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On Inverse Coefficients

V. Srinivas

Abstract. Normalized functions f analytic in the open unit disc around the
origin and nonvanishing outside the origin can be expressed in the form z/g(z)
where g(z) has Taylor coefficients bn’s. These bn’s are called Inverse coeffi-
cients. Necessary conditions in terms of some initial bn’s are derived for some
classes of analytic functions.
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1. Introduction

Let A1 be the class of functions f analytic in U = {z ∈ C : |z| < 1},
normalized by f(0) = 0, f ′(0) = 1 where C is the set of complex numbers. An
f in A1 with f(z) 6= 0 in the punctured disc U\{0}, may be expressed as

f(z) = ψ(g) =
z

g(z)

in U , where

g(z) = 1 +

∞
∑

n=1

bnz
n

in U . We call the coefficients bn’s the inverse coefficients of f(z). Mitrinovic [1],
Reade et. al [2] worked on these coefficients.

Mitrinovic [1] obtained estimates for the radius of univalence of certain rational
functions. In particular, he found sufficient conditions for functions of the form

(1.1)
z

1 + b1z + b2z2 + · · ·+ bnzn
,

bn 6= 0, to be univalent in the unit disk U . A function

(1.2) f(z) = z +

∞
∑

n=2

anz
n
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analytic in U is said to be starlike of order α, 0 ≤ α < 1, if

Re
zf ′(z)

f(z)
> α

in U . The set of all such functions is denoted by S∗(α). The functions in
S∗ ≡ S∗(0) are called starlike functions . The function f(z) is said to be convex,
if,

Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0

in U .

In the note [2], Reade et. al., showed that the Mitrinovic criterion for uni-
valence of functions of the form (1.1) does not guarantee starlikeness and gave
sufficient conditions for such functions to be (i) starlike of order α and (ii) convex,
as n→ ∞.

Definition 1.1. Let K > 0 and f be regular and locally univalent in U . Then
f is said to belong to the class Cα(K), α < 1, if and only if

lim inf
|z|→1−

kα(f ; z) ≥ K.

Here kα(f ; z) is a generalization, called α-curvature of the Euclidean curvature
of f(|z| = r) at the point f(z) and is given by

kα(f ; z) =
Re

(

1 + zf ′′(z)
(1−α)f ′(z)

)

|z| |f ′(z)|1/(1−α)

where, z = reiθ and 0 < r < 1 (see [4]).

The class C0(K) was studied in [5].

Definition 1.2. A function f ∈ A1 of the form

f(z) = z −
∞

∑

n=2

anz
n

in U , with an ≥ 0 is said to be in the class C(α), 0 ≤ α < 1, if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> α

in U .
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2. Main Results

First we derive a necessary condition on the coefficients b1 and b2 for the
functions in Cα(K):

Theorem 2.1. For 0 ≤ α < 1, 0 < K < 1, and

ψ(g) =
z

1 +
∑∞

n=1 bnz
n
∈ Cα(K),

we have

(2.1) |b1| ≤ (1 − α)2(1 −K)

and

(2.2)
3

1 − α
|b2| ≤

1 −K − |b1|
2 {1 − α(1 − K

2
)}(1 − α)−2

1 − K
2

.

Both the inequalities are sharp.

Theorem 2.2. If

ψ(g) =
z

g(z)
=

z

1 +
∑∞

n=1 bnz
n
∈ C(α), 0 ≤ α < 1

in U , then

(2.3) |bn| ≤
1 − α

(n+ 1)(n+ 1 − α)
, n = 0, 1, 2, . . . .

The inequality is sharp for

gn(z) = 1 +

∞
∑

k=1

[

1 − α

(n + 1)(n+ 1 − α)

]k

znk

in U and

ψ(g) =
z

gn(z)
= z −

[

1 − α

(n + 1)(n+ 1 − α)

]

zn+1, z ∈ U.

3. Propositions and proofs of theorems

Proposition 3.1. Let f(z) be analytic in U . Then f ∈ Cα(K), if and only if,

g(z) =

∫ z

0

(f ′(τ))
1

1−α dτ ∈ C0(K)

where α < 1 and K > 0.
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Proof. We observe that f(z) is locally univalent in U , if and only if, g(z) is so.
This, the fact

k0(g; z) = kα(f ; z)

and the definitions of the classes Cα(K) and C0(K) together give Proposition 3.1.

Proposition 3.2. Let K > 0, α < 1, α 6= 0, and

f(z) =

∞
∑

n=0

anz
n ∈ Cα(K).

Then the inequality

(3.1)

∣

∣

∣

∣

∣

f ′′(z)(1 − |z|2)

f ′(z)2(1 − α)
− z̄

∣

∣

∣

∣

∣

2

≤ 1 −K |f ′(z)|
1

1−α (1 − |z|2)

is true for z in U . The inequality (3.1) is sharp.

Proof. For the following functional uα(z) and z in U we have

uα(z) =
1 −

∣

∣

∣

f ′′(z)(1−|z|2)
f ′(z)2(1−α)

− z̄
∣

∣

∣

2

|f ′(z)|
1

1−α (1 − |z|2)

≥ lim inf
|z|→1−

uα(z)

= lim inf
|z|→1−

1

|f ′(z)|
1

1−α

[

Re

(

1 +
zf ′′(z)

(1 − α)f ′(z)

)

−
(1 − |z|2)

4(1 − α)2

∣

∣

∣

∣

f ′′(z)

f ′(z)

∣

∣

∣

∣

2
]

= lim inf
|z|→1−

kα(f ; z) ≥ K,

in view of Proposition 3.1, the equation in its proof and [5]. This gives (3.1).

The inequality (3.1) is sharp for

(3.2) f(z) =



















eiϕ(1 − |a|2)1−α

K1−αa(2α− 1)(1 + az)1−2α
+ b or

eiϕ

K1−α
z + b; α 6= 1

2

eiϕ

a

[

1 − |a|2

K

]1/2

log(1 + āz) + b or
eiϕ

K1−α
z + b; α = 1

2

for a ∈ U\{0}, b ∈ C and ϕ ∈ R. This proves Proposition 3.2.

Next, using Proposition 3.2, we obtain:



On inverse coefficients 259

Lemma 3.3. Let K > 0, α < 1, α 6= 0 and f(z) =
∑∞

n=0 anz
n ∈ Cα(K). Then

(3.3)

∣

∣

∣

∣

a2

a1(1 − α)

∣

∣

∣

∣

2

≤ 1 −K |a1|
1

1−α .

The inequality (3.3) is sharp only for the functions of the form (3.2).

Proof. Taking z=0 in Proposition 3.2, gives Lemma 3.3.

Proposition 3.4. Let K > 0, α < 1, α 6= 0 and f(z) =
∑∞

n=0 anz
n ∈ Cα(K).

Then the inequality

1

2

∣

∣

∣

∣

∣

1

1 − α

{

α

1 − α

(f ′′(z))2

f ′(z)
+ f ′′′(z)

}

1

f ′(z)
−

3

2

(

f ′′(z)

(1 − α)f ′(z)

)2
∣

∣

∣

∣

∣

(3.4)

(

1 − |z|2
)2

(

1 −
K

2
|f ′(z)|

1

1−α (1 − |z|2)

)

≤ 1 −

∣

∣

∣

∣

∣

f ′′(z)(1 − |z|2)

f ′(z)2(1 − α)
− z̄

∣

∣

∣

∣

∣

2

−K |f ′(z)|
1

1−α (1 − |z|2)

holds for z in U . The inequality is sharp for the function f(z) of the form (3.2).

Proof. Proposotion 3.1 and the inequality [5]

1

2
|[g]z(z)|

(

1 − |z|2
)2

(

1 −
K

2
|g′(z)| (1 − |z|2)

)

(3.5)

≤ 1 −

∣

∣

∣

∣

∣

g′′(z)(1 − |z|2)

2g′(z)
− z̄

∣

∣

∣

∣

∣

2

−K |g′(z)| (1 − |z|2)

give the inequality (3.4). Here

[f ]z(z) =
f ′′′(z)

f ′(z)
−

3

2

(

f ′′(z)

f ′(z)

)2

.

Lemma 3.5. Let f(z) =
∑∞

n=0 anz
n ∈ Cα(K) with K > 0, α < 1, α 6= 0. Then

(3.6)

∣

∣

∣

∣

a3

a1

∣

∣

∣

∣

≤
(

1 −K |a1|
1

1−α

)

(

1 −
2

3
α

)

(1 − α).

The inequality (3.6) is sharp only for the functions of the form (3.2).
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Proof. For z = 0 inequality (3.4) gives that

3

1 − α

∣

∣

∣

∣

∣

a3

a1

−
1 − 2α

3

1 − α

(

a2

a1

)2
∣

∣

∣

∣

∣

≤
1 −

∣

∣

∣

a2

a1(1−α)

∣

∣

∣

2

−K |a1|
1

1−α

1 − K
2
|a1|

1

1−α

.(3.7)

From this by applying the triangle inequality and the inequality (3.3), the re-
quired inequality is obtained. This completes the proof of Lemma 3.5.

Proof of Theorem 2.1. For f(z) =
∑∞

n=0 anz
n = ψ(g), we have b1 = −a2 and

b2 = a2
2 − a3. By Lemma 3.3, we have that

∣

∣a2
2

∣

∣ ≤ (1 − α)2(1 −K).

By substituting b1 = −a2 in this, we obtain the inequality (2.1).

By (3.7), we have

3

1 − α

∣

∣

∣

∣

a3 −
1 − 2α

3

1 − α
a2

2

∣

∣

∣

∣

≤
1 −

∣

∣

a2

1−α

∣

∣

2
−K

1 − K
2

.

Hence,

3

1 − α

∣

∣a3 − a2
2

∣

∣ −
α

(1 − α)2
|a2|

2 ≤
1 − |a2|

2 1
(1−α)2

−K

1 − K
2

and so

3

1 − α

∣

∣a3 − a2
2

∣

∣ ≤
1 −K − |a2|

2 (

1 − α
(

1 − K
2

))

1
(1−α)2

1 − K
2

.

Now by substituting b2 for a2
2 −a3 and b1 for −a2 in the inequality we obtain the

inequality (2.2). The functions
(

(1 + az)2α−1 − 1
)

(2α− 1)a
for α 6=

1

2
;

eiϕ

a
log (1 + āz) + b for α = 1/2

and
eiϕ(1 − |a|2)α−1z + b,

with K = 1 − |a|2 , a ∈ U\{0}, b ∈ C and ϕ ∈ R, the set of real numbers, give
sharpness in the inequalities (2.1) and (2.2). This completes the proof of the
theorem.

Proof of Theorem 2.2. Since ψ(g) ∈ C(α) it has the Taylor series expansion

ψ(g) = z −

∞
∑

k=0

anz
n, an ≥ 0, z ∈ U.
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By the definition of g(z),

(3.8) bn =

n−1
∑

k=0

bkan−k+1

for n ≥ 1 where b0 = 1.

First we show that {bn} is a sequence of nonnegative real numbers. It follows
from the equation (3.8) that b1 = a2 ≥ 0. Now assume that bk ≥ 0, 1 ≤ k ≤
n, n ∈ N, the set of natural numbers. Since,

bn+1 =
n

∑

k=0

bkan+2−k

and ak’s are nonnegative, we have bn+1 ≥ 0. This proves that {bn} is a sequence
of nonnegative real numbers.

By the necessary and sufficient condition [3] for f to be in C(α):

(3.9)
∞

∑

n=2

n(n− α)an ≤ 1 − α,

we have

b1 = a2 ≤
1 − α

2(2 − α)
.

This proves the inequality (2.3) for n = 1.

Now, let the inequality (2.3) be true for n, satisfying 1 ≤ n ≤ k, k ∈ N. Then,

(3.10) bk+1 =

k
∑

n=0

bnak+2−n ≤

k
∑

n=0

1 − α

(n+ 1)(n+ 1 − α)
ak+2−n.

Set, for n ≥ 2,

an = λn
1 − α

n(n− α)
.

For ψ(g) = z −
∑∞

n=2 anz
n ∈ C(α), it is necessary, by (3.9), that

∞
∑

n=2

n(n− α)an ≤ 1 − α.

Thus, λn ≥ 0 for n ≥ 2 and

(3.11)

k+1
∑

n=1

λn+1 ≤ 1.
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The inequality (3.10) is equivalent to

bk+1 ≤
k

∑

n=0

λk+2−n
1 − α

(n + 1)(n+ 1 − α)
·

1 − α

(k + 2 − n)(k + 2 − n− α)

≤
1 − α

(k + 2)(k + 2 − α)

k
∑

n=0

λk+2−n

≤
1 − α

(k + 2)(k + 2 − α)
.

The second inequality holds since

(n+ 1)(n+ 1 − α)(k + 2 − n)(k + 2 − n− α) ≥ (1 − α)(k + 2)(k + 2 − α)

for 0 ≤ n ≤ k and the last inequality holds due to (3.11). This proves the
inequality (2.3) for n = k + 1 and the proof of the theorem is complete by the
induction argument. It is easily seen that sharpness of (2.3) is attained for the
function ψ(gn) where gn is as in the statement of the theorem.
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