta}} \left(\frac{1}{1-x} - \frac{1}{2}\right) + \frac{\lambda}{(1-y)^{\beta}} \left(\frac{1}{1-y} - \frac{1}{2}\right)}{\frac{1}{(1-x)^{\beta}} + \frac{\lambda}{(1-y)^{\beta}}} \ge 0, \quad \lambda \ge 0, \ |x| = |y| = t,$$

and, with $\gamma := \beta + 1$,

$$\frac{1 - t^2}{|1 - x|^{2\gamma}} + \lambda^2 \frac{1 - t^2}{|1 - y|^{2\gamma}} + 2\lambda \operatorname{Re} \frac{1 - x\overline{y}}{(1 - x)^{\gamma} (1 - \overline{y})^{\gamma}} \ge 0 \quad \lambda \ge 0, \ |x| = |y| = t,$$

and the same range for β (respectively γ). Taking the minimum with respect to λ we arrive at the necessary and sufficient condition

(3.2)
$$\operatorname{Re} \frac{1-xy}{1-t^2} \left(\frac{|1-x||1-y|}{(1-x)(1-y)} \right)^{\gamma} \ge -1, \quad |x|=|y|=t, \ \gamma \le 3-2\alpha(t).$$

Since (3.2) is certainly true if Re $b(x, y, \gamma) > 0$, where

$$b(x, y, \gamma) = \frac{1 - xy}{(1 - x)^{\gamma} (1 - y)^{\gamma}},$$

and certainly false for $b(x, y, \gamma) < 0$ we conclude that the critical cases for x, y, γ are those with $\arg b(x.y, \gamma) \in (-\pi, 0)$. Fixing z := xy and γ it is not difficult to see that under these restrictions the left hand side of (3.2) is smallest when $\arg(x, z/x, \gamma)$ is smallest, and a simple application of calculus shows that this is the case for x = z/x, and hence for x = y. We can therefore restrict our attention to this case, and start over again.

Our necessary and sufficient condition is now, after some rewriting, that for $\beta \leq 2 - 2\alpha(t)$ we have

(3.3)
$$\operatorname{Re} \frac{(1+x)(1-\overline{x})}{1-t^2} \left(\frac{|1-x|}{1-x}\right)^{2\beta} \ge -1, \quad |x|=t.$$

Let $x = t e^{i\varphi}$ and note that the expression on the left of (3.3) is invariant under $x \to \overline{x}$ so that we can restrict our attention to $\varphi \in (0, \pi)$. Then, for $\arg(1-x) = \mu = \mu(t, \varphi)$ we have $\mu < 0$ and we find the equivalent conditions

$$\cos(2\beta\mu) + \frac{2t\sin(\varphi)}{1 - t^2}\sin(2\beta\mu) \ge -1,$$

and

$$\tan(\beta\mu) \ge -\frac{1-t^2}{2t\sin(\varphi)}.$$

Using

$$\mu = \arctan\left(\frac{-t\sin(\varphi)}{1 - t\cos(\varphi)}\right)$$

we finally arrive at the necessary and sufficient condition

$$\beta \le \frac{\arctan\left(\frac{1-t^2}{2t\sin(\varphi)}\right)}{\arctan\left(\frac{t\sin(\varphi)}{1-t\cos(\varphi)}\right)} =: g(t,\varphi)$$

for every $\varphi \in (0, \pi)$. Actually, since obviously $g(t, \varphi) \leq g(t, \pi - \varphi)$ for $\varphi \in (0, \frac{\pi}{2}]$, we are left with the condition

$$\beta \le \inf_{\varphi \in (0, \frac{\pi}{2}]} g(t, \varphi),$$

which is equivalent to our assertion.

References

- [1] Jankovics, R., Über Funktionen mit der Eigenschaft Re $[e^{i\alpha}(f(z)/z \beta)] > 0$, Math. Z. **143** (1975), 235–242.
- [2] S. Ruscheweyh, Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Zeitschrift **142** (1975), 19–23.
- [3] ______, Convolutions in geometric function theory, Sem. Math. Sup. 83, Les Presses de l'Université de Montréal (1982).
- [4] $\underline{\hspace{1cm}}$ and L. Salinas, Universally Prestarlike Functions as Convolution Multipliers, to appear
- [5] ______, L. Salinas and S. Sugawa, Completely monotone sequences and universally prestarlike functions, to appear
- [6] ______, T.B. Sheil-Small, Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Commentarii Math. Helvetici 48 (1973), 119–135.
- [7] T.B. Sheil-Small, Complex Polynomials, Cambridge Stud. Adv. Math. 75, (2002).

Stephan Ruscheweyh Address: Mathematisches Institut, Universität Würzburg, D-97074 Würzburg, Germany

E-MAIL: ruscheweyh@mathematik.uni-wuerzburg.de