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On An Eigenvalue Problem Of Hydrodynamic Stability

V. Ganesh and M. Subbiah

Abstract. We consider the second order ordinary differential equation

W
′′

+

[

N2

(U0 − c)2
−

U
′′

0

(U0 − c)
− k2

]

W +
1

(U0 − c)
[T (U0 − c)W ]

′

= 0,

with boundary conditions W (0) = 0 = W (D), which arises in hydrodynamic
stability (cf. [1]). Here c = cr+ici is the complex eigenvalue, W (z) is the eigen
function, U0(z) is the basic velocity, N2(z) ≥ 0 is a stratification parameter,
T (z) measures the variability in the domain and k > 0 is the wave number of
a normal mode disturbance to a channel flow in a domain between z = 0 and
z = D and a prime denotes differentiation with respect to z. For this problem
we present some results on the location of complex eigenvalues with ci > 0
(corresponding to unstable modes) and an estimate for the growth rate kci of
any unstable mode.
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1. Introduction

The Taylor-Goldstein problem in hydrodynamic stability deals with the sta-
bility of shear flows of an inviscid, incompressible but density stratified fluid
to infinitesimal normal mode disturbances. This problem has been extensively
studied (see [2, 5]). Recently Deng et. al. [1] has extended this problem to
include the variable bottom of the flow domain as this is necessary in the study
of shear flows in sea straits. Deng et. al. [1] found two general results for their
problem. In their first result they proved that the basic shear flow is stable if the
minimum Richardson number J0 is larger than or equal to one quarter. In their
second result they proved that the unstable eigenvalues lie inside a semicircle in
the upper half plane, whose diameter coincides with the range of the basic ve-
locity profile. In this paper we extend their results by proving that the unstable
modes lie inside a semi-elliptical region which depends on J0, the depth of the
fluid layer and the wave number k. Further, we also obtain an estimate for the
growth rate of any unstable mode. Also the instability region is further improved
for a special class of flows which includes the hyperbolic tangent velocity profile.
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Our results reduce to the results of Makov and Stepanyants [4] when the bottom
parameter b(z) is taken to be equal to 1.

2. The Eigenvalue Problem

The eigenvalue problem considered in this paper is given by the equation

(2.1) W ′′ +

[

N2

(U0 − c)2
−

U ′′

0

(U0 − c)
− k2

]

W +
1

U0 − c
[T (U0 − c)W ]′ = 0.

with boundary conditions

(2.2) W (0) = 0 = W (D).

Here the real part of W (z)eik(x−ct) is the vertical velocity of a normal mode
disturbance with k the wave number and c the complex phase velocity. A prime
denotes differentiation with respect to the vertical coordinate z varying over
(0, D), U0(z) is the basic velocity, N2(z) ≥ 0 is the square of Brunt-Väisäla
frequency and T (z) measures the variability in the domain and T (z) = [log b(z)]′,
where b(z) gives the width of the channel. If T is a constant then b(z) = b(0)eTz,
i.e., the width is an exponential function of z.

3. A General Instability Region

Now we shall prove that the complex eigenvalues of our eigenvalue problem
with positive imaginary part lie inside a semi-ellipsetype region.

Theorem 3.1. The complex eigenvalues of our eigenvalue problem with positive

imaginary part lie inside a region given by

[

cr −
U0min + U0 max

2

]2

+











1 +
2J0

1 − 2J0 +

(

1 − 4J0 −

[

4k2c2
i

(U ′

0)
2

max

])
1

2











c2
i

≤

[

U0 max − U0min

2

]2

,

where J0 = min[N2(z)/(U ′

0(z))2] is the minimum Richardson number.

Proof. With the transformation W = (U0 − c)F , (2.1) and (2.2) can be written
as

(3.1)

[

(U0 − c)2 (bF )′

b

]

′

+
[

N2 − k2(U0 − c)2
]

F = 0,
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with boundary conditions

(3.2) F (0) = 0 = F (D).

From

(3.3) G = [U0 − c]
1

2 F,

we have

(bG)′ = (U0 − c)
1

2 (bF )′ +
1

2
(U0 − c)

−1

2 U ′

0(bF ).

This implies that

|(bG)′|2 ≥ |U0 − c| |(bF )′|2 +
|U ′

0
2| |bF |2

4|U0 − c|
− |U ′

0| |(bF )′| |bF |.

This implies that
[

|(bG)′|2

b
+ k2b|G|2

]

≥ |U0 − c|

[

|(bF )′|2

b
+ k2b|F |2

]

+
|U ′

0
2| b|F |2

4|U0 − c|

− |U ′

0| |(bF )′| |F |.

The use of Cauchy-Schwarz inequality gives,

∫

|U ′

0||F | |(bF )′| dz ≤

[
∫

|U ′

0
2| b|F |2

4|U0 − c|
dz

]
1

2

[

∫

4|U0 − c| |(bF )′|2

b
dz

]
1

2

= 2BE,

where

B2 =

∫

|U ′

0
2| b|F |2

4|U0 − c|
dz, E2 =

∫

|U0 − c| |(bF )′|2

b
dz, and D2 =

∫

|U0−c|b|F |2 dz.

Therefore, we have
∫

[

|(bG)′|2

b
+ k2b|G|2

]

dz ≥ B2 + E2 − 2BE + k2D2.(3.4)

Using (3.3) in (3.1) and equating imaginary parts, we get
∫

[

|(bG)′|2

b
+ k2b|G|2

]

dz =

∫

[

[U ′

0]
2

4
− N2

]

b|G|2

|U0 − c|2
dz;(3.5)

that is
∫

[

|(bG)′|2

b
+ k2b|G|2

]

dz ≤ (1 − 4J0)B
2.

Therefore we have

B2 + E2 − 2BE + k2D2 ≤ (1 − 4J0)B
2;
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that is

E2 − 2BE + 4J0B
2 + k2D2 ≤ 0.(3.6)

Solving this inequality with respect to E, we obtain

B −
√

B2 − 4J0B2 − k2D2 ≤ E ≤ B +
√

B2 − 4J0B2 − k2D2.(3.7)

From (3.6), we have

E2 + k2D2 ≤ 2BE − 4J0B
2.

Using (3.7), we have

E2 + k2D2 ≤ 2B2

[

1 − 2J0 +

(

1 − 4J0 −
k2D2

B2

)
1

2

]

.(3.8)

Now,

D2

B2
≥

4c2
i

(U ′

0)
2
max

.(3.9)

Also it is easy to see that

E2 + k2D2 ≥ ci

[

∫

[

|(bF )′|2

b
+ k2b|F |2

]

dz

]

,(3.10)

and

B2 ≤
1

4ci

∫

|U ′

0|
2
b|F |2 dz.(3.11)

From (3.8) and (3.10), we have

ci

[

∫

[

|(bF )′|2

b
+ k2b|F |2

]

dz

]

≤ 2B2

[

1 − 2J0 +

(

1 − 4J0 −
k2D2

B2

)
1

2

]

.

Using (3.9) and (3.11) in the above equation we get

2c2
i

[

1 − 2J0 +

(

1 − 4J0 −
4k2c2

i

(U ′

0)
2

max

)
1

2

]

∫

[

|(bF )′|2

b
+ k2b|F |2

]

dz(3.12)

≤

∫

|U ′

0|
2
b|F |2 dz.

Also it is seen that
∫

N2b|F |2 dz ≥ J0

∫

(U ′

0)
2
b|F |2 dz.(3.13)
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From [1] we know that the complex wave velocity c for any unstable mode lies
inside the region
[

[

cr −
U0min + U0max

2

]2

+ c2
i
−

[

U0 max − U0min

2

]2
]

·

∫

Q dz+

∫

N2b|F |2 dz ≤ 0,

where

Q =
|(bF )′|2

b
+ k2b|F |2.

Using (3.13), we get
[

[

cr −
U0min + U0max

2

]2

+ c2
i
−

[

U0 max − U0min

2

]2
]

·

∫

[

|(bF )′|2

b
+ k2b|F |2

]

dz

+ J0

∫

(U ′

0)
2
b|F |2 dz ≤ 0.

Using (3.12), we get

[

cr −
U0min + U0 max

2

]2

+











1 +
2J0

1 − 2J0 +

(

1 − 4J0 −

[

4k2c2
i

(U ′

0)
2

max

])
1

2











c2
i

≤

[

U0 max − U0min

2

]2

,

which completes the proof of the theorem.

4. Instability Region For Specific Velocity Profiles

The instability region given in section 3 is valid for an arbitrary velocity profile
U0(z) and the stratification parameter N2(z). Now we shall improve upon this
result for a specific class of velocity profiles.

Multiplying (3.1) by bF ∗ (where F ∗ is the complex conjugate of F ), integrating
over (0, D) and using (3.2), we get

∫

(U0 − c)2

[

|(bF )′|2

b
+ k2b|F |2

]

dz −

∫

N2b |F |2 dz = 0.

Equating imaginary parts, we get
∫

U0Q dz = cr

∫

Q dz.(4.1)



48 V. Ganesh and M. Subbiah ICGFT06

Equating real parts and using (4.1), we get
∫

U2
0 Q dz =

(

c2
r
+ c2

i

)

∫

Q dz +

∫

N2b |F |2 dz.(4.2)

Now,

Q − 2k

∣

∣(bF )′
∣

∣

b
b |F | =

[

|(bF )|′

b
1

2

− kb
1

2 |F |

]2

.

Now consider the apparent inequality
∫

(U0 − U0 min) (U0 − U0 max)
[

Q − 2k
∣

∣

∣
(bF )

′

∣

∣

∣
|F |
]

dz ≤ 0;

that is

∫

U2
0 Q dz − (U0min + U0max)

∫

U0Q dz + (U0minU0max)

∫

Q dz

(4.3)

+ 2k

∫

[

(

U0max − U0min

2

)2

−

(

U0 −
U0 min + U0max

2

)2
]

∣

∣

∣
(bF )

′

∣

∣

∣
|F | dz

≤ 0.

Substituting (4.1) and (4.2) in (4.3) we have

(

c2
r
+ c2

i

)

∫

Q dz +

∫

N2b |F |2 dz − (U0min + U0max) cr

∫

Q dz

+ 2k

∫

[

(

U0max − U0min

2

)2

−

(

U0 −
U0min + U0 max

2

)2
]

∣

∣

∣
(bF )

′

∣

∣

∣
|F | dz ≤ 0;

that is

[

[

cr −
U0min + U0max

2

]2

+ c2
i
−

[

U0max − U0 min

2

]2
]

·

∫

Q dz

(4.4)

+

∫

N2b |F |2 dz + 2k

(

Uo max − U0 min

2

)

∫

[

(

U0 max − U0min

2

)

−

(

U0 −
U0 min+U0 max

2

)2

(

Uo max−U0 min

2

)

]

∣

∣

∣
(bF )

′

∣

∣

∣
|F | dz ≤ 0.

Substituting (3.3) in (3.5) we get
∫

|U0 − c|

[

∣

∣(bF )′
∣

∣

2

b
+ k2b |F |2

]

dz +

∫

N2b |F |2

|U0 − c|
dz ≤

∫

∣

∣

∣
U

′

0

∣

∣

∣

∣

∣(bF )′
∣

∣ |F | dz;
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that is
∫

|U0 − c|Q dz +

∫

N2b |F |2

|U0 − c|
dz ≤

∫

∣

∣

∣
U

′

0

∣

∣

∣

∣

∣(bF )′
∣

∣ |F | dz.(4.5)

By the semi-circle theorem it is obvious that

|U0 − c| ≤ U0max − U0 min, and so
1

|U0 − c|
≥

1

(U0max − U0min)

and also we have |U0 − c| ≥ ci. Therefore (4.5) can be written as

(4.6) ci

∫

Q dz +
1

(U0max − U0 min)

∫

N2b |F |2 dz ≤

∫

∣

∣

∣
U

′

0

∣

∣

∣

∣

∣(bF )′
∣

∣ |F | dz.

Now when the condition
∫

[

U0max − U0min

2
−

(

U0 −
(

U0min+U0max

2

))2

U0max−U0 min

2

]

∣

∣(bF )′
∣

∣ |F | dz(4.7)

≥

∫

h
∣

∣

∣
U

′

0

∣

∣

∣

∣

∣(bF )′
∣

∣ |F | dz.

is fulfilled, where h is a certain constant with the dimensions of length, the
inequality (4.4) can be strengthened by expressing the last component in terms
of the integral

∫

Q dz with the help of (4.6). Unfortunately, the validity of (4.7)
in the general case has not been proved. However, one can readily distinguish
the flow profiles at which relation (4.7) is fulfilled. In particular, equating the
integrands on the left- and right-hand sides of (4.7), we obtain a differential
equation for U0(z) namely,

h
∣

∣

∣
U

′

0

∣

∣

∣
=

[

U0max − U0min

2

]

−

[

U0 −
(

U0min+U0max

2

)]2

(

U0max−U0 min

2

) ;

that is

∣

∣

∣
U

′

0

∣

∣

∣
=

±2

h [U0max − U0min]

[

(

U0max − U0 min

2

)2

−

(

U0 −

(

U0min + U0 max

2

))2
]

.

(4.8)

Therefore

U0(z) = ±

[

U0min + U0max

2
+

(

U0max − U0min

2

)

tanh

(

z

h
−

1

2

)]

.(4.9)

Here h is used in the sense of the characteristic thickness of a shear layer. This
profile is often used in numerical computations of shear-flow stability, since its
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form provides a good approximation to actually observed flows [3]. We may state
that (4.7) is fulfilled for the profiles (4.9) or smoother ones, i.e. profiles for which

∣

∣

∣
U

′

0

∣

∣

∣
≤

2

[U0max − U0min]

[

(

U0 max − U0min

2

)2

−

(

U0 −

(

U0 min + U0max

2

))2
]

.

Using (4.6) and (4.7) in (4.4), we get
[

[

cr −
U0min + U0 max

2

]2

+

(

ci + kh

[

U0 max − U0min

2

])2

(4.10)

−
(

1 + k2h2
)

[

U0max − U0 min

2

]2
]

∫

Q dz

+ (1 + kh)

∫

N2b |F |2 dz ≤ 0.

Since N2 ≥ 0, we substitute for the last term from (3.12) and (3.13) to get the
following improved instability region.

Theorem 4.1. An instability region for the eigenvalue problem is given by

[

cr −
U0min + U0max

2

]2

+

(

ci + kh

[

U0max − U0min

2

])2

+
2(1 + kh)J0c

2
i

[

1 − 2J0 +

(

1 − 4J0 −
4k2c2

i

(U
′

0)
2

max

)
1

2

] ≤
[

1 + (kh)2
]

[

U0max − U0min

2

]2

.

5. Estimate For Growth Rate

Theorem 5.1. An estimate for growth rate of an unstable mode is given by

k2c2
i
≤

(

U
′

0

)2

max

[

1
4
− J0

]

[

bminπ2

bmaxk2D2 + 1
] .

Proof. By the well-known Rayleigh-Ritz inequality, we have

∫

∣

∣(bG)′
∣

∣

2

b
dz ≥

bminπ
2

bmaxD2

∫

b |G|2 dz.
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Using this in (3.5), we have

[

bminπ
2

bmaxD2
+ k2

]
∫

b |G|2 dz ≤

(

“

U
′

0

”

2

4
− N2

)

max

c2
i

∫

b |G|2 dz,

which yields the estimate

k2c2
i
≤

(

U
′

0

)2

max

[

1
4
− J0

]

[

bminπ2

bmaxk2D2 + 1
] .

The proof is complete.

It is seen that the above estimate for the growth rate depends on the stratifica-
tion parameter, the wave number k and the depth of the shear layer D. Further,
it is seen that ci → 0+ as k → ∞. An open problem here is to prove or disprove
Howard’s conjecture, namely kci → 0+ as k → ∞.

6. Concluding Remarks

In this paper we study an eigenvalue problem of hydrodynamic stability for-
mulated recently in [1]. For this problem we obtain a general instability region
which gives a region inside which all eigenvalues c with positive imaginary part
should lie in the cr − ci plane. Then we improve upon this region for a special
class of velocity profiles. Finally we obtain an estimate for the growth rate of
any unstable mode.
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