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Abstract. Our vector bundles are complex quasi-complete locally convex
spaces indexed holomorphically by points in holomorphic manifolds modelled
on complex quasi-complete locally convex spaces. Vector bundle maps are
locally holomorphic perturbations of continuous linear maps. Various natural
constructions of new vector bundles from old vector bundles are presented.
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1. Introduction

1.1. Polynomials are probably the simplest intrinsically nonlinear functions.
Analytic functions locally defined by power series expansions establish complex
analysis as one of the most beautiful and richest branches of pure mathematics.
Subtle computational methods of infinite dimensional function theory offer a
natural umbrella [13] for products of distributions which are traditionally
regarded as real analysis [5]. There are several candidates of differentiability
on complex locally convex spaces such as those listed in [6, pp 57,59,61] but
we commit ourselves to the well-known directional derivatives defined in most
undergraduate textbooks in advanced calculus. All our holomorphic maps must
be locally bounded. To compensate this restriction, our morphisms are locally
holomorphic perturbations of continuous linear maps. With coordinate transfor-
mations based on holomorphic locally compact perturbations of identity maps,
a theory [14], [15] of infinite dimensional holomorphic manifolds is established
within the conventional complex locally convex spaces in contrast to the conve-
nient spaces [9]. Examples of holomorphic manifolds in our sense constructed by
level sets of regular values are given in [16]. We hope that infinite dimensional
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complex analysis will be accepted as a substantial part of nonlinear functional
analysis in addition to the traditional topological methods.

1.2. In this paper, we set up a theory of vector bundles in parallel to Banach
manifolds [1], [10] and [4]. Even restricted to the finite dimensional case, our ap-
proach is different to others because we separate the parameters from the objects
carefully. We start with a quick review of tangent bundles and notations within
our framework in §2. Our tags in §3 are variants of local vector bundle maps
[1, p167] in Banach manifolds. In §§4-6, we develop vector bundles, vector bun-
dle maps, restrictions, subbundles, quotient bundles, ranges, kernels and prod-
uct bundles. Philosophically, we consider vector bundles as functional analysis
parameterized by points in manifolds. Because vector bundles over the same
manifold can be parameterized by the same parameter in §7, direct sums are
constructed accordingly in §8. In order to apply Ascoli’s Theorem, the spaces
Lk(E,F ) of compact linear maps in §8 are equipped with the compact-open
topology which is another departure from the traditional treatment in Banach
manifolds. A well-known obstacle against the development of manifolds modelled
on locally convex spaces is the discontinuity of composites of continuous linear
maps but we can get around this in §8.7 with compactness and equicontinuity.
Cotangent bundles are introduced at the end. This paper together with [12]
prepares ground for future development of various derivatives on holomorphic
manifolds. For similar or related results, see [2], [3], [8] and [17].

2. Review of Tangent Bundles

2.1. Throughout this paper, a locally convex space means a separated locally
convex space over the complex field C. Here we give a quick review of the
background from [11] and [14]. LetE,E2 be quasi-complete locally convex spaces.
A map fk from an open subset X of E into E2 is (directionally) differentiable if
for every a ∈ X and x ∈ E, the map t→ fk(a+ tx) is differentiable on the open
subset {t ∈ C : a+ tx ∈ X} of C. The derivative Dfk(a) : E → E2 at a ∈ X is
a linear map given by

Dfk(a)x =
d

dt
fk(a+ tx)

∣

∣

∣

∣

t=0

for each x ∈ E.

The map fk is locally bounded if every point a ∈ X has a neighborhood V ⊂
X such that fk(V) is a bounded subset of E2; and locally compact if fk(V) is
relatively compact in E2. A map is holomorphic if it is differentiable and locally
bounded. As a result, holomorphic maps are continuous and their derivatives
are continuous linear maps.
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2.2. A map f : X → E2 is called a morphism if at each point a0 ∈ X, there is a
representation f = fj+fk on some open neighborhood V ⊂ X where fj : E → E2

is a continuous linear map and fk : V → E2 is a holomorphic map. In this case,
fk is called the holomorphic part and fj the linear part of f on V. A morphism
f is locally compact if every point a0 ∈ X has a representation f = fj + fk on
an open neighborhood V ⊂ X such that fk(V) is relatively compact in E2. Let
X, Y be open subsets of E,E2 respectively. A morphism f : X → E is special

(respectively special locally compact) if every point a0 ∈ X has a representation
f = fj + fk on a neighborhood V where fj is the identity map on E = E2 (and
respectively fk is locally compact on V).

Although it was stated in its introduction and was included in every proof, it
was an obvious but unforgivable hiccup that the definition [14, 2.4] included local
compactness as part of special morphisms but failed to mention it explicitly. Both
[15], [16] followed the same definition in this paper that local compactness is no

longer part of special morphisms in order to emphasize its role but unfortunately
both articles declared the notations of [14, 2.4].

A bijection f : X → Y is a bi-morphism if both f and f−1 are morphisms.
The following lemma fills in a small gap of the theory.

2.3. Lemma. Let f : X → X2 be a bi-morphism. If f is special or locally
compact or both jointly, then so is f−1.

Proof . Take any a0 ∈ X. Let f = fj + fk where fj , fk are the linear and
holomorphic parts on some open neighborhood V of a0 respectively. Take any
a ∈ V and write b = f(a). Firstly, suppose that f is special. We may assume
that fj is the identity map on E = E2. From f−1(b) = a = b− fkf

−1(b), f−1 is
also a holomorphic perturbation of the identity map, that is a special morphism.
Next, suppose that f is a locally compact morphism or a special locally compact
morphism. We may assume that fk(V) is contained in some compact subset S
of E2. For the first case, by [11, 2.8] we may assume that fj = Df(a0) is the
derivative of f at a0 which is a topological isomorphism from E onto E2 as a
result of the Chain Rule. For the second case we may assume that fj is the
identity map on E = E2. From

f−1(b) = a = f−1
j (b) − f−1

j fkf
−1(b),

the image of the holomorphic part −f−1
j fkf

−1 is contained in the compact set

−f−1
j (S). Therefore f−1 is also a locally compact morphism. �

2.4. Let M be a nonempty set. A patch on M modelled on E is a pair (V, ϕ)
where V is a subset of M and ϕ : V → E is an injection. Two patches
(V, ϕ), (W,ψ) on M are compatible if both ϕ(V ∩ W ), ψ(V ∩ W ) are open in
E and both coordinate transformations
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ψϕ−1 : ϕ(V ∩W ) → ψ(V ∩W )

and

ϕψ−1 : ψ(V ∩W ) → ϕ(V ∩W )

are special locally compact morphisms. A cover A of M by patches is called an
atlas if every two members in A are compatible. In this case, the family T of
subsets B of M such that for every (V, ϕ) ∈ A , the set ϕ(B ∩ V ) is open in E
is a topology on M called the manifold topology induced by A . A patch on M
is called a chart if it is compatible with every patch in A . To characterize T in
terms of charts, a subset B ofM is open iff for every m ∈ B, there is a chart (V, ϕ)
at m with V ⊂ B. A set M with an atlas A is called a holomorphic manifold

if its manifold topology is separated. Locally compact maps and morphisms
between manifolds are defined in terms of charts in the standard way.

2.5. Let M be a holomorphic manifold modelled on E. A (complex) local curve

at the base point m ∈M is a quadruple (p, α,P, m) where P is an open neighbor-
hood of α ∈ C and p : P → M is a holomorphic map satisfying p(α) = m. We
may simply write p, (p, α) or (p, α,m) if there is no ambiguity. Two local curves
(p, α,m), (q, β, n) are equivalent, denoted by p ∼ q, if m = n and for some chart
(V, ϕ) at m we have (ϕp)′(α) = (ϕq)′(β). The equivalent classes induced by the
equivalence relation ∼ are called tangents of M . The set TmM of all tangents
at m is called the tangent space at m. The tangent containing a local curve p is
denoted by [p]. The map ϕm from TmM into E given by ϕm([p]) = (ϕp)′(α) is a
bijection which turns TmM into a quasi-complete locally convex space topologi-
cally isomorphic to E independent of the choice of (V, ϕ). The rule of coordinate
transformation from a chart (V, ϕ) to a chart (W,ψ) for tangents at m is given
by ψm(p) = D(ψϕ−1)(a)ϕm(p) where a = ϕ(m).

2.6. Take any a0 ∈ ϕ(V ∩W ). We have ψϕ−1 = I +K on some neighborhood
V ⊂ ϕ(V ∩W ) of a0 where I is the identity map on E and K : ϕ(V ∩W ) → E
is a locally compact holomorphic map. It follows from the Generalized Hartogs’
Theorem that the map (a, x) → DK(a)x from V × E into E is a holomorphic
locally compact map. This completes the motivation for the definitions later
where Φ(a) corresponds to D(ψϕ−1)(a) and Ωϕ

m corresponds to ϕm.

3. Locally Compact Tags

3.1. Let E,E2, F, F2 be quasi-complete locally convex spaces and let L(F, F2) be
the set of all continuous linear maps from F into F2. We may write
L(F ) = L(F, F ). Suppose that X,X2 are open subsets of E,E2 respectively.
A map

G : X × F → X2 × F2
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is called a parameterized linear map if there exist a map g : X → X2 and a map
Φ : X → L(F, F2) such that G(a, x) =

(

g(a),Φ(a)x
)

for all (a, x) ∈ X × F . In
this case, g is called the parameter part and Φ the main part of G.

3.2. A parameterized linear map G : X × F → X2 × F2 is called a tag if the
parameter part g : X → X2 is a morphism and if for every a0 ∈ X, there exist
an open neighborhood V ⊂ X, a continuous linear map Φj : F → F2 and a
map Φk : V → L(F, F2) such that Φ(a) = Φj + Φk(a) for each a ∈ V and that
the map (a, x) → Φk(a)x from V × F into F2 is holomorphic. In this case,
Φj is called the linear part and Φk the holomorphic part of Φ on V. A tag is
isomorphic if it is bijective and its inverse map is also a tag. A tag G is locally

compact if (a, x) → Φk(a)x is a locally compact map on V × F . A tag G is
special if Φj is the identity map on F = F2. By a special locally compact tag
G, we mean Φ(a) = Φj + Φk(a) for each a in some neighborhood V of a0 where
Φj is the identity map on F = F2 and at the same time (a, x) → Φk(a)x is a
locally compact map on V × F . It would be nice if we could prove that the
separate occurrences imply the joint occurrence. It would be good if we could
have standard representations similar to [11, 2.7].

A linear map ξ : F → F2 is compact if there is a 0-neighborhood U of
F such that the set ξ(U) is relatively compact in F2. A family F of linear
maps from F into F2 is collectively compact if there exist a 0-neighborhood U

of F and a compact subset C of F2 such that ξ(U) ⊂ C for all ξ ∈ F. A
map Ψk : X → L(F, F2) is locally collectively compact if every a0 ∈ X has a
neighborhood V such that Ψk(V) is collectively compact.

3.3. Lemma. Let Ψk : X → L(F, F2) be a map. If Λ : X × F → F2

given by Λ(a, x) = Ψk(a)x is a locally compact holomorphic map, then Ψk is
locally collectively compact. Furthermore the map Ψk : X → Lk(F, F2) is locally
compact if the space Lk(F, F2) of all compact linear maps is equipped with the
compact-open topology.

Proof . Since Λ is locally compact at (a0, 0) ∈ X × F , there exist an open
neighborhood V of a0, an open 0-neighborhood U of F and a compact subset C
of F2 such that Λ( V × U ) ⊂ C. Hence the set Ψk(V) is collectively compact
because Ψk(V)(U) ⊂ C. In particular, we have Ψk(V) ⊂ Lk(F, F2). We need to
prove that Ψk(V) is a relatively compact subset of Lk(F, F2). Take any x ∈ F .
Then x ∈ θ U for some θ > 0. Hence Ψk(V)(x) ⊂ Ψk(V)(θ U) ⊂ θC. As a
subset of the compact set θ C, the set Ψk(V)(x) is relatively compact in F2.
Next take any 0-neighborhood W of F2. Then C ⊂ τ W for some τ > 0. Hence
Ψk(V)(U/τ) ⊂ W. Since U/τ is also a 0-neighborhood of F , the set Ψk(V) is
equicontinuous. By Ascoli’s Theorem, e.g. [7, p34], Ψk(V) is relatively compact
in Lk(F, F2) equipped with the compact-open topology. �
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3.4. Theorem. If G : X × F → X2 × F2 is an isomorphic tag, then:

(a) the parameter part g : X → X2 is a bi-morphism,

(b) each Φ(a) : F → F2 is a topological isomorphism for every a ∈ X,

(c) if G is special only or special locally compact, then so is G−1.

Proof . Let h be the parameter part and Ψ be the main part of the tag G−1.

Then we have G−1(b, y) =
(

h(b),Ψ(b)y
)

for every (b, y) ∈ X2 × F2. Clearly hg
and gh are the identity map on X,X2 respectively. For every a ∈ X, let b = g(a).
Both Ψ(b)Φ(a) and Φ(a)Ψ(b) are the identity map on F, F2 respectively. This
proves (a) and (b). In particular, g : X → X2 is a homeomorphism. Next,
suppose that G is a special tag. Take any b0 ∈ X2. Choose an open neighborhood
V ⊂ X of a0 = h(b0) such that Φ(a) = Φj + Φk(a) for all a ∈ V where Φj is the
identity map on F = F2 and Φk is the holomorphic part of Φ on V. There is an
open neighborhood W ⊂ g(V) of b0 such that Ψ(b) = Ψj + Ψk(b) for all b ∈ W

where Ψj is the linear part and Ψk is the holomorphic part of Ψ on W. Consider
any b ∈ W. Then a = h(b) ∈ V and Γk(b) = −Φk(a)Ψ(b) ∈ L(F2). Pick any
y0 ∈ F2. Then x0 = Ψ(b0)y0 ∈ F . There exist an open neighborhood V1 ⊂ h(W)
of a0, an open neighborhood U of x0 and a bounded subset B of F2 such that
Φk(a)x ∈ B for all (a, x) ∈ V1 × U. By continuity of the map (b, y) → Ψ(b)y,
there exist an open neighborhood W1 ⊂ g(V1) of b0 and an open neighborhood
S of y0 such that Ψ(b)y ∈ U for all (b, y) in W1 × S. Fix any (b, y) ∈ W1 × S.
Then we get a = h(b) ∈ V1 and x = Ψ(b)y ∈ U. It is simple to verify that

Γk(b)y = −Φk(a)x ∈ −B.

Therefore the map (b, y) → Γk(b)y is bounded on the open neighborhood W1×S

of (b0, y0). Also from y = Φ(a)x = x+ Φk(a)x, we have

Γk(b)y = −Φk(a)x = x− y = Ψ(b)y − y = Ψjy − y + Ψk(b)y .

Hence the bounded map (b, y) → Γk(b)y is separately holomorphic on W1 × S

and it is jointly holomorphic by the Generalized Hartogs’ Theorem. From
G−1(b, y) =

(

h(b),Γ(b)y
)

where Γ(b)y = y + Γk(b)y = x, the tag G−1 is also
special. Finally if G is special locally compact, replacement of B by a compact
subset of F2 completes the proof. �

3.5. Theorem. The composite of tags is a tag. If all factors are special, then
so is the composite. If one of them is locally compact, then so is the composite.

Proof . Let E,E2, F, F2, F3 be quasi-complete locally convex spaces and let
X,X2, X3 be open subsets of E,E2, E3 respectively. Suppose that

X × F
G

−−−→X2 × F2
H

−−−→X3 × F3
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are tags with the parameter parts g, h and the main parts Φ,Ψ respectively. For
every (a, x) in X × F , define b = g(a), q(a) = h(b), Γ(a) = Ψ(b)Φ(a) and also
define Q(a, x) =

(

q(a),Γ(a)x
)

. Clearly Q : X ×F → X3 ×F3 is a parameterized
linear map and the parameter part q = hg : X → X3 is a morphism. Take
any a0 ∈ X. Let Φj ,Ψj be the linear parts and let Φk,Ψk be the holomorphic
parts of Φ,Ψ on some open neighborhoods V ⊂ X, W ⊂ X2 of a0, b0 = g(a0)
respectively. By continuity of the morphism g, we may assume g(V) ⊂ W. For
all (a, x) ∈ V×F , we obtain Γ(a) = Γj +Γk(a) where Γj = ΨjΦj ∈ L(F, F3) and

Γk(a) = Ψk(b)Φj + ΨjΦk(a) + Ψk(b)Φk(a) ∈ L(F, F3).

For the last term as an example, the maps h1 : (a, x) → Φk(a)x and also
h2 : (b, y) → Ψk(b)y are holomorphic. Note that the continuous linear map
p : (a, x) → a is a morphism. Thus h2(gp, h1) : (a, x) → Ψk(b)Φk(a)x is holo-
morphic by [11, 2.9]. Hence the map (a, x) → Γk(a)x from V × F into F3 is
holomorphic. Since a0 ∈ X is arbitrary, Q is a tag. If both G,H are special,
then Γj = Ψj = Φj is the identity map on F = F2 = F3 and hence the composite
Q is also special. Finally if

(a, x) → Φk(a)x : V × F → F2

or (b, y) → Ψk(b)y : W × F2 → F3

is a locally compact map, then (a, x) → Γ(a)x : V × F → F3 is also a locally
compact map by [11, 2.9]. This completes the proof. �

3.6. Although it can be proved that products and direct sums of tags are tags,
yet the notation does not fit in what we need in the constructions later. So they
are embedded into the proofs of §§6.13, 8.4.

4. Vector Bundles

4.1. LetM be a holomorphic manifold modelled on E with an atlas A . Suppose
that π is a surjection from a set P onto M . The set Pm = π−1(m) is called the
fiber over m ∈M . For every subset V of M , we write

PV =
⋃

m∈V
Pm = π−1(V ).

The projections of E × F onto E,F are denoted by π1, π2 respectively.

4.2. A triple (V, ϕ, Tϕ) is called a bundle patch on M with fiber space F if (V, ϕ)
is a chart on M and Tϕ : PV → ϕ(V ) × F is a bijection such that ϕπ = π1Tϕ.
For every m ∈ V , the bijection Ωϕ

m = π2Tϕ
∣

∣Pm from Pm onto F is called the

fiber representation at m. It follows by definition that Tϕ(A) =
(

a,Ωϕ
m(A)

)

for
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all A ∈ Pm where a = ϕ(m). We shall turn each Pm into a vector space which is
topologically isomorphic to F .

F
Φ(a)

// F

Pm
Ωϕ
m

hh

Ωψ
m

66

inclusion
��

PV ∩W

π
��Tϕ

��

Tψ

��

V ∩W

ϕ

xxrrrrrrrrrr ψ

&&LLLLLLLLLL

ϕ(V ∩W )
ψϕ−1

// ψ(V ∩W )

ϕ(V ∩W ) × F

π1

AA

π2

OO

TψT
−1
ϕ // ψ(V ∩W ) × F

π1

]]

π2

OO

4.3. Let (V, ϕ, Tϕ), (W,ψ, Tψ) be two bundle patches on M . Then (V, ϕ, Tϕ) is
compatible with (W,ψ, Tψ) if the bundle transformation

TψT
−1
ϕ : ϕ(V ∩W ) × F → ψ(V ∩W ) × F

is a special locally compact isomorphic tag. In this case, let Φ be the main part
of TψT

−1
ϕ . Pick any a0 ∈ ϕ(V ). Choose an open neighborhood V of a0 such

that Φ(a) = Φj + Φk(a) for every a ∈ V ⊂ ϕ(V ∩W ) where Φj is the identity
map on F and Φk is the holomorphic part of Φ. Replacing V by a smaller one,
we may assume that ψϕ−1 = I + K on V where I is the identity map on E
and K : ϕ(V ∩ W ) → E is a locally compact holomorphic map. For every
(a, x) ∈ ϕ(V) × F , write A = T−1

ϕ (a, x) and (b, y) = Tψ(A). Then we have

(b, y) = TψT
−1
ϕ (a, x) =

(

ψϕ−1(a),Φ(a)x
)

= (a, x) +
(

Ka,Φk(a)x
)

. (a)

Hence TψT
−1
ϕ is a special locally compact morphism. For m = ϕ−1(a) in V ∩W ,

we obtain Ωψ
mA = y = Φ(a)x = Φ(a)Ωϕ

m(A), that is

Φ(a) = Ωψ
m(Ωϕ

m)−1 = Φj + Φk(a). (b)

If either V or W can be replaced by smaller ones, we may assume V = ϕ(V ∩W ).
To avoid too much repetition, we shall use the above notation involving m, a0,
V, A, a, x, b, y, Φ, Φj , Φk, Ωϕ

m, Ωψ
m, I and K whenever §4.3 is quoted.



Vector Bundles 119

4.4. A bundle patch (V, ϕ, Tϕ) contains m ∈ M or is at m if m ∈ V . A family
B of pairwise compatible bundle patches on M is called a bundle atlas for π if
B covers M . In this case, the triple (P, π,B) is called a vector bundle over M .
Note that we frequently construct B from A as in tangent bundles.

4.5. Let (P, π,B) be a vector bundle with fiber space F over a holomorphic
manifold M modelled on E. Then P is called the total space, M the base man-

ifold, E the base space and π the projection. A bundle patch (V, ϕ, Tϕ) is called
a bundle chart if it is compatible with every bundle patch in B. Clearly any
two bundle charts are compatible as a result of §§3.4,5. The family of all bundle
charts is called the bundle structure of P . If the projection is not specified ex-
plicitly, the same symbol π is assumed for different vector bundles. Because we
always work with bundle charts, the transitional role of B is rarely mentioned
except during the initial construction of new vector bundles. We also say that
the symbol P , or the pair (P, π), or the surjection π : P →M is a vector bundle.

4.6. Theorem. Every fiber Pm is a quasi-complete locally convex space such
that for every bundle chart (V, ϕ, Tϕ) at m, the fiber representation Ωϕ

m from Pm
onto F is a topological isomorphism.

Proof . Since Ωϕ
m is a bijection, the linear combinations in Pm are defined by

Ωϕ
m(αA+ βB) = αΩϕ

m(A) + βΩϕ
m(B) for all A,B ∈ Pm and α, β ∈ C.

Suppose that the topology of F is given by a family of seminorms x→ ‖x‖θ for
θ in an index set S. Then the seminorms A → ‖Ωϕ

mA‖θ for θ ∈ S also define
a locally convex topology on Pm. By definition, Pm becomes a quasi-complete
locally convex space such that Ωϕ

m is a topological isomorphism. For any bundle
chart (W,ψ, Tψ) at m, because Φ(a) in §4.3b is an algebraic automorphism on
F , we get

Ωψ
m(αA+ βB) = Φ(a)Ωϕ

m(αA+ βB)

= Φ(a) [αΩϕ
m(A) + βΩϕ

m(B)]

= αΦ(a)Ωϕ
m(A) + βΦ(a)Ωϕ

m(B)

= αΩψ
m(A) + βΩψ

m(B).

Therefore the linear combinations in Pm are independent of the choice of (V, ϕ, Tϕ).
Similarly since Φ(a) is a topological automorphism on F , both bundle charts
define the same locally convex topology on Pm. This completes the proof. �

4.7. Theorem. (a) The total space P is a holomorphic manifold modelled on
E × F under the atlas BP = {(PV , Tϕ) : (V, ϕ, Tϕ) ∈ B}.

(b) If (V, ϕ, Tϕ) is a bundle chart, then (PV , Tϕ) is a chart on P .
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(c) The projection π : P → M is a morphism [14, 4.1].

Proof . Let (V, ϕ, Tϕ) and (W,ψ, Tψ) be bundle charts. It suffices to verify
[14, 3.1, 2]. Clearly the map Tϕ is injective from PV into E × F . The set

Tϕ(PV ∩ PW ) = ϕ(V ∩W ) × F

is open in E × F . By §4.3a, TψT
−1
ϕ is a special locally compact morphism.

Therefore (PV , Tϕ), (PW , Tψ) are compatible patches of P by symmetry. Next,
take any A ∈ P . Choose m ∈ M with A ∈ Pm. Select (V, ϕ, Tϕ) ∈ B with
m ∈ V . Then A ∈ Pm ⊂ PV . Thus BP covers P . Therefore BP is an atlas on P .
Part (b) follows by definition. To show that the manifold topology is separated,
let A 6= B in P . If m = π(A) 6= π(B) = n, choose disjoint open subsets
G,H of M with m ∈ G and n ∈ H . Let (V, ϕ, Tϕ) and (W,ψ, Tψ) be bundle
charts containing m,n respectively. Then (V ∩ G,ϕ, Tϕ) and (W ∩ H,ψ, Tψ)
are bundle charts of P . So, (PV ∩G, Tϕ) and (PW∩H, Tψ) are disjoint charts on
P containing A,B respectively. On the other hand, if π(A) = π(B) = m, then
for every bundle chart (V, ϕ, Tϕ) at m, (PV , Tϕ) is a chart of P containing both
A,B. Hence A,B can also be separated [14, 3.12] by open sets in P . Therefore
the manifold topology of P is separated. Consequently P becomes a manifold
modelled on E × F . Finally, take any (a, x) in ϕ(V )× F and let A = T−1

ϕ (a, x).
Then we have

ϕπT−1
ϕ (a, x) = ϕπ(A) = ϕ(m) = a.

Since ϕπT−1
ϕ is the projection onto the first coordinate, it is also a morphism.

As a result, π is also a morphism. �

4.8. Consider any point A in the manifold P and any bundle chart (V, ϕ, Tϕ)
at m = π(A). For the chart (PV , Tϕ) at A on the manifold P , the fiber represen-
tation denoted by TϕA = (Tϕ)A is a topological isomorphism from the tangent
space TAP onto the model space E × F .

4.9. Theorem. The projection π : P → M is a submersion [15, 3.2]. More
precisely for every A ∈ P , the differential dπ(A) : TAP → TmM is a surjection
and the kernel of dπ(A) splits in TAP .

Proof . As the projection ϕπT−1
ϕ from E × F onto E, it is surjective and its

kernel {0} × F splits in E × F . The result follows by translation through the
fiber representations ϕm and TϕA. �

4.10. Let B,C be bundle atlases with fiber space F for the same surjection
π from a set P onto an holomorphic manifold M modelled on E. The bundle
structures of B,C are denoted by SB, SC respectively. Clearly every bundle
patch is a bundle chart, that is B ⊂ SB. Every bundle structure SB is a bundle
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atlas. If B ⊂ C , then SC ⊂ SB. In particular, SB is maximal. The bundle
structure of SB is SB, that is SSB = SB.

5. Vector Bundle Maps

5.1. Let π : P →M , λ : Q→ N be vector bundles over holomorphic manifolds
M,N modelled on quasi-complete locally convex spaces EM , EN with fiber spaces
FP , FQ respectively. Consider a pair of maps f : M → N and Tf : P → Q.
Clearly λTf = fπ iff Tf is fiber preserving, that is Tf (Pm) ⊂ Qn for every m ∈M
where n = f(m). The restriction of Tf to Pm is denoted by Tmf .

PV

π

��

Tϕ

��0
00

00
00

00
00

00
00

00
00

00
00

00

Tf // QW

Tψ

��






































λ

��

Pm

Ωϕm
��

eeKKKKKKKKKKK
Tmf // Qn

Ωψn
��

88rrrrrrrrrrr

FP
Φf (a) // FQ

ϕ(V ) × FP

π2

OO

π1

��

TψTfT
−1
ϕ // ψ(W ) × FQ

λ2

OO

λ1

��
ϕ(V )

ψfϕ−1

// ψ(W )

V

ϕ
99sssssssssss f // W

ψ
ffLLLLLLLLLLL

5.2. A fiber preserving map Tf : P → Q over a morphism f : M → N is called
a vector bundle map if for every m ∈ M , there exist a bundle chart (V, ϕ, Tϕ)
at m and a bundle chart (W,ψ, Tψ) at n = f(m) such that f(V ) ⊂ W and the
bundle representation

TψTfT
−1
ϕ : ϕ(V ) × FP → ψ(W ) × FQ

is a tag. Naturally a vector bundle map Tf is locally compact if every point
m ∈M has a locally compact bundle representation TψTfT

−1
ϕ . Similarly special

vector bundle maps and special locally compact vector bundle maps are defined
in terms of their bundle representations. A vector bundle map Tf is isomorphic

if f is a diffeomorphism [14, 4.1], Tf is bijective and T−1
f is a vector bundle map

over f−1.
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5.3. Lemma. Let Tf : P → Q be a vector bundle map over a morphism
f : M → N . For every m ∈ M and every bundle chart (W,ψ, Tψ) at n = f(m),
there exists a bundle chart (V, ϕ, Tϕ) at m with f(V ) ⊂ W such that the map
TψTfT

−1
ϕ is a tag. Furthermore if Tf is a locally compact bundle map, then

TψTfT
−1
ϕ is also a locally compact tag.

Proof . Let (H, h, Th) and (Q, q, Tq) be bundle charts of P,Q atm,n respectively
with f(H) ⊂ Q such that the bundle representation

TqTfT
−1
h : h(H) × FP → q(Q) × FQ

is a tag. Since (Q, q, Tq) and (W,ψ, Tψ) are compatible, the bundle
transformation

TψT
−1
q : q(Q ∩W ) × FQ → ψ(Q ∩W ) × FQ

is also a tag. Then V = H ∩ f−1(Q ∩ W ) is an open neighborhood of m.
Let ϕ = h|V and Tϕ = Th|PV . Then (V, ϕ, Tϕ) is a bundle chart of P with
f(V ) ⊂ W . Also the composite TψTfT

−1
ϕ = (TψT

−1
q ) (TqTfT

−1
ϕ ) of tags is a tag.

The last statement follows immediately from §3.5. �

5.4. Theorem. Composites of vector bundle maps are vector bundle maps.
Furthermore if all factors are special, then so is the composite. If one of them is
locally compact, then so is the composite.

Proof . It follows immediately from the last lemma and §3.5. �

5.5. Theorem. Let Tf : P → Q be a vector bundle map over a morphism
f : M → N . Then:

(a) Tf is a morphism from the manifold P into the manifold Q.

(b) Tmf : Pm → Qn is a continuous linear map where n = f(m).

Proof . Take any A ∈ P . Let m0 = π(A), n0 = f(m0) and B = Tf (A). Let
(V, ϕ, Tϕ) be a bundle chart at m0 and (W,ψ, Tψ) a bundle chart at n0 = f(m0)
with f(V ) ⊂W such that TψTfT

−1
ϕ is a tag. Let Φ be the main part of TψTfT

−1
ϕ .

Replacing V by a smaller one, we may assume that Φj is the linear part of Φ
and Φk is the holomorphic part of Φ on V . Further replacement allows us to
assume that ψfϕ−1 = fj + fk is the standard representation [11, 2.7]. Then for
every m ∈ V , the linear part fj = D(ψfϕ−1)(a) : EM → EN is continuous linear
where a = ϕ(m) and the nonlinear part fk : ϕ(V ) → EN is holomorphic.

(a) Observe that (PV , Tϕ) and (QW , Tψ) are charts on the manifolds P,Q respec-
tively. Clearly

(a, x) →
(

fj(a),Φj(x)
)

: EM × FP → EN × FQ
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is a continuous linear map and (a, x) →
(

fk(a),Φk(a)x
)

is holomorphic on ϕ(V )×
FP . Now

TψTfT
−1
ϕ (a, x) = (ψfϕ−1(a),Φ(a)x) =

(

fj(a),Φj(x)
)

+
(

fk(a),Φk(a)x
)

shows that Tf is a morphism.

(b) Take any A ∈ Pm. For x = Ωϕ
m(A), we have

Ωψ
nTmf (A) = λ2TψTfT

−1
ϕ (a, x)

= λ2

(

ψfϕ−1(a),Φ(a)x
)

= Φ(a)x = Φ(a)Ωϕ
m(A).

Therefore Tmf = (Ωψ
n)−1Φ(a)Ωϕ

m is a continuous linear map. �

6. Simple Constructions

6.1. In this section, we shall construct restrictions, subbundles, quotient
bundles. We shall study kernels, ranges of vector bundle maps. Finally we
construct (direct) products of vector bundles.

6.2. Let P be a vector bundle with fiber space F over a holomorphic manifold
M modelled on E under the projection π : P → M . Let N be a submanifold
[14, 8.2] of M modelled on a splitting subspace E of E. For Q = π−1(N), the map
τ = π|Q is a surjection from Q onto N . A bundle chart (V, ϕ, Tϕ) of P is adapted

for N if (V, ϕ) is an adapted chart on M for N , that is ϕ(V ∩ N) = ϕ(V ) ∩ E.
The set Q is called the restriction of P to N if N is covered by a family B of
adapted bundle charts. Write

QV = τ−1(V ), VN = V ∩N,ϕN = ϕ|VN , Sϕ = Tϕ|QV

and
B|N = { (VN , ϕN , Sϕ) : (V, ϕ, Tϕ) ∈ B}.

6.3. Theorem. The restriction Q of P is a vector bundle over N with fiber
space F under the bundle atlas B|N . Furthermore Q is a submanifold of P .

Proof . Firstly, Sϕ = Tϕ|QV is a bijection from QV = PV ∩N onto

ϕN(VN) × F = ϕ(V ∩N) × F

satisfying ϕNτ = ϕπ = π1Tϕ = τ1Sϕ on QV . So, (VN , ϕN , Sϕ) is a bundle patch
on N . Next, take any (W,ψ, Tψ) in B and use the notation of §4.3. For every
(a, x) ∈ ϕN(V ∩W ) × F , we have

SψS
−1
ϕ (a, x) = TψT

−1
ϕ (a, x) = (ψϕ−1(a),Φ(a)x).
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Clearly the restriction of (a, x) → Φk(a)x to ϕN(V ∩ W ) × F is locally com-
pact holomorphic. By symmetry, (VN , ϕN , Sϕ) and (WN , ψN , Sψ) are compatible.
Therefore B|N is a bundle atlas on Q. Next, let H = E ⊖ E be any topological
complement. Then E × F splits in E × F because of

E × F ≃ ( E ⊕ H) × F ≃ (E × F ) ⊕ (H × F ).

Since

Tϕ(PV ∩Q) = Tϕ(PV ∩N ) = ϕ(V ∩N) × F = [ϕ(V ) ∩ E] × F

= [ϕ(V ) × F ] ∩ (E × F ) = Tϕ(PV ) ∩ (E × F ),

Q is a (E × F )-submanifold of P . �

6.4. Restrictions reduce the size of the index set from M to N while subbundles
reduce the size of the fiber spaces. Let G be a splitting subspace of F , R a
subset of P and λ = π|R the restriction. A bundle chart (V, ϕ, Tϕ) of P is called
a subbundle chart for R with the fiber subspace G if Tϕ(PV ∩ R) = ϕ(V ) × G.
A family of subbundle charts for R is a subbundle atlas on M of P for R if it
covers M . Both the set R and the map λ are called a subbundle of P if there is
a subbundle atlas on M for R.

PV
Tϕ

−−−−−−−→ ϕ(V ) × F






y

π







y

π1

V
ϕ

−−−−−−−→ ϕ(V )
x







λ

x







λ1

RV

Sϕ=Tϕ|RV
−−−−−−−→ ϕ(V ) × G

6.5. Theorem. Let R be a subbundle of P with a subbundle atlas B on M
and with a fiber subspace G. Write RV = λ−1(V ) = PV ∩ R, Sϕ = Tϕ|RV and
BR = {(V, ϕ, Sϕ) : (V, ϕ, Tϕ) ∈ B}. Then:

(a) R is a vector bundle with fiber space G and bundle atlas BR.

(b) Ωϕ
m|Rm is a topological isomorphism from the vector subspace Rm of Pm

onto G.

(c) If (V, ϕ, Tϕ) and (W,ψ, Tψ) are subbundle charts for R in B, then
Φ(a) in §4.3b is a topological automorphism on G. Furthermore we have
Φk(a)(G) ⊂ G and the map

(a, y) → Φk(a)y : ϕ(V ∩W ) × G → G

is a locally compact holomorphic map.
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(d) R is a submanifold of P .

Proof . Since B covers M , the restriction λ is surjective. Let (V, ϕ, Tϕ),
(W,ψ, Tψ) be subbundle charts in B. We use the notation of §4.3. By
definition, Sϕ is a bijection from RV onto ϕ(V ) × G satisfying λ1Sϕ = ϕλ.
Thus (V, ϕ, Sϕ) is a bundle patch for R. Next, we want to prove that the map

SψS
−1
ϕ : Sϕ(RV ∩ RW ) = ϕ(V ∩W ) × G → Sψ(RV ∩ RW )

is a special locally compact tag. Take any (a, x) in Sϕ(RV ∩ RW ) and write
(b, y) = SψS

−1
ϕ (a, x). Then y = Φ(a)x ∈ G. Hence we have

Φk(a)x = Φ(a)x− x ∈ G.

Since the map (c, z) → Φk(c)z from ϕ(V ∩W ) × F into F is locally compact,
there exist an open neighborhood Y ⊂ ϕ(V ) of a, an open neighborhood X0

of x and a compact subset C0 of F such that Φk(Y )X0 ⊂ C0. Now the set
C = C0 ∩ G is compact in the close subspace G of F and X = X0 ∩ G is
an open neighborhood of x ∈ G. The map (c, z) → Φk(c)z from Y × X into
C = C0 ∩ G is locally compact holomorphic. This proves (c). By symmetry,
(V, ϕ, Sϕ), (W,ψ, Sψ) are compatible bundle patches of R. Therefore R is a
vector bundle with fiber space G and bundle atlas BR. Part (b) follows from
Ωϕ
mRm = G and Φ(a) = Ωψ

m(Ωϕ
m)−1. As a result of

Tϕ(PV ∩ R) = ϕ(V ) × G

= [ϕ(V ) × F ] ∩ (E × G)

= Tϕ(PV ) ∩ (E × G)

R is an (E × G)-submanifold of P since E × G splits in E × F . �

6.6. Let G be a splitting subspace of F . As a closed subspace of F , any topo-
logical complement H = F ⊖ G is a quasi-complete locally convex space. Every
x ∈ F has a unique decomposition x = y + z for some y ∈ G and z ∈ H. The
projection τ : F → H is given by τ(x) = z. For the quotient map δ : F → F/G,
the restriction δ|H is a topological isomorphism. Hence the quotient space F/G
is also a quasi-complete locally convex space. For β = (δ|H)−1 : F/G → H, we
have βδ = τ . Identification of the equivalent class δ(x) in F/G with the vector
τ(x) in H means δ(x) = τ(x) without writing the symbol β.

6.7. Let R be a subbundle of P on M with fiber subspace G. For each m ∈M ,
Rm is a vector subspace of Pm. Let ξm be the quotient map from Pm on to the
quotient space Qm = Pm/Rm. Then Q =

⋃

m∈M Qm is a disjoint union. Define
the projection µ : Q → M by µ(Qm) = m and the quotient map ξ : P → Q by
ξ|Pm = ξm for all m ∈M . Clearly we have π = µξ.
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6.8. Let B be a subbundle atlas of P for R on M . Take any (V, ϕ, Tϕ)
in B and B ∈ QV = µ−1(V ). Then B ∈ Qm for some m ∈ V . Choose A ∈ Pm
satisfying ξ(A) = B. Write

Tϕ(A) = (a, x) ∈ ϕ(V ) × F.

Define Sϕ : QV → ϕ(V ) × F/G by

Sϕ(B) =
(

a, δ(x)
)

.

As usual, the projection of ϕ(V ) × F/G onto the first coordinate ϕ(V ) is also
denoted by µ1 and the projection to the second coordinate is denoted by µ2. The
quotient fiber representation is the map

∆ϕ
m = µ2Sϕ|Qm : Qm → F/G.

Both µ and Q are called the quotient bundle of P over R. The family

B/R = {(V, ϕ, Sϕ) : (V, ϕ, Tϕ) ∈ B}

is called the quotient bundle atlas. We may write P/R instead of Q.

Pm //

ξm
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PV

ξ

��

π

��@
@@

@@
@@

@

Tϕ // ϕ(V ) × F

π1
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π2 // F

δ
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τ

��+
+
+
+
++

+
+
++

+
+
++

+
++

+
+
++

+
+
++

V
ϕ // ϕ(V )

QV

µ
??~~~~~~~~ Sϕ // ϕ(V ) × F/G

µ1

OO

µ2

&&MMMMMMMMMM

Qm

==|||||||| ∆ϕ
m // F/G

β // H

6.9. Theorem. The map µ : Q → M is a vector bundle under the quotient
bundle atlas. Furthermore the quotient map ξ : P → Q is a vector bundle map
over the identity map on M . Actually ξ is a submersion.

Proof . To show that Sϕ(B) is well-defined, suppose B = ξ(A2) for some
A2 ∈ P and Tϕ(A2) = (b, y). From π(A2) = µξ(A2) = µ(B) = m, we have
a = ϕ(m) = b. Next, since

ξ(A− A2) = ξ(A) − ξ(A2) = B − B = 0 ,

we get A−A2 ∈ Rm = (Ωϕ
m)−1(G). Therefore we obtain

x− y = Ωϕ
m(A) − Ωϕ

m(A2) = Ωϕ
m(A−A2) ∈ G ,
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or δ(x) = δ(y), that is (a, δ(x)) = (b, δ(y)). Consequently Sϕ(B) is indepen-
dent of the choice of A and it is well-defined. Clearly, Sϕ is surjective onto
ϕ(V ) × F/G. To prove that Sϕ is injective, assume Sϕ(B) = Sϕ(B2), that
is, (a, δ(x)) = (a2, δ(x2)). Choose m ∈ V so that ϕ(m) = a = a2. Now for
δ(x) = δ(x2), we have

Ωϕ
m(A−A2) = Ωϕ

m(A) − Ωϕ
m(A2) = x− x2 ∈ G ,

or Tϕ(A− A2) ∈ ϕ(V ) × G = Tϕ(PV ∩R),

that is A−A2 ∈ Pm ∩R = Rm. Hence B = ξ(A) = ξ(A2) = B2. Therefore Sϕ is
bijective. Next, pick any m ∈ V and B ∈ Qm. Write B = ξ(A) for A ∈ Pm and
Tϕ(A) = (a, x). Then

µ1Sϕ(B) = µ1(a, δ(x)) = a = ϕ[µ(B)] .

Hence µ1Sϕ = ϕµ. Therefore (V, ϕ, Sϕ) is a bundle patch of Q. Next take any
(V, ϕ, Tϕ), (W,ψ, Tψ) ∈ B. With the notation of §4.3, we have

TψT
−1
ϕ (a, x) =

(

ψϕ−1(a),Φ(a)x
)

and Φ(a) = Φj + Φk(a). Take any (a, x) ∈ ϕ(V ∩W ) × F/G. Write x = δ(x)
for some x ∈ F . Define θk(a)(x) = δ[Φk(a)x]. Suppose x = δ(y) for some other
y ∈ F . Then we obtain

δ(x− y) = δ(x) − δ(y) = x − x = 0,

that is x− y ∈ G. Hence Φk(a)(x− y) ∈ G and

δ[Φk(a)x] − δ[Φk(a)y] = δΦk(a)(x− y) = 0 .

Thus θk(a)x is independent of the choice of x ∈ δ−1(x). Since δ : F → F/G is
continuous linear, (a, x) → δ[Φk(a)x] is also a holomorphic locally compact map.
In particular, the map a→ θk(a)(x) = δ[Φk(a)x] is differentiable. The continuous
linear map x → θk(a)(x) is also differentiable. Because (a, x) → θk(a)(x) is a
locally compact map, it is holomorphic by the Generalized Hartogs’ Theorem.
Clearly, θ(a)(x) = x + θk(a)(x). Hence the bundle transformation

SψS
−1
ϕ : Sϕ(QV ∩QW ) → Sψ(QV ∩QW )

is a special locally compact tag. The bundle patches (V, ϕ, Sϕ) and (W,ψ, Sψ)
are compatible by symmetry. Therefore µ : Q → M is a vector bundle. From
SϕξT

−1
ϕ (a, x) =

(

a, δ(x)
)

, the quotient map ξ : P → Q is a vector bundle map
over the identity on M . Finally from

∆ϕ
mξ(Ω

ϕ
m)−1(x) = ∆ϕ

mξ(A) = ∆ϕ
m(B) = δ(x),
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the quotient map

∆ϕ
m[dξ(A)](Ωϕ

m)−1 = ∆ϕ
mξ(Ω

ϕ
m)−1 = δ

is submersive and so is the differential dξ(A). Therefore the quotient map ξ is a
submersion. �

6.10. Let π : P → M , λ : Q → M be vector bundles over the same base space
M with fiber spaces F,G respectively. Suppose that S : P → Q is a vector
bundle map over the identity map on M . For each m ∈ M , the restriction
Sm : Pm → Qm is a continuous linear map. The kernel of S is defined by the
disjoint union

ker(S) =
⋃

m∈M ker(Sm) ⊂ P

and the range by

ran(S) =
⋃

m∈M ran(Sm) ⊂ Q.

We identify F1 ⊕ F2 ≃ F1 × F2 in the following theorem as in [11, 9.1].

6.11. Theorem. Both ker(S), ran(S) are subbundles of P,Q respectively
iff for every m ∈ M there exist a bundle chart (V, ϕ, Tϕ) of P at m, a bundle
chart (W,ψ, Tψ) of Q at m, split subspaces F1 ⊕ F2 = F , G1 ⊕ G2 = G and
topological isomorphisms Λ(a) : F1 → G1 for each a ∈ ϕ(V ) such that V ⊂ W ,
Λ(a) = Λj + Λk(a) and

TψST
−1
ϕ (a, x1, x2) = (ψϕ−1(a),Λ(a)x1, 0) (a)

for every x1 ∈ F1 and x2 ∈ F2 where Λj and Λk(a) belong to L(F1, G1) and
the map (a, x1) → Λk(a)x1 is holomorphic on ϕ(V ) × F1. Furthermore if S is
holomorphic, then we may assume that the map (a, x1) → Λ(a)x1 is holomorphic
on ϕ(V ) × F1. A similar result holds for locally compact holomorphic map S.

Proof . Suppose that ker(S), ran(S) are subbundles of P,Q with fiber
subspaces F2, G1 of F,G respectively. Take any m ∈ M . There are
subbundle charts (V, ϕ, Tϕ), (W,ψ, Tψ) of P,Q at m respectively so that

Tϕ[PV ∩ ker(S)] = ϕ(V ) × F2

and Tψ[QW ∩ ran(S)] = ψ(W ) ×G1 .

After replacing V by a smaller one, we may assume that V ⊂ W and that the
bundle representation

TψST
−1
ϕ : ϕ(V ) × F → ψ(W ) ×G

is given by TψST
−1
ϕ (a, x) =

(

ψϕ−1(a),Φ(a)x
)

where Φ(a) = Φj+Φk(a), Φj ,Φk(a)
belong to L(F,G) and the map (a, x) → Φk(a)x is holomorphic. Suppose that
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F1 = F ⊖ F2 and G2 = G ⊖ G1 are topological complements. Let σ : F1 → F
denote the natural injection and δ : G → G1 denote the projection. Then all
Λj = δΦjσ, Λk(a) = δΦk(a)σ, Λ(a) = Λj + Λk(a) belong to L(F1, G1). Since
(a, x1) → Λk(a)x1 is locally bounded and differentiable separately in a ∈ ϕ(V )
and x1 ∈ F1, it is holomorphic jointly in (a, x1). For every m ∈ V ∩W , we have

Ωϕ
m[ker(Sm)] = π2Tϕ[Pm ∩ ker(S)] = F2

and Ωψ
m[ran(Sm)] = Λ2Tψ[Qm ∩ ran(S)] = G1 .

For every A ∈ Pm,

A ∈ ker(Sm) iff Ωψ
mSm(A) = 0 iff Φ(a)Ωϕ

m(A) = 0.

Hence ker[Φ(a)] = Ωϕ
m[ker(Sm)] = F2. Similarly we have

ran[Φ(a)] = Ωψ
m[ran(Sm)] = G1.

Therefore

Λ(a) : F1 ≃ F/ker[Φ(a)] → ran[Φ(a)] = G1

is a topological isomorphism and

Φ(a)(x1, x2) = Λ(a)x1

for all (x1, x2) in F = F1×F2. Consequently, we have obtained the required equa-
tion (a). Furthermore if S is (locally compact) holomorphic, then we may choose
Φj = 0 and then (a, x1) → Φ(a)x1 = Φk(a)x1 is also (locally compact) holomor-
phic. Obviously the given condition is also sufficient for ker(S), ran(S) to be
subbundles. �

6.12. Let P,Q be vector bundles under bundle atlases A ,B with fiber spaces
FP , FQ over holomorphic manifoldsM,N modelled on EM , EN respectively where
EM , EN , FP , FQ are quasi-complete locally convex spaces. To construct the prod-
uct bundle over the product manifold M×N [14, §7], consider the disjoint union

P ×Q =
⋃

(m,n)∈M×N

Pm ×Qn .

The projections from P,Q and P × Q onto M,N and M × N are denoted by
π, λ, τ respectively. Let (V, ϕ, Tϕ) in A and (W,ψ, Tψ) in B be bundle charts of
P,Q respectively. Define Ωϕψ

mn = Ωϕ
m × Ωψ

n and

Tϕψ : (P ×Q)V×W → (ϕ× ψ)(V ×W ) × (FP × FQ)

by Tϕψ(A) =
(

(ϕ× ψ)(m,n),Ωϕψ
mn(A)

)

for each A ∈ (P ×Q)V×W where (m,n) = τ(A) ∈ V ×W .
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6.13. Theorem. P ×Q is a vector bundle with fiber space FP × FQ over the
product manifold M ×N under the product bundle atlas

A × B = {(V ×W,ϕ× ψ, Tϕψ) : (V, ϕ, Tϕ) ∈ A , (W,ψ, Tψ) ∈ B} .

Naturally the projection τ : P ×Q→ M ×N is called the product vector bundle

of P,Q.

Proof . Clearly A × B covers M ×N . Observe that the linear map

ξ : EM × FP ×EN × FQ → EM ×EN × FP × FQ

given by ξ(a, x, b, y) = (a, b, x, y) is a topological isomorphism. For each
A ∈ (P × Q)V×W , we have A = (AP , AQ) for some AP ∈ Pm and AQ ∈ Qn

where m ∈ V and n ∈ W . Write a = ϕ(m), b = ψ(n), x = Ωϕ
m(AP ) and

y = Ωψ
n(AQ). From

Tϕψ(A) = (a, b, x, y) = ξ(a, x, b, y)

= ξ
(

Tϕ(A
P ), Tψ(AQ)

)

= ξ(Tϕ × Tψ)(A) ,

the map

Tϕψ = ξ(Tϕ × Tψ) : (P ×Q)V×W → (ϕ× ψ)(V ×W ) × (FP × FQ)

is bijective. Next, let π1, λ1, τ1 be the projections of EM × FP , EN × FQ and
(EM × EN ) × (FP × FQ) onto the first coordinates EM , EN and EM × EN
respectively. By

τ1Tϕψ(A) = (a, b) = (ϕ× ψ)(πAP , λAQ) = (ϕ× ψ)τ(A) ,

we get τ1Tϕψ = (ϕ× ψ)τ . Therefore Tϕψ is a bundle patch on M ×N . To study
the bundle transformations, let (V2, ϕ2, Tϕ2

), (W2, ψ2, Tψ2
) be bundle charts of

P,Q in A ,B respectively. Then both

Tϕ2
T−1
ϕ : ϕ(V ∩ V2) × FP → ϕ2(V ∩ V2) × FP

and Tψ2
T−1
ψ : ψ(W ∩W2) × FQ → ψ2(W ∩W2) × FQ

are special locally compact tags. Let Φ,Ψ be the holomorphic parts of Tϕ2
T−1
ϕ ,

Tψ2
T−1
ψ respectively. Pick any a ∈ ϕ(V ∩ V2), b ∈ ψ(W ∩ W2), x ∈ FP and

y ∈ FQ. Define

Λ(a, b)(x, y) =
(

Φ(a)(x),Ψ(b)(y)
)

.

Choose m ∈ V ∩ V2 with a = ϕ(m) and n ∈W ∩W2 with b = ψ(n). Since

Ωϕψ
mn = Ωϕ

m × Ωψ
n : Pm ×Qn → FP × FQ
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is an isomorphism, there exists A = (AP , AQ) ∈ Pm × Qn such that
Ωϕψ
mn(A) = (x, y), or equivalently x = Ωϕ

m(AP ) and y = Ωψ
n(AQ). Clearly

(ϕ2 × ψ2)(ϕ× ψ)−1 is a special morphism from the following calculation:

Tϕ2ψ2
T−1
ϕψ (a, b, x, y)

= Tϕ2ψ2
A

=
(

(ϕ2 × ψ2)(m,n),Ωϕ2ψ2

mn (A)
)

=
(

(ϕ2 × ψ2)(ϕ× ψ)−1(a, b), (Ωϕ2

m × Ωψ2

n )(Ωϕ
m × Ωψ

n)−1(a, b)(x, y)
)

=
(

(ϕ2ϕ
−1(a), ψ2ψ

−1(b),Ωϕ2

m (Ωϕ
m)−1(a)x,Ωψ2

n (Ωψ
n)−1(b)y

)

=
(

(ϕ2ϕ
−1(a), ψ2ψ

−1(b),Φ(a)(x),Ψ(b)(y)
)

=
(

(ϕ2 × ψ2)(ϕ× ψ)−1(a, b),Λ(a, b)(x, y)
)

.

Next, take any a0 ∈ ϕ(V ∩ V2) and b0 ∈ ψ(W ∩W2). Select open neighborhoods
V ⊂ ϕ(V ∩V2), W ⊂ ψ(W∩W2) of a0, b0 respectively such that Φ(a) = Φj+Φk(a)
and Ψ(b) = Ψj + Ψk(b) for all a ∈ V, b ∈ W where Φj,Ψj are the identity maps
on FP , FQ and Φk,Ψk are the holomorphic parts of Φ,Ψ on V,W respectively.
Define

Λj(x, y) = Φj(x) + Ψj(y) and Λk(a, b)(x, y) = Φk(a)(x) + Ψk(b)(y)

for all a ∈ V, b ∈ W, x ∈ FP and y ∈ FQ. Clearly Λj is the identity map on
FP × FQ. The map

(a, b, x, y) → Φk(a)(x) + Ψk(b)(y)

is locally compact and separately differentiable. By the Generalized Hartogs’
Theorem, this map is holomorphic. Since Λ(a, b) = Λj + Λ(a, b), the bundle
transformation Tϕ2ψ2

T−1
ϕψ is a special locally compact tag on

(ϕ× ψ)[(V ×W ) × (V2 ×W2)] × (FP × FQ) .

By symmetry, Tϕ2ψ2
, Tϕψ are compatible. Consequently, P×Q is a vector bundle

over M ×N with the bundle atlas A × B. �

6.14. It is easy to show that the projections from P ×Q onto P , Q are vector
bundle maps.

7. Common Basic Atlas for Several Vector Bundles

7.1. Let P be a vector bundle with fiber space F over a holomorphic manifold
M modelled on E. For every bundle chart (V, ϕ, Tϕ) of P , the pair (V, ϕ) is
called the basic chart of (V, ϕ, Tϕ). An atlas A on M is basic for P if every chart
in A is a basic chart of some bundle chart of P .
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7.2. Lemma. For every chart (U, ξ) at m ∈ M , there is a bundle chart
(V, ϕ, Tϕ) of P at m such that V ⊂ U and ϕ = ξ|V .

Proof . Take any bundle chart (R, θ, Tθ) at m. Let V = U ∩ R and ϕ = ξ|V .

Define Tϕ : PV → ϕ(V )×F by Tϕ(A) =
(

ϕ(v),Ωθ
vA

)

where v = π(A) ∈ V . Since

Ωθ
v : Pv → F is an isomorphism, Tϕ is a bijection. By

π1Tϕ(A) = ϕ(v) = ϕπ(A),

the map Tϕ is a bundle patch at m. Next let (W,ψ, Tψ) be a bundle chart of P .
Since (R, θ, Tθ) and (W,ψ, Tψ) are compatible, the bundle transformation TψT

−1
θ

is a special locally compact tag. Let Φ be the main part of TψT
−1
θ , that is

TψT
−1
θ (c, z) =

(

ψθ−1(c),Φ(c)z
)

, ∀ (c, z) ∈ θ(U ∩W ) × F .

To study TψT
−1
ϕ , take any (a, x) ∈ ϕ(V ∩W )×F . Let (b, y) = TψT

−1
ϕ (a, x). Then

we have v = ϕ−1(a) ∈ V ∩W and A = T−1
ϕ (a, x) ∈ PV ∩W . Thus a = ϕ(v) = ξ(v)

and b = ψπ(A) = ψ(v), that is b = ψξ−1(a). Next from y = π2Tψ(A) = Ωψ
v (A)

and x = π2Tϕ(A) = Ωθ
v(A), we obtain

y = Ωψ
v (Ωθ

v)
−1x = Φ(θv)x = Φ(θϕ−1)(a)x

by §4.3. Hence TψT
−1
ϕ (a, x) =

(

ψξ−1(a),Φ(θϕ−1)(a)x
)

. Consequently TψT
−1
ϕ is

a special locally compact tag by §3.5. Similarly, TϕT
−1
ψ is also a special locally

compact tag. Therefore (V, ϕ, Tf) and (W,ψ, Tψ) are compatible. As a result,
(V, ϕ, Tf) is a bundle chart of P at m. �

7.3. Theorem. If P 1, P 2, · · · , P r are vector bundles over the same holomor-
phic manifold M , then there is an atlas on M that is basic for all P 1, P 2, . . . , P r.

Proof . It suffices to prove the case when r = 2. Let E,FP , FQ be quasi-
complete locally convex spaces and let P,Q be vector bundles over M modelled
on E with fiber spaces FP , FQ respectively. The projections of P,Q onto M are
denoted by the same symbol π. Let A be the family of charts (V, ϕ) on M such
that there are bundle charts (V, ϕ, T Pϕ ), (V, ϕ, TQϕ ) of P,Q respectively. Take any

m ∈M . There is a bundle chart (W,ψ, TQψ ) of Q at m. There is a bundle chart

(V, ϕ, T Pϕ ) of P at m such that V ⊂W and ϕ = ψ|V . Clearly for the restriction

TQϕ = TQψ |QV , the triple (V, ϕ, TQϕ ) is also a bundle chart of Q at m. Therefore
A covers M . Consequently it is an atlas on M . �

7.4. Let E,F,G be quasi-complete locally convex spaces. Suppose that
π : P → M is a vector bundle with fiber space F over a holomorphic mani-
fold M modelled on E. Assume that λ : Q → P is a vector bundle with fiber
space G over the holomorphic manifold P modelled on E ×F according to §4.7.
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It would be nice to know the conditions for the composite πλ to be a vector
bundle on M with fiber space F ×G.

8. Direct Sums and Spaces of Compact Linear Maps

8.1. Let P,Q be vector bundles over the same manifold M modelled on E
with fiber spaces FP , FQ respectively where E,FP , FQ are quasi-complete locally
convex spaces. The projections of P,Q onto M are denoted by the same symbol
π. Let A be an atlas on M that is basic to both P,Q. By definition, for each
(V, ϕ) ∈ A , there are bundle charts (V, ϕ, T Pϕ ), (V, ϕ, TQϕ ) of P,Q respectively.
Write

AP = {(V, ϕ, T Pϕ ) : (V, ϕ) ∈ A } and AQ = {(V, ϕ, TQϕ ) : (V, ϕ) ∈ A }.

Then for every m ∈ V , the fiber representations

ΩPϕ
m = π2T

P
ϕ |Pm : Pm → FP and ΩQϕ

m : Qm → FQ

are topological isomorphisms.

8.2. In addition, consider bundle charts (W,ψ, T Pψ ), (W,ψ, TQψ ) of P,Q respec-

tively. Let Λ,∆,Γ be the main parts of the locally compact tags T Pψ (T Pϕ )−1,

TQψ (TQϕ )−1, T Pϕ (T Pψ )−1 respectively. The first two will be used in the construc-
tion of the direct sum P ⊕Q and the last two in the construction of the bundle
Lk(P,Q) of compact linear maps. Then for all a ∈ ϕ(V ∩W ), y ∈ FP , z ∈ FQ,
we have

T Pψ (T Pϕ )−1(a, y) =
(

ψϕ−1(a),Λ(a)(y)
)

TQψ (TQϕ )−1(a, z) =
(

ψϕ−1(a),∆(a)(z)
)

,

and T Pϕ (T Pψ )−1(a, y) =
(

ϕψ−1(a),Γ(a)(y)
)

.

Suppose that Λj , ∆j ,Γj denote the identity maps on FP , FQ, FP respectively.
For each a0 ∈ ϕ(V ∩ W ), let Λk,∆k,Γk be the holomorphic parts of Λ,∆,Γ
respectively on some open neighborhood V ⊂ ϕ(V ∩W ) of a0. Then for each
a ∈ V, we obtain

Λ(a) = Λj + Λk(a) = ΩPψ
m (ΩPϕ

m )−1

∆(a) = ∆j + ∆k(a) = ΩQψ
m (ΩQϕ

m )−1

Γ(a) = Γj + Γk(a) = ΩPϕ
m (ΩPψ

m )−1
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where m = ϕ−1(a) ∈ V ∩W . Furthermore all maps

(a, y) → Λk(a)(y) : V × FP → FP

(a, z) → ∆k(a)(z) : V × FQ → FQ

(a, y) → Γk(a)(y) : V × FP → FP

are locally compact holomorphic.

8.3. Since the union P ⊕Q =
⋃

m∈M Pm⊕Qm is disjoint, the projection π from
the P ⊕ Q onto M is uniquely defined by π(A) = m for every A ∈ Pm ⊕ Qm.
Take any (V, ϕ, T Pϕ ) ∈ AP and (V, ϕ, TQϕ ) ∈ AQ. The map

Ωϕ
m = ΩPϕ

m ⊕ ΩQϕ
m : Pm ⊕Qm → FP ⊕ FQ

is an isomorphism. Define

Tϕ : (P ⊕Q)V → ϕ(V ) × (FP ⊕ FQ)

by Tϕ(A) =
(

a,Ωϕ
m(A)

)

where m = π(A) and a = ϕ(m).

8.4. Theorem. The direct sum P ⊕ Q is a vector bundle over M with the
bundle atlas AP ⊕ AQ = {(V, ϕ, Tϕ) : (V, ϕ) ∈ A }.

Proof . Clearly each Tϕ is a bijection satisfying π1Tϕ = ϕπ. Hence (V, ϕ, Tϕ) is
a bundle patch on P ⊕Q. Next, for each a ∈ V define

Φ(a) = Λ(a) ⊕ ∆(a), Φk(a) = Λk(a) ⊕ ∆k(a) and Φj = Λj ⊕ ∆j .

Take any x ∈ Pm ⊕Qm. Write (a, x) = Tϕ(A) for some A ∈ (P ⊕Q)V ∩W . Then
m = ϕ−1(a) = π(A) ∈ V ∩W . Therefore we have

TψT
−1
ϕ (a, x) = Tψ(A)

=
(

ψϕ−1(a),Ωϕ
m(A)

)

=
(

ψϕ−1(a), (ΩPψ
m ⊕ ΩQψ

m )(A)
)

=
(

ψϕ−1(a), (ΩPψ
m ⊕ ΩQψ

m )(ΩPϕ
m ⊕ ΩQϕ

m )−1(x)
)

=
(

ψϕ−1(a),
[

ΩPψ
m (ΩPϕ

m )−1 ⊕ ΩQψ
m (ΩQϕ

m )−1
]

(x)
)

=
(

ψϕ−1(a),
[

Λ(a) ⊕ ∆(a)
]

(x)
)

=
(

ψϕ−1(a),Φ(a)(x)
)

.

The map
(a, x) = (a, y, z) → Φk(a)(x) =

(

Λk(a)(y),∆k(a)(z)
)

is locally compact and separately differentiable in a ∈ V, y ∈ FP and
z ∈ FQ. Hence it is locally compact holomorphic on V × (FP ⊕ FQ). Clearly
Φj = Λj ⊕ ∆j is the identity map on FP ⊕ FQ. Because Φ(a) = Φj + Φk(a), the
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bundle transformation TψT
−1
ϕ is a special locally compact tag. By symmetry,

(V, ϕ, Tϕ) and (W,ψ, Tψ) are compatible. Therefore AP ⊕ AQ is a bundle atlas
of P ⊕Q. �

8.5. Because the proof of §7.3 works only for a finite number of vector bundles,
it is difficult for the time being to construct the direct sums of arbitrary families
of vector bundles. We do not know how to handle the tensor products of two
vector bundles either.

8.6. Take any bundle charts (V, ϕ, T Pϕ ) in AP and (V, ϕ, TQϕ ) in AQ. For each

m ∈ V , since ΩPϕ
m ,ΩQϕ

m are topological isomorphisms, the map

Ωϕ
m : Lk(Pm, Qm) → Lk(FP , FQ)

defined by Ωϕ
m(A) = ΩQϕ

m A(ΩPϕ
m )−1 is a topological isomorphism. Now for every

A ∈ Lk(Pm, Qm), let Tϕ(A) =
(

a,Ωϕ
m(A)

)

where a = ϕ(m). The projection from
the disjoint union Lk(P,Q) =

⋃

m∈M Lk(Pm, Qm) onto M is also denoted by π for
convenience. Since ϕπ = π1Tϕ, we have a bundle patch (V, ϕ, Tϕ) of Lk(P,Q).
Interested people may consider quasi-completions as alternative assumptions in
the following theorem that Lk(FP , FQ) is quasi-complete.

8.7. Theorem. If Lk(FP , FQ) is quasi-complete, then Lk(P,Q) is a vector
bundle over M with fiber space Lk(FP , FQ) equipped with the compact-open
topology under the bundle atlas AL = {(V, ϕ, Tϕ) : (V,A) ∈ A }.

Pm
A //

ΩPϕm

��

ΩPψm

&&NNNNNNNNNNNNN Qm

ΩQψm

xxppppppppppppp

ΩQϕm

��

FP

Γ(a)=
(

Λ(a)
)

−1
qqq

q

xxqqqq

Φ(a)(x)
// FQ

FP
x=Ωϕm(A)

// FQ

∆(a)
ffNNNNNNNNNNNNN

Proof . We use the notation of §8.2. For every m in V ∩W and x in Lk(FP , FQ),
let Φ(a)(x) = ∆(a) xΓ(a) where a = ϕ(m). Because both ∆(a) and Γ(a) are
topological isomorphisms by §3.4b, each Φ(a) is a continuous linear operator
on Lk(FP , FQ). Next, take any a in ϕ(V ∩ W ) and x in Lk(FP , FQ). Then
A = T−1

ϕ (a, x) ∈ Lk(Pm, Qm) where m = ϕ−1(a) ∈ V ∩W . By

x = Ωϕ
m(A) = ΩQϕ

m A(ΩPϕ
m )−1,
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we get

TψT
−1
ϕ (a, x) = Tψ(A)

=
(

ψϕ−1(a),Ωψ
m(A)

)

=
(

ψϕ−1(a),ΩQψ
m A(ΩPψ

m )−1
)

=
(

ψϕ−1(a),ΩQψ
m (ΩQϕ

m )−1xΩPϕ
m (ΩPψ

m )−1
)

=
(

ψϕ−1(a),∆(a)xΓ(a)
)

=
(

ψϕ−1(a),Φ(a)(x)
)

.

Next, take any a0 ∈ ϕ(V ∩ W ). Choose V according to §8.2. For every
a ∈ V and x ∈ Lk(FP , FQ), define

ξQ(a)(x) = ∆k(a) x, ξP (a)(x) = xΓk(a),

ξ(a)(x) = ∆k(a) xΓk(a), and Φk(a) = ξQ(a) + ξP (a) + ξ(a).

From
Φ(a)(x) = [∆j + ∆k(a)] x [Γj + Γk(a)] = [Φj + Φk(a)](x),

we obtain Φ(a) = Φj + Φk(a) on Lk(FP , FQ) where Φj is the identity map on
Lk(FP , FQ). We claim that the maps (a, x) → ξQ(a)x, (a, x) → ξP (a)x and
(a, x) → ξ(a)x are locally compact and holomorphic. In this case, the map
(a, x) → Φk(a)x is also locally compact and holomorphic. Hence Tϕ, Tψ are
compatible by symmetry. Consequently, Lk(P,Q) is a vector bundle over M
with the bundle atlas AL. This would complete the proof. Actually we only
prove that (a, x) → ξ(a)x is locally compact and holomorphic because the other
two ξP , ξQ would follow in a similar but easier way.

Pick any x0 ∈ Lk(FP , FQ). Since x0 is a compact linear map, there is a

0-neighborhood U0 of FP and a compact subset CQ
0 of FQ such that

x0(U0) ⊂ CQ
0 .

Because the map
(a, z) → ∆k(a)(z) : V × FQ → FQ

is locally compact, for every z ∈ CQ
0 there is an open neighborhood Vz ⊂ V of

a0, an open convex balanced 0-neighborhood Wz of FQ and a compact subset
CQ
z of FQ such that

∆k(Vz)(z + 2 Wz) ⊂ CQ
z .

There is a finite subset H of CQ
0 such that CQ

0 ⊂
⋃

z∈H(z + Wz). Clearly the
closed convex balanced hull CQ of

⋃

z∈H C
Q
z is compact in FQ, V1 =

⋂

z∈H Vz is
a neighborhood of a0 and W =

⋂

z∈H Wz is a balanced 0-neighborhood of FQ.
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Take any a ∈ V1, any cQ0 ∈ CQ
0 and any w ∈ W. There is z ∈ H such that

cQ0 ∈ z + Wz. Since Wz is convex, we have

∆k(a)(c
Q
0 + w) ∈ ∆k(a)(z + Wz + W)

⊂ ∆k(a)(z + Wz + Wz) ⊂ ∆k(a)(z + 2 Wz) ⊂ CQ.

Therefore we conclude
∆k(V1)(C

Q
0 + W) ⊂ CQ.

On the other hand, because the map

(a, y) → Γk(a)(y) : V × FP → FP

is locally compact at (a0, 0) ∈ V × FP , there is an open neighborhood V2 ⊂ V1

of a0, a 0-neighborhood U1 of FP and a compact subset CP of FP such that
Γk(V2)(U1) ⊂ CP . Choose λ > 1 satisfying CP ⊂ λU0. Now

N = {ℓ ∈ Lk(FP , FQ) : ℓ(CP ) ⊂ W}

is a 0-neighborhood of Lk(FP , FQ). We claim that

ξ(V2)(x0 + N)(U1) ⊂ λCQ.

Indeed, take any a ∈ V2, x ∈ x0 + N and y ∈ U1. Then we have

ξ(a)(x)(y) = ∆k(a) xΓk(a)(y) ∈ ∆k(a) x(C
P ).

Suppose ξ(a)(x)(y) = ∆k(a) x(c
P ) for some cP ∈ CP . Write cP = λu0 for some

u0 ∈ U0. Then w = (x− x0)(c
P ) ∈ W, that is

x(cP ) = x0(c
P ) + w = λx0(u0) + w = λ

[

x0(u0) +
w

λ

]

∈ λ(CQ
0 + W)

because λ > 1 and W is balanced. Hence we get

ξ(a)(x)(y) = ∆k(a) x(c
P ) ∈ λ∆k(a)(C

Q
0 + W) ⊂ λCQ.

Now, let WQ denote any open convex balanced 0-neighborhood of FQ.
Choose τ > 1 such that CQ ⊂ τ WQ. As a result of

ξ(V2)(x0 + N)(U1) ⊂ λCQ ⊂ λτ W
Q,

we obtain
ξ(V2)(x0 + N)(U2) ⊂ W

Q

where U2 = U1/(λτ) ⊂ U1 is also a 0-neighborhood of FP . Therefore the set
ξ(V2)(x0 + N) is equicontinuous.

Next, take any y ∈ FP . Choose θ > 0 with y ∈ θ U1. As a subset of
the compact set θλCQ, the set ξ(V2)(x0 + N)(y) is relatively compact in FQ.
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By Ascoli’s Theorem, the set ξ(V2)(x0 + N) is relatively compact in Lk(FP , FQ)
equipped with the compact-open topology.

It remains to show that the map (a, x) → ξ(a)(x) is differentiable on
V2 × Lk(FP , FQ). Since x → ξ(a)(x) is linear, it is differentiable. To study
a → ξ(a)(x), without loss of generality we may assume x = x0 so that we can

use the symbols such as V2, U1, C
P , λ, CQ

0 , cQ, WQ and τ again. Take any
a ∈ V2 and e ∈ E. Select an open convex balanced 0-neighborhood V0 of E such
that a + 3V0 ⊂ V2. Choose δ > 0 such that δe ∈ V0. Then for all βj ∈ C with
|βj| ≤ δ, we have

a+ β1e+ β2e+ β3e ∈ V2

so that all the terms below are well-defined. Write

ξae(t) =
ξ(a+ te)(x0) − ξ(a)(x0)

t
,

ξ∆
ae(t) =

∆k(a+ te)x0 Γk(a+ te) − ∆k(a)x0 Γk(a+ te)

t
,

ξΓ
ae(t) =

∆k(a) x0Γk(a+ te) − ∆k(a) x0Γk(a)

t

for all t ∈ C with 0 < |t| ≤ δ. From Γk(V2)(U1) ⊂ CP , each Γk(a + te) is a
compact linear operator on FP . Also from ∆k(V1)x0(U0) ⊂ CQ, each ∆k(a+te)x0

is a compact linear map from FP into FQ. Thus all ξae(t), ξ
∆
ae(t), ξ

Γ
ae(t) belong

to Lk(FP , FQ). It is routine to verify ξae(t) = ξ∆
ae(t) + ξΓ

ae(t). We claim that the
limits of ξ∆

ae(t), ξ
Γ
ae(t) and hence also the limit of ξae(t) exist as t→ 0. Note that

the partial derivative ∂a[Γk(a)(y)] of the holomorphic map (a, y) → Γk(a)(y) is
a continuous linear map from E into FP . Observe that for every y ∈ FP , we get

ξΓ
ae(t)(y) = ∆k(a) x0

{

Γk(a + te)(y) − Γk(a)(y)

t

}

= ∆k(a) x0

{
∫ 1

0

∂a[Γk(a + θ1te)(y)](e) dθ1

}

= ∆k(a) x0

{
∫ 1

0

∂

∂β2
[Γk(a+ θ1te+ β2e)(y)] dθ1

}

at β2 = 0

= ∆k(a) x0

{
∫ 1

0

1

2πi

∫

|β2|=δ

Γk(a+ θ1te+ β2e)(y)

β2
2

dβ2 dθ1

}

=
1

2πi

∫ 1

0

∫

|β2|=δ

∆k(a) x0Γk(a + θ1te+ β2e)(y)

β2
2

dβ2 dθ1 .
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On the other hand, for every t ∈ C with |t| ≤ δ, the map Γae : FP → FP
defined by

Γae(y) = ∂a[Γk(a)(y)](e)

=
d

dβ2

[Γk(a+ β2e)(y)]

∣

∣

∣

∣

β2=0

=
1

2πi

∫

|β2|=δ

Γk(a+ β2e)(y)

β2
2

dβ2

is linear. Since ∆k(a)x0 is a compact linear map, it is continuous. For any y ∈ U1,
since CQ is closed convex balanced we have

∆k(a)x0Γae(y) =
1

2πi

∫

|β2|=δ

∆k(a)x0Γk(a + β2e)(y)

β2
2

dβ2 ∈
CQ

δ2
.

Although we do not know whether Γae is continuous, yet the map

Γ•
ae = ∆k(a)x0Γae : FP → FQ

is compact linear and consequently it is continuous. We want to prove
ξΓ
ae(t) → Γ•

ae in Lk(FP , FQ) under the compact-open topology. Let CP
2 be a

compact subset of FP and we use the arbitrary 0-neighborhood WQ of FQ again.
Now

N2 = {ℓ ∈ Lk(FP , FQ) : ℓ(CP
2 ) ⊂ W

Q}

is a 0-neighborhood of Lk(FP , FQ). Choose µ > 1 with CP
2 ⊂ µU1. Pick any

y ∈ CQ
2 . It is a routine calculation to get

ξΓ
ae(t)(y) − Γ•

ae(y) =
1

2πi

∫ 1

0

∫

|β2|=δ

Γξ(t, θ1, β2, y)

β2
2

dβ2dθ1

where

Γξ(t, θ1, β2, y)

= ∆k(a) x0Γk(a+ θ1te+ β2e)(y) − ∆k(a) x0Γk(a + β2e)(y)

= ∆k(a) x0[ Γk(a+ θ1te+ β2e)(y) − Γk(a+ β2e)(y) ]

= ∆k(a) x0

∫ 1

0

∂a[Γk(a+ θ1θ3te+ β2e)(y) ] (θ1te) dθ3

= θ1t∆k(a) x0

∫ 1

0

∂a[Γk(a+ θ1θ3te+ β2e)(y) ] (e) dθ3

= θ1t∆k(a) x0

∫ 1

0

∂

∂β4

Γk(a+ θ1θ3te+ β2e+ β4e)(y) dθ3 at β4 = 0

= θ1t∆k(a) x0

∫ 1

0

1

2πi

∫

|β4|=δ

Γk(a+ θ1θ3te+ β2e+ β4e)(y)

β2
4

dβ4 dθ3 .
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Hence we obtain

ξΓ
ae(t)(y) − Γ•

ae(y) =
t

(2πi)2

∫ 1

0

∫

|β2|=δ

∫ 1

0

∫

|β4|=δ

θ1F(y)

β2
2 β

2
4

dβ4dθ3dβ2dθ1

where F = ∆k(a) x0Γk(a+ θ1θ3te+ β2e+ β4e). Therefore we have

F(CP
2 ) ⊂ ∆k(V1)x0Γk(V2)(C

P
2 )

⊂ µ∆k(V1)x0Γk(V2)(U1) ⊂ µ∆k(V1)x0(C
P )

⊂ µλ∆k(V1)x0(U0) ⊂ µλ∆k(V1)(C
Q
0 ) ⊂ µλCQ ⊂ µλτWQ.

Let δ1 = δ/µλτ . Then for all |t| < δ1, we deduce
[

ξΓ
ae(t) − Γ•

ae

]

(CP
2 ) ⊂ tµλτWQ ⊂ W

Q,

that is ξΓ
ae(t) − Γ•

ae ∈ N2. We have proved ξΓ
ae(t) → Γ•

ae in Lk(FP , FQ) as t→ 0.

Similarly for every z ∈ FQ and t ∈ C with 0 < |t| ≤ δ1, we get

∆k(a+ te)(z) − ∆k(a)(z)

t
=

∫ 1

0

∂a[∆k(a+ θ1te)(z)](e) dθ1

=

∫ 1

0

∂

∂β2
[∆k(a+ θ1te+ β2e)(z)] dθ1 at β2 = 0

=

∫ 1

0

1

2πi

∫

|β2|=δ

∆k(a + θ1te+ β2e)(z)

β2
2

dβ2 dθ1 .

Replacing z = x0Γk(a+ te)(y) where y ∈ FP , we have

ξ∆
ae(t)(y) =

∆k(a+ te)x0Γk(a + te)(y) − ∆(a)x0Γk(a+ te)(y)

t

=
1

2πi

∫ 1

0

∫

|β2|=δ

∆k(a + θ1te+ β2e)x0Γk(a + te)(y)

β2
2

dβ2 dθ1 .

On the other hand, for every t ∈ C with |t| ≤ δ, the map ∆ae : FP → FP
defined by

∆ae(z) = ∂a[∆k(a)(z)](e)

=
d

dβ2
[∆k(a + β2e)(z)]

∣

∣

∣

∣

β2=0

=
1

2πi

∫

|β2|=δ

∆k(a+ β2e)(z)

β2
2

dβ2
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is linear. Replacing z = x0Γk(a+ te)(y) where y ∈ FP , we obtain

∆ae[x0Γk(a+ te)(y)] =
1

2πi

∫

|β2|=δ

∆k(a+ β2e)x0Γk(a+ te)(y)

β2
2

dβ2 .

Now the map ∆•
ae : FP → FQ given by

∆•
ae(y) = ∆ae[x0Γk(a+ te)(y)]

is compact linear because ∆•
ae(U1) ⊂ CQ/δ2. It is a routine calculation to get

ξ∆
ae(t)(y) − ∆•

ae(y) =
1

2πi

∫ 1

0

∫

|β2|=δ

∆ξ(t, θ1, β2, y)

β2
2

dβ2dθ1

where

∆ξ(t, θ1, β2, y)

= ∆k(a + θ1te+ β2e)x0Γk(a + te)(y) − ∆k(a+ β2e)x0Γk(a+ te)(y)

= ∆k(a + θ1te+ β2e)(z) − ∆k(a+ β2e)(z) for z = x0Γk(a+ te)(y)

=

∫ 1

0

∂a[∆k(a + θ1θ3te+ β2e)(z) ] (θ1te) dθ3

= θ1t

∫ 1

0

∂a[∆k(a+ θ1θ3te+ β2e)(z) ] (e) dθ3

= θ1t

∫ 1

0

∂

∂β4
∆k(a+ θ1θ3te+ β2e+ β4e)(z) dθ3 at β4 = 0

= θ1t

∫ 1

0

1

2πi

∫

|β4|=δ

∆k(a + θ1θ3te+ β2e+ β4e)(z)

β2
4

dβ4dθ3 .

Hence we obtain

ξ∆
ae(t)(y) − ∆•

ae(y) =
t

(2πi)2

∫ 1

0

∫

|β2|=δ

∫ 1

0

∫

|β4|=δ

θ1G(y)

β2
2 β

2
4

dβ4dθ3dβ2dθ1

where
G(y) = ∆k(a+ θ1θ3te+ β2e+ β4e)x0Γk(a+ te)(y).

Therefore we have

G(CP
2 ) ⊂ ∆k(V1)x0Γk(V2)(C

P
2 ) ⊂ µλτWQ.

Then for all |t| < δ1, we deduce
[

ξ∆
ae(t) − ∆•

ae

]

(CP
2 ) ⊂ tµλτWQ ⊂ W

Q,

that is ξ∆
ae(t) − ∆•

ae ∈ N2. We have proved

ξ∆
ae(t) → ∆•

ae in Lk(FP , FQ) as t→ 0.
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As a result, we conclude

lim
t→0

ξ(a+ te)(x0) − ξ(a)(x0)

t
= Γ•

ae + ∆•
ae

in Lk(FP , FQ). Therefore the map a → ξ(a)(x) is differentiable. By the
Generalized Hartogs’ theorem, (a, x) → ξ(a)(x) is also a holomorphic map from
V2 × Lk(FP , FQ) into Lk(FP , FQ). This completes the proof. �

8.8. Let E,F be quasi-complete locally convex spaces and let M be a
holomorphic manifold modelled on E with an atlas A . Suppose that π is the
projection of the product space Q = M × F onto its first coordinate M . For all
charts (V, ϕ) and (W,ψ) on M , let

Tϕ(A) = Tψ(A) = x for every A = (m, x) in QV ∩W .

Clearly (V, ϕ, Tϕ) and (W,ψ, Tψ) are compatible bundle patches with

TψT
−1
ϕ (a, x) =

(

ψϕ−1(a),Φ(a)(x)
)

for all (a, x) ∈ ϕ(V ∩W ) × F ,

where Φ(a) is the identity map on F . Therefore Q is a vector bundle under
the bundle atlas AF = {(V, ϕ, Tϕ) : (V, ϕ) ∈ A }. It is called the trivial bundle

over M with fiber space F . When F = C, it is also called the trivial line bundle

over M .

8.9. Let P be a vector bundle with fiber space F over a holomorphic manifold
M modelled on E and Q the trivial line bundle over M . Every continuous linear
form on F is a compact linear map. Suppose that the topological dual space F ∗

of all continuous linear forms is quasi-complete under the compact-open topology
and this is the case when F is a barrelled space. Then P ∗ = Lk(P,Q) is called
the dual vector bundle of P .

8.10. Let M be a holomorphic manifold modelled on a barelled space E. For
each m ∈ M , the cotangent space T ∗

mM is defined in terms of local functions
at m ∈ M . The natural isomorphism [14, 6.3] from T ∗

mM onto the dual space
(TmM)∗ of the tangent space TmM is trivially extended to a bijection from the
cotangent bundle T ∗M =

⋃

m∈M T ∗
mM onto the dual vector bundle (TM)∗. The

topological properties of T ∗M are derived from (TM)∗ accordingly.
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