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On Inverse Coefficients
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Abstract. Normalized functions f analytic in the open unit disc around the
origin and nonvanishing outside the origin can be expressed in the form z/g(z)
where ¢(z) has Taylor coefficients b,,’s. These b,,’s are called Inverse coeffi-
cients. Necessary conditions in terms of some initial b,,’s are derived for some
classes of analytic functions.
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1. Introduction

Let A; be the class of functions f analytic in U = {z € C : |z| < 1},
normalized by f(0) =0, f(0) = 1 where C is the set of complex numbers. An
fin Ay with f(2) # 0 in the punctured disc U\{0}, may be expressed as

in U, where
g(z) =1+ Z by 2"
n=1

in U. We call the coefficients b,’s the inverse coefficients of f(z). Mitrinovic [1],
Reade et. al [2] worked on these coefficients.

Mitrinovic [1] obtained estimates for the radius of univalence of certain rational
functions. In particular, he found sufficient conditions for functions of the form
z

1.1
(1.1) 1+ b1z +byz2+ -+ b2’
b, # 0, to be univalent in the unit disk U. A function

(1.2) f(z) = z+Zanz”
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analytic in U is said to be starlike of order o, 0 < o < 1, if
!

)

f(z)

in U. The set of all such functions is denoted by S*(«). The functions in
S* = §%(0) are called starlike functions . The function f(z) is said to be convex,

if
Re (1 + ZJ{C,/;(ZZ))) >0

Re

in U.

In the note [2], Reade et. al., showed that the Mitrinovic criterion for uni-
valence of functions of the form (1.1) does not guarantee starlikeness and gave
sufficient conditions for such functions to be (i) starlike of order « and (ii) convex,
as n — 00.

Definition 1.1. Let K > 0 and f be regular and locally univalent in U. Then
f is said to belong to the class C,(K), a < 1, if and only if

liminf k. (f; 2) > K.

2| =1~

Here k,(f; 2) is a generalization, called a-curvature of the Euclidean curvature
of f(|z] =r) at the point f(z) and is given by

zf" (z)
bl f ) = Re <1 + (l—a)f—’(z)>
N TR

where, z =re? and 0 <7 < 1 (see [4]).
The class Cy(K) was studied in [5].

Definition 1.2. A function f € A; of the form

in U, with a,, > 0 is said to be in the class C(«), 0 < a < 1, if

C
re (14570 >0

in U.
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2. Main Results

257

First we derive a necessary condition on the coefficients b; and b, for the

functions in C,(K):

Theorem 2.1. For0<a <1, 0< K <1, and

z
vig) =17 S g Ca(K),
we have
(2.1) bl < (1—a)’(1 - K)
and
3 L—K—|b[* {1-a(l-5)}(1-a)”

Both the inequalities are sharp.

Theorem 2.2. If

z z
= = C 0<ax<l
¥o) = 75 = Ty € Cla), 0=
wn U, then
-«
2.3 b,| < . n=0,1,2,....
(23) | |_(n+1)(n—i—1—a) "

The inequality is sharp for

m U and

3. Propositions and proofs of theorems

Proposition 3.1. Let f(z) be analytic in U. Then f € Co(K), if and only if,

maa[U%WﬁMe@m>

where a < 1 and K > 0.
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Proof. We observe that f(z) is locally univalent in U, if and only if, g(z) is so.
This, the fact

ko(g;2) = ka(f; 2)

and the definitions of the classes C,(K) and Cy(K) together give Proposition 3.1.
]

Proposition 3.2. Let K >0, a <1, a #0, and
f(z) = Zanz” € Co(K).
n=0

Then the inequality

IHOREED
f'(z)2(1 = a)

is true for z in U. The inequality (3.1) is sharp.

(3.1) - 2| <1-K|f()| (12

Proof. For the following functional u,(z) and z in U we have
r@a-le?) |
B PRt 2
= 1
()= (1= |])

> liminf u,(z)

z|—1—

1—

Ua(2)

f"(2)
f'(2)

— liminf ——
e
= liminf k,(f;2) > K,

|2|—=1~

)\ (- P
fe (1 T a)f’(Z)) 11— a)?

2]
in view of Proposition 3.1, the equation in its proof and [5]. This gives (3.1).

The inequality (3.1) is sharp for

o1~ faf’) '

b b; 2
KT ea@a—1)(1+az)i s 0 % etk a#s
(3.2)  f(»)= , 271/2 ,
e’ | 1—|al B ew _ 1
— e log(1+az) +b or mzjtb, a=3
for a € U\{0}, b € C and ¢ € R. This proves Proposition 3.2. n

Next, using Proposition 3.2, we obtain:
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Lemma 3.3. Let K >0, a <1, a#0 and f(z) => " a,2" € Co(K). Then

2

a2 <1-K|a|Ts.

(3.3) i

The inequality (53.3) is sharp only for the functions of the form (8.2).

Proof. Taking z=0 in Proposition 3.2, gives Lemma 3.3. ]

Proposition 3.4. Let K > 0, a <1, a #0 and f(z) =Y .0y a2" € Co(K).
Then the inequality

U f o P L 3 e
1—a{1—atma *f(”}fu> (atare)
(=Y (1= S i@ a - 1)

f(2)(1 ~|2)
f'(z)2(1 = a)

holds for z in U. The inequality is sharp for the function f(z) of the form (5.2).

(3.4) %

<1-

z|—Kmuw¥u—vﬁ

Proof. Proposotion 3.1 and the inequality [5]
1 2 K
35 gl (1= el )
" 2 2
g"AA = 1=)

<1-—
- 29'(2) :

— K |g'(2)] (1~ =)

give the inequality (3.4). Here

NOREYILON
712 = 5 2(ﬂa)‘

Lemma 3.5. Let f(z) => " jan2" € Co(K) with K >0, a <1, a#0. Then

(1 — K |ay|7= ) (1 - %a) (1—a).

The inequality (3.6) is sharp only for the functions of the form (3.2).

@3

(3.6)

a1



260 V. Srinivas ICGFT06

Proof. For z = 0 inequality (3.4) gives that

az
a1(l1—a)

2 1
— K |a|T®

3

11—«

(3.7) <

as 1-— 2?0[ a9 2

a l—a \ag -
From this by applying the triangle inequality and the inequality (3.3), the re-
quired inequality is obtained. This completes the proof of Lemma 3.5. [ ]

_1
— % ‘al‘lfa

Proof of Theorem 2.1. For f(z) = > " a,z" = 1¥(g), we have by = —a, and
by = a3 — a3. By Lemma 3.3, we have that

|a3] < (1 —a)’(1 - K).
By substituting b; = —as in this, we obtain the inequality (2.1).
By (3.7), we have

3 a3 — — %a 2 1- 161204 K
11—« l—a ? - £ ‘
Hence,
: a3 — a3 - |as)? el o
1—a ™ 72 (1—a)2 = _ K
and so . .
3 2| < — K —ay| (1_O‘<1_7)) (1—a)?
1— }&3 — 02} ~ 1 K

Now by substituting b, for a% —ag and by for —as in the inequality we obtain the
inequality (2.2). The functions

(14 a2)* ™" =1)
(2a — 1)a

1
f -,
or a # 5
elr
—log(1+az)+0b fora=1/2
a
and ‘
(1~ lal*)* "z +0,
with K =1 —|a|*, a € U\{0}, b€ C and ¢ € R, the set of real numbers, give

sharpness in the inequalities (2.1) and (2.2). This completes the proof of the
theorem.

Proof of Theorem 2.2. Since v

~

g) € C(«) it has the Taylor series expansion

1/)(9):2—2@“2”, a, >0, z€ U.
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By the definition of ¢(z),

n—1
(38) bn = Z bkCLn,kJrl
k=0

for n > 1 where by = 1.

First we show that {b,} is a sequence of nonnegative real numbers. It follows
from the equation (3.8) that by = ay > 0. Now assume that by > 0, 1 < k <
n, n € N, the set of natural numbers. Since,

n+1 E bk Qp42—k

and a’s are nonnegative, we have b, 1 > 0. This proves that {b,} is a sequence
of nonnegative real numbers.

By the necessary and sufficient condition [3] for f to be in C(«):

(3.9) Zn(n —a)a, <1-—aq,
n=2
we have
b < 1 -«
=ay < —.
TS 92—

This proves the inequality (2.3) for n = 1.
Now, let the inequality (2.3) be true for n, satisfying 1 < n < k, k € N. Then,

k
l -«

3.10 b b n n-
( ) k+1 = Z nlk+2— _Zn+1 (n+1— )k+2
Set, for n > 2,

1—
Uy = Ap————.
n(n — «)
For ¢(g9) =z — Y7y a,z" € C(w), it is necessary, by (3.9), that

nn —a)a, <1-—a.

n=2
Thus, A\, > 0 for n > 2 and

k+1

(3.11) Z Ans1 < 1.
n=1
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The inequality (3.10) is equivalent to

k
1 -« l1—-a
T N .
kﬂ_; P+ )n+1—a) (k+2-n)(k+2—n—a)

11—«
<
“k+2)(k+2—a) Z Fraon

< 1 -«
T (k+2)(k+2—-a)

The second inequality holds since
m+Dn+l1—-a)k+2—n)k+2—n—a)>1—-a)(k+2)(k+2— )
for 0 < n < k and the last inequality holds due to (3.11). This proves the
inequality (2.3) for n = k + 1 and the proof of the theorem is complete by the

induction argument. It is easily seen that sharpness of (2.3) is attained for the
function (g, ) where g, is as in the statement of the theorem.
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