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1. Introduction

1.1. Polynomials are probably the simplest intrinsically nonlinear functions.
Analytic functions locally defined by power series expansions establish complex
analysis as one of the most beautiful and richest branches of pure mathematics.
Subtle computational methods of infinite dimensional function theory offer a
natural umbrella [13] for products of distributions which are traditionally
regarded as real analysis [5]. There are several candidates of differentiability
on complex locally convex spaces such as those listed in [6, pp 57,59,61] but
we commit ourselves to the well-known directional derivatives defined in most
undergraduate textbooks in advanced calculus. All our holomorphic maps must
be locally bounded. To compensate this restriction, our morphisms are locally
holomorphic perturbations of continuous linear maps. With coordinate transfor-
mations based on holomorphic locally compact perturbations of identity maps,
a theory [14], [15] of infinite dimensional holomorphic manifolds is established
within the conventional complex locally convex spaces in contrast to the conve-
nient spaces [9]. Examples of holomorphic manifolds in our sense constructed by
level sets of regular values are given in [16]. We hope that infinite dimensional
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complex analysis will be accepted as a substantial part of nonlinear functional
analysis in addition to the traditional topological methods.

1.2.  In this paper, we set up a theory of vector bundles in parallel to Banach
manifolds [1], [10] and [4]. Even restricted to the finite dimensional case, our ap-
proach is different to others because we separate the parameters from the objects
carefully. We start with a quick review of tangent bundles and notations within
our framework in §2. Our tags in §3 are variants of local vector bundle maps
[1, p167] in Banach manifolds. In §§4-6, we develop vector bundles, vector bun-
dle maps, restrictions, subbundles, quotient bundles, ranges, kernels and prod-
uct bundles. Philosophically, we consider vector bundles as functional analysis
parameterized by points in manifolds. Because vector bundles over the same
manifold can be parameterized by the same parameter in §7, direct sums are
constructed accordingly in §8. In order to apply Ascoli’s Theorem, the spaces
Li(E, F) of compact linear maps in §8 are equipped with the compact-open
topology which is another departure from the traditional treatment in Banach
manifolds. A well-known obstacle against the development of manifolds modelled
on locally convex spaces is the discontinuity of composites of continuous linear
maps but we can get around this in §8.7 with compactness and equicontinuity.
Cotangent bundles are introduced at the end. This paper together with [12]
prepares ground for future development of various derivatives on holomorphic
manifolds. For similar or related results, see [2], [3], [8] and [17].

2. Review of Tangent Bundles

2.1. Throughout this paper, a locally convex space means a separated locally
convex space over the complex field C. Here we give a quick review of the
background from [11] and [14]. Let E, E5 be quasi-complete locally convex spaces.
A map fi from an open subset X of E into Es is (directionally) differentiable if
for every a € X and x € E, the map t — fi(a + tx) is differentiable on the open
subset {t € C:a+tx € X} of C. The derivative D fy(a) : E — Ey at a € X is
a linear map given by

D fr(a)x = ifk(a + tx) for each = € F.
dt t=0
The map fi is locally bounded if every point a € X has a neighborhood V C
X such that fi(V) is a bounded subset of Es; and locally compact if fir(V) is
relatively compact in Es. A map is holomorphic if it is differentiable and locally
bounded. As a result, holomorphic maps are continuous and their derivatives
are continuous linear maps.
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2.2. Amap f: X — FE,is called a morphism if at each point ag € X, there is a
representation f = f;+ fi on some open neighborhood V. C X where f; : ' — E,
is a continuous linear map and f; : V — F» is a holomorphic map. In this case,
fi is called the holomorphic part and f; the linear part of f on V. A morphism
f is locally compact if every point ag € X has a representation f = f; + f; on
an open neighborhood V C X such that f,(V) is relatively compact in Es. Let
X,Y be open subsets of E, Fy respectively. A morphism f : X — FE is special
(respectively special locally compact) if every point ay € X has a representation
f = f; + fx on a neighborhood V where f; is the identity map on £ = FE, (and
respectively fi is locally compact on V).

Although it was stated in its introduction and was included in every proof, it
was an obvious but unforgivable hiccup that the definition [14, 2.4] included local
compactness as part of special morphisms but failed to mention it explicitly. Both
[15], [16] followed the same definition in this paper that local compactness is no
longer part of special morphisms in order to emphasize its role but unfortunately
both articles declared the notations of [14, 2.4].

A bijection f : X — Y is a bi-morphism if both f and f~! are morphisms.
The following lemma fills in a small gap of the theory.

2.3. Lemma. Let f: X — X5 be a bi-morphism. If f is special or locally
compact or both jointly, then so is f~1.

Proof. Take any ay € X. Let f = f; + fi where f;, fi are the linear and
holomorphic parts on some open neighborhood V of ag respectively. Take any
a € V and write b = f(a). Firstly, suppose that f is special. We may assume
that f; is the identity map on E = Fy. From f~'(b) =a=b— fi.f~'(b), f~'is
also a holomorphic perturbation of the identity map, that is a special morphism.
Next, suppose that f is a locally compact morphism or a special locally compact
morphism. We may assume that fi.(V) is contained in some compact subset S
of E,. For the first case, by [11, 2.8] we may assume that f; = D f(ag) is the
derivative of f at ag which is a topological isomorphism from E onto F5 as a
result of the Chain Rule. For the second case we may assume that f; is the
identity map on ' = E,. From

f7H0) =a=f7H0) = £ D),
the image of the holomorphic part — fj_1 frf~!is contained in the compact set
— fj_l(S ). Therefore f~! is also a locally compact morphism. O

2.4. Let M be a nonempty set. A patch on M modelled on E is a pair (V, p)
where V' is a subset of M and ¢ : V — FE is an injection. Two patches
(V,p), W,¢) on M are compatible if both o(V N W), (V N W) are open in
E and both coordinate transformations
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Yl ip(VNAW) — (VW)
and
et p(VNW) — o(VNW)

are special locally compact morphisms. A cover & of M by patches is called an
atlas if every two members in &7 are compatible. In this case, the family .7 of
subsets B of M such that for every (V,¢) € 7, the set ¢(BNV) is open in E
is a topology on M called the manifold topology induced by <. A patch on M
is called a chart if it is compatible with every patch in /. To characterize .7 in
terms of charts, a subset B of M is open iff for every m € B, there is a chart (V, ¢)
at m with V. C B. A set M with an atlas .o/ is called a holomorphic manifold
if its manifold topology is separated. Locally compact maps and morphisms
between manifolds are defined in terms of charts in the standard way.

2.5. Let M be a holomorphic manifold modelled on E. A (complex) local curve
at the base point m € M is a quadruple (p, o, P, m) where PP is an open neighbor-
hood of &« € C and p : P — M is a holomorphic map satisfying p(a) = m. We
may simply write p, (p, @) or (p, a, m) if there is no ambiguity. Two local curves
(p, a,m), (g, B,n) are equivalent, denoted by p ~ ¢, if m = n and for some chart
(V, ) at m we have (pp)(a) = (¢q)' (). The equivalent classes induced by the
equivalence relation ~ are called tangents of M. The set T,,M of all tangents
at m is called the tangent space at m. The tangent containing a local curve p is
denoted by [p]. The map ¢,, from T,, M into E given by v,.([p]) = (pp)'(«) is a
bijection which turns 7,, M into a quasi-complete locally convex space topologi-
cally isomorphic to E independent of the choice of (V, ). The rule of coordinate
transformation from a chart (V, ¢) to a chart (W,4) for tangents at m is given

by ¥m(p) = D(1p~")(a)pm(p) where a = @(m).

2.6. Take any ag € p(V NW). We have pp~! = I + K on some neighborhood
V C o(VNW) of ag where [ is the identity map on F and K : o(VNW) — E
is a locally compact holomorphic map. It follows from the Generalized Hartogs’
Theorem that the map (a,z) — DK (a)x from V x E into E is a holomorphic
locally compact map. This completes the motivation for the definitions later
where ®(a) corresponds to D(¢p~1)(a) and 2%, corresponds to ¢y,.

3. Locally Compact Tags

3.1. Let E, Ey, F, F; be quasi-complete locally convex spaces and let L(F, F») be
the set of all continuous linear maps from F into F,. We may write
L(F) = L(F,F). Suppose that X, Xy are open subsets of F, E, respectively.
A map

G: XxF— X2 X F2
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is called a parameterized linear map if there exist a map g : X — X5 and a map
® : X — L(F, F») such that G(a,z) = (g(a), ®(a)z) for all (a,2) € X x F. In
this case, g is called the parameter part and ® the main part of G.

3.2. A parameterized linear map G : X x F — Xy x Fj is called a tag if the
parameter part g : X — Xy is a morphism and if for every ag € X, there exist
an open neighborhood V C X, a continuous linear map ®; : ' — F5 and a
map @, : V — L(F, F,) such that ®(a) = ®; + ®4(a) for each a € V and that
the map (a,z) — ®p(a)r from V x F into Fy is holomorphic. In this case,
®; is called the linear part and ®y the holomorphic part of ® on V. A tag is
isomorphic if it is bijective and its inverse map is also a tag. A tag G is locally
compact if (a,x) — P(a)x is a locally compact map on V x F. A tag G is
special if ®; is the identity map on F' = F5. By a special locally compact tag
G, we mean ®(a) = ®; + $4(a) for each a in some neighborhood V of ay where
®; is the identity map on F' = F, and at the same time (a,z) — Pi(a)r is a
locally compact map on V x F. It would be nice if we could prove that the
separate occurrences imply the joint occurrence. It would be good if we could
have standard representations similar to [11, 2.7].

A linear map & : F — F, is compact if there is a 0-neighborhood 4 of
F such that the set £(U) is relatively compact in Fp. A family F of linear
maps from F' into F, is collectively compact if there exist a 0-neighborhood U
of I and a compact subset C' of F, such that £(U) C C for all £ € F. A
map Uy : X — L(F, Fy) is locally collectively compact if every ag € X has a
neighborhood V such that W, (V) is collectively compact.

3.3. Lemma. Let ¥, : X — L(F,F;) beamap. If A : X x FF — F
given by A(a,x) = Ui(a)z is a locally compact holomorphic map, then Uy is
locally collectively compact. Furthermore the map Uy, : X — L (F, Fy) is locally
compact if the space Ly(F, Fy) of all compact linear maps is equipped with the
compact-open topology.

Proof.  Since A is locally compact at (ag,0) € X x F, there exist an open
neighborhood V of agy, an open 0-neighborhood i of F' and a compact subset C'
of Fy such that A(V x ) C C. Hence the set WUy (V) is collectively compact
because U (V)(LU) C C. In particular, we have WU (V) C Ly (F, F3). We need to
prove that Wy (V) is a relatively compact subset of Li(F, Fy). Take any = € F.
Then =z € 64 for some § > 0. Hence Wi (V)(z) C Wp(V)(0U) C 6C. As a
subset of the compact set 6 C, the set W(V)(z) is relatively compact in Fj.
Next take any 0-neighborhood 20 of F;. Then C' C 727 for some 7 > 0. Hence
U (V)(U/7) € 20. Since /7 is also a 0-neighborhood of F', the set Wy (V) is
equicontinuous. By Ascoli’s Theorem, e.g. [7, p34], V. (V) is relatively compact
in Ly(F, Fy) equipped with the compact-open topology. O
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3.4. Theorem. IfG:X x F — X, x F, is an isomorphic tag, then:
(a) the parameter part g : X — X3 is a bi-morphism,
(b) each ®(a) : F — F; is a topological isomorphism for every a € X,

(c) if G is special only or special locally compact, then so is G™1.

Proof. Let h be the parameter part and ¥ be the main part of the tag G
Then we have G71(b,y) = (h(b), \I/(b)y) for every (b,y) € Xy x Fy. Clearly hg
and gh are the identity map on X, X, respectively. For every a € X, let b = g(a).
Both W (b)®(a) and ®(a)V(b) are the identity map on F, F; respectively. This
proves (a) and (b). In particular, g : X — X5 is a homeomorphism. Next,
suppose that G is a special tag. Take any by € X5. Choose an open neighborhood
V C X of ag = h(by) such that ®(a) = ®; + ®4(a) for all a € V where ®; is the
identity map on F' = F, and ®; is the holomorphic part of ® on V. There is an
open neighborhood W C ¢(V) of by such that W(b) = ¥; + Wy (b) for all b €¢ W
where U, is the linear part and WUy is the holomorphic part of ¥ on W. Consider
any b € W. Then a = h(b) € V and T'x(b) = —Px(a)¥(b) € L(F3). Pick any
Yo € Fy. Then xo = V(by)yo € F. There exist an open neighborhood V; C h(W)
of ag, an open neighborhood i of 2y and a bounded subset B of F, such that
Oy (a)x € B for all (a,z) € V; x Y. By continuity of the map (b,y) — ¥ (b)y,
there exist an open neighborhood Wy C ¢(V;) of by and an open neighborhood
S of yy such that U(b)y € U for all (b,y) in Wy x &. Fix any (b,y) € W) x &.
Then we get a = h(b) € Vi and x = ¥(b)y € 4. Tt is simple to verify that

Therefore the map (b, y) — I'x(b)y is bounded on the open neighborhood W, x &
of (bo, yo). Also from y = ®(a)x = = + Pi(a)z, we have

Le(b)y = —Pp(a)r =2 —y =V )y —y = Yy —y + Vi(b)y .

Hence the bounded map (b,y) — I'x(b)y is separately holomorphic on W; x &
and it is jointly holomorphic by the Generalized Hartogs’ Theorem. From
G71(b,y) = (h(b),I'(b)y) where I'(b)y = y + Tx(b)y = =z, the tag G~! is also
special. Finally if GG is special locally compact, replacement of B by a compact
subset of F» completes the proof. O

3.5. Theorem. The composite of tags is a tag. If all factors are special, then
so is the composite. If one of them is locally compact, then so is the composite.

Proof. Let E, Fs, F, Fy, F3 be quasi-complete locally convex spaces and let
X, X5, X3 be open subsets of F/, Ey, F5 respectively. Suppose that

X X FL)XQ X FQLX:g X F3
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are tags with the parameter parts g, h and the main parts ®, W respectively. For
every (a,z) in X x F, define b = g(a), q(a) = h(b), I'(a) = ¥ (b)P(a) and also
define Q(a,z) = (g(a),T'(a)z). Clearly @ : X x F' — X3 x Fy is a parameterized
linear map and the parameter part ¢ = hg : X — X3 is a morphism. Take
any ap € X. Let ®;, ¥, be the linear parts and let ®;, ¥, be the holomorphic
parts of ®, ¥ on some open neighborhoods V.C X, W C X of agy, by = g(ao)
respectively. By continuity of the morphism g, we may assume g(V) C W. For
all (a,z) € Vx F, we obtain I'(a) =TI'; + I'y(a) where I'; = U,;®; € L(F, F5) and

For the last term as an example, the maps hy : (a,2) — Pp(a)zr and also
hy @ (byy) — Wg(b)y are holomorphic. Note that the continuous linear map
p: (a,x) — a is a morphism. Thus hs(gp, h1) : (a,x) — Vi(b)Pk(a)x is holo-
morphic by [11, 2.9]. Hence the map (a,z) — I'y(a)xr from V x F into Fj is
holomorphic. Since ay € X is arbitrary, () is a tag. If both GG, H are special,
then I'; = ¥; = ®; is the identity map on F' = F, = F3 and hence the composite
@ is also special. Finally if

(a,2) — Pp(a)r : VX F — Fy
or (b,y) = Vrp(b)y : W x Fy — I}

is a locally compact map, then (a,z) — T'(a)x : V x F — Fj is also a locally
compact map by [11, 2.9]. This completes the proof. O

3.6.  Although it can be proved that products and direct sums of tags are tags,
yet the notation does not fit in what we need in the constructions later. So they
are embedded into the proofs of §§6.13, 8.4.

4. Vector Bundles

4.1. Let M be a holomorphic manifold modelled on F with an atlas /. Suppose
that 7 is a surjection from a set P onto M. The set P,, = 7~ !(m) is called the
fiber over m € M. For every subset V of M, we write

_ _ -1
Py={J  Pn=1(V).
The projections of F x F onto E, F' are denoted by 7, o respectively.

4.2. A triple (V, ¢, T,) is called a bundle patch on M with fiber space F if (V, ¢)
is a chart on M and T, : Py — ¢(V) x F' is a bijection such that pm = mT,.
For every m € V, the bijection ¥, = W2T¢’Pm from P,, onto F' is called the
fiber representation at m. It follows by definition that T,,(4) = (a,Q%,(A)) for
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all A € P,, where a = ¢(m). We shall turn each P,, into a vector space which is
topologically isomorphic to F'.

®(a)
F F

linclusion

Pvrw

T lﬂ 2
Vnw
PN
-1
p(VNW) MO P(VNW)
M T, T \
o(VNW) x F Y(VAW)x F

4.3. Let (V,p,T,), (W,¢,Ty) be two bundle patches on M. Then (V,p,T,) is
compatible with (W, 1, Ty) if the bundle transformation

T,I,  p(VAW) X F = ¢(VNAW) x F

is a special locally compact isomorphic tag. In this case, let ® be the main part
of T,T;'. Pick any ag € (V). Choose an open neighborhood V of ay such
that ®(a) = ©; + Pi(a) for every a € V. C p(V NW) where ®; is the identity
map on F and ®; is the holomorphic part of ®. Replacing V by a smaller one,
we may assume that o=t = I + K on V where [ is the identity map on E
and K : o(VNW) — E is a locally compact holomorphic map. For every
(a,2) € (V) x F, write A =T "(a,z) and (b,y) = Ty(A). Then we have

(b,y) = Tngjl(a, z) = (Yo '(a), ®(a)z) = (a,2) + (Ka, Pr(a)z).  (a)

Hence T,,T; !is a special locally compact morphism. For m = ¢~'(a) in VNW,
we obtain Q¥ A =y = ®(a)r = ®(a)Q¥,(A), that is

O(a) = Q)" = D; + Op(a). ()
If either V' or W can be replaced by smaller ones, we may assume V = o(VNW).

To avoid too much repetition, we shall use the above notation involving m, ay,
V, A, a, z, b, y, D, D;, Dy, Q2 Q¥ I and K whenever §4.3 is quoted.
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4.4. A bundle patch (V, ¢, T,) contains m € M or is at m if m € V. A family
P of pairwise compatible bundle patches on M is called a bundle atlas for = if
% covers M. In this case, the triple (P, 7, %) is called a vector bundle over M.
Note that we frequently construct £ from &/ as in tangent bundles.

4.5. Let (P,m, %) be a vector bundle with fiber space F' over a holomorphic
manifold M modelled on E. Then P is called the total space, M the base man-
ifold, E the base space and 7 the projection. A bundle patch (V, ¢, T,,) is called
a bundle chart if it is compatible with every bundle patch in #. Clearly any
two bundle charts are compatible as a result of §§3.4,5. The family of all bundle
charts is called the bundle structure of P. If the projection is not specified ex-
plicitly, the same symbol 7 is assumed for different vector bundles. Because we
always work with bundle charts, the transitional role of % is rarely mentioned
except during the initial construction of new vector bundles. We also say that
the symbol P, or the pair (P, ), or the surjection 7 : P — M is a vector bundle.

4.6. Theorem. Every fiber P, is a quasi-complete locally convex space such
that for every bundle chart (V, ¢, T,) at m, the fiber representation ¢, from P,,
onto F'is a topological isomorphism.

Proof. Since )¢ is a bijection, the linear combinations in P, are defined by
Qf (aA+ 6B) = 22 (A) + Q7 (B) forall A,B € P, and «, 8 € C.

Suppose that the topology of F' is given by a family of seminorms = — ||z||¢ for

0 in an index set &. Then the seminorms A — ||Q2% Al|y for § € & also define

a locally convex topology on P,,. By definition, P,, becomes a quasi-complete

locally convex space such that {2 is a topological isomorphism. For any bundle

chart (W, T,) at m, because ®(a) in §4.3b is an algebraic automorphism on
F, we get

QY (aA+BB) = ®(a

= O(a

= ad

= afl

~—

Q¢ (aA+ (B)

(27, (A) + 6L, (B)]

)25, (A) + B2(a),(B)

(A) + B (B).

Therefore the linear combinations in P, are independent of the choice of (V, ¢, T,,).

Similarly since ®(a) is a topological automorphism on F', both bundle charts
define the same locally convex topology on P,,. This completes the proof. 0

~—

I

4.7. Theorem. (a) The total space P is a holomorphic manifold modelled on
E x F under the atlas Zp = {(Pv,T,) : (V,p,T,) € #}.

(b) If (V,¢,T,) is a bundle chart, then (Py,T,) is a chart on P.
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(¢) The projection 7 : P — M is a morphism [14, 4.1].
Proof. Let (V,¢,T,) and (W,4,T,) be bundle charts. It suffices to verify
(14, 3.1,2]. Clearly the map T, is injective from Py into £ x F. The set

is open in E x F. By §4.3a, TwTw_l is a special locally compact morphism.
Therefore (Py,T,), (Pw,Ty) are compatible patches of P by symmetry. Next,
take any A € P. Choose m € M with A € P,,. Select (V,¢,T,) € % with
m €& V. Then A € P,, C Py. Thus %Bp covers P. Therefore %p is an atlas on P.
Part (b) follows by definition. To show that the manifold topology is separated,
let A # Bin P. If m = n(A) # m(B) = n, choose disjoint open subsets
G,H of M with m € G and n € H. Let (V,¢,T,) and (W,%,T,) be bundle
charts containing m,n respectively. Then (V N G,¢,T,) and (W N H,,Ty)
are bundle charts of P. So, (Pyng,T,) and (Pwnu,Ty) are disjoint charts on
P containing A, B respectively. On the other hand, if 7(A) = n(B) = m, then
for every bundle chart (V, ¢, T,) at m, (Py,T,) is a chart of P containing both
A, B. Hence A, B can also be separated [14, 3.12] by open sets in P. Therefore
the manifold topology of P is separated. Consequently P becomes a manifold
modelled on E x F. Finally, take any (a,z) in ¢(V) x F and let A =1T_"(a,z).
Then we have
prTHa,x) = pr(A) = p(m) = a.

Since 7T lis the projection onto the first coordinate, it is also a morphism.
As a result, 7 is also a morphism. O

4.8. Consider any point A in the manifold P and any bundle chart (V, ¢, T,,)
at m = w(A). For the chart (Py,T,) at A on the manifold P, the fiber represen-
tation denoted by Ti,4 = (T,,)4 is a topological isomorphism from the tangent
space T’y P onto the model space E x F'.

4.9. Theorem. The projection 7 : P — M is a submersion [15, 3.2]. More
precisely for every A € P, the differential dw(A) : TaP — T,,M is a surjection
and the kernel of dm(A) splits in T4 P.

Proof. As the projection c,mrT;l from F x F onto F, it is surjective and its
kernel {0} x F splits in E' x F. The result follows by translation through the
fiber representations ¢, and T, 4. [

4.10. Let AB,% be bundle atlases with fiber space F' for the same surjection
7w from a set P onto an holomorphic manifold M modelled on E. The bundle
structures of A, %€ are denoted by S#,SE respectively. Clearly every bundle
patch is a bundle chart, that is Z C S%. Every bundle structure S is a bundle
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atlas. If Z C €, then S C SA. In particular, S# is maximal. The bundle
structure of SZ is S#, that is SS# = SA.

5. Vector Bundle Maps

51. Let m: P — M, \:@Q — N be vector bundles over holomorphic manifolds
M, N modelled on quasi-complete locally convex spaces Fy;, Ey with fiber spaces
Fp, Iy respectively. Consider a pair of maps f : M — N and T} : P — Q.
Clearly ATy = fr iff Ty is fiber preserving, that is T¢(P,,) C Q,, for every m € M
where n = f(m). The restriction of T} to P, is denoted by T),s.

Ty

PV QW
\ Ty, /
Py, ! Qn
T, Q7 QY T,
Q4 (a)
Fp Fq
T T2 A2 A
TyTsT;
(V) x Fp vt W(W) x Fy
e >\l
Yfpt
(V) 7 Y(W)
© Y
v ! W

5.2. A fiber preserving map 7y : P — @ over a morphism f : M — N is called
a vector bundle map if for every m € M, there exist a bundle chart (V, ¢, T,)
at m and a bundle chart (W, 1, Ty) at n = f(m) such that f(V) C W and the

bundle representation

TyTfT, ' (V) x Fp — (W) x Fy

is a tag. Naturally a vector bundle map T} is locally compact if every point
m € M has a locally compact bundle representation TyTyT,; ! Similarly special
vector bundle maps and special locally compact vector bundle maps are defined
in terms of their bundle representations. A vector bundle map T is isomorphic
if f is a diffeomorphism [14, 4.1], T} is bijective and Tf_1 is a vector bundle map

over f71.
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5.3. Lemma. Let 7y : P — @ be a vector bundle map over a morphism
f:M — N. For every m € M and every bundle chart (W,v,T,) at n = f(m),
there exists a bundle chart (V, ¢, T,) at m with f(V)) C W such that the map
TyT¢T, !'is a tag. Furthermore if T} is a locally compact bundle map, then
TyT¢T, lis also a locally compact tag.

Proof. Let (H,h,T})and (Q, g, T,) be bundle charts of P, Q) at m, n respectively
with f(H) C @ such that the bundle representation

T,T¢T, ' - h(H) x Fp — q(Q) x Fg

is a tag. Since (Q,q,T,) and (W,,Ty) are compatible, the bundle
transformation

TyT7 " q(QNW) x Fo — (QNW) x Fg

is also a tag. Then V = H N f~}(Q N W) is an open neighborhood of m.
Let ¢ = h|V and T, = T,|Py. Then (V,¢,T,) is a bundle chart of P with
f(V) € W. Also the composite TyTyT ' = (T,T; ") (T,T;T, ") of tags is a tag.
The last statement follows immediately from §3.5. U

5.4. Theorem. Composites of vector bundle maps are vector bundle maps.
Furthermore if all factors are special, then so is the composite. If one of them is
locally compact, then so is the composite.

Proof. It follows immediately from the last lemma and §3.5. O

5.5. Theorem. Let Ty : P — () be a vector bundle map over a morphism
f: M — N. Then:

(a) Ty is a morphism from the manifold P into the manifold Q).
(b) Ty : Py — @ is a continuous linear map where n = f(m).

Proof. Take any A € P. Let my = w(A), no = f(mp) and B = T¢(A). Let
(V.¢,T,) be a bundle chart at mo and (W, ¢, Ty) a bundle chart at no = f(my)
with f(V) C W such that T, TyT " is a tag. Let ® be the main part of T, TyT .
Replacing V' by a smaller one, we may assume that ®; is the linear part of ®
and P is the holomorphic part of & on V. Further replacement allows us to
assume that ¥ fp~! = f; + fx is the standard representation [11, 2.7]. Then for
every m € V, the linear part f; = D(¢f¢o~1)(a) : Eyy — E is continuous linear
where a = ¢(m) and the nonlinear part fy : ¢(V') — Ey is holomorphic.

(a) Observe that (Py,T,) and (Qw,Ty) are charts on the manifolds P, () respec-
tively. Clearly

(a,z) — (fj(a), ®;(x)) : Ex x Fp — Ex X Fg
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is a continuous linear map and (a, z) — (fx(a), ®x(a)z) is holomorphic on ¢(V') x
FP. Now

T,T¢T, (a,2) = (Vo™ (a), D(a)z) = (fi(a), Dj(2)) + (fu(a), Pu(a)z)
shows that 7% is a morphism.
(b) Take any A € P,,. For z = Q¢ (A), we have
WTp(A) = NI, (a, @)
= X(vfe'(a), ®(a)z)
= ®(a)r = P(a)Qf (A).

Therefore T,,,; = (Q2¢) ' ®(a)Q2%, is a continuous linear map. O

6. Simple Constructions

6.1. In this section, we shall construct restrictions, subbundles, quotient
bundles. We shall study kernels, ranges of vector bundle maps. Finally we
construct (direct) products of vector bundles.

6.2. Let P be a vector bundle with fiber space F' over a holomorphic manifold
M modelled on E under the projection 7 : P — M. Let N be a submanifold
[14, 8.2] of M modelled on a splitting subspace E of E. For @ = 7~ 1(N), the map
7 = 7|Q is a surjection from @ onto N. A bundle chart (V, ¢, T,,) of P is adapted
for N if (V, ) is an adapted chart on M for N, that is (VN N) = o(V)NE.
The set @ is called the restriction of P to N if N is covered by a family £ of
adapted bundle charts. Write

Qv =1""(V),Vx =V NN, on =¢|VN,S, = T,|Qv
and

BIN ={ (Vn,on,S,) : (V,0,T,) € B}.

6.3. Theorem. The restriction () of P is a vector bundle over N with fiber
space F' under the bundle atlas Z|N. Furthermore @ is a submanifold of P.
Proof. Firstly, S, = T,|Qv is a bijection from Qv = Pyny onto

on(VN) X F=p(VNN)xF
satisfying onT = o = mT, = 1S, on Qv. So, (Vi,¢n,S,) is a bundle patch

on N. Next, take any (W,,Ty) in & and use the notation of §4.3. For every
(a,x) € py(VNW) x F, we have

ST/)SQZI(CL? :L‘) = TZDTgo_l(av ‘I) = (77/)@_1(&), (I)(CL):L‘)
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Clearly the restriction of (a,z) — ®r(a)r to pn(V NW) x F is locally com-
pact holomorphic. By symmetry, (Vi, ¢n,S,) and (Wy, ¢n, Sy) are compatible.
Therefore Z|N is a bundle atlas on Q). Next, let H = E © E be any topological
complement. Then E x F' splits in £ x F' because of

ExF~(EoH)x F~(Ex F)® (HXx F).

Since
T,(Py NQ) = Ty(Pron) =@(VNN) x F=[p(V)NE] x F
= [p(V) x FIN(E x F) =T (Py) N (E x F),
Q is a (E x F)-submanifold of P. O

6.4. Restrictions reduce the size of the index set from M to N while subbundles
reduce the size of the fiber spaces. Let G be a splitting subspace of F', R a
subset of P and A = 7|R the restriction. A bundle chart (V, ¢, T,) of P is called
a subbundle chart for R with the fiber subspace G if T,(Py N R) = ¢(V) x G.
A family of subbundle charts for R is a subbundle atlas on M of P for R if it
covers M. Both the set R and the map A are called a subbundle of P if there is
a subbundle atlas on M for R.
T,

Py ———— (V) x F
Vi — V)

A A1

Se=Ty|Rv
_—

RV QO(V) x G

6.5. Theorem. Let R be a subbundle of P with a subbundle atlas % on M
and with a fiber subspace G. Write Ry = A"*(V) = Py N R, S, = T,|Ry and
Br={V,p,S,): (V,p,T,) € }. Then:

(a) R is a vector bundle with fiber space G and bundle atlas Zg.

(b) Q¢ |R,, is a topological isomorphism from the vector subspace R,, of P,
onto G.

(c) If (V,o,T,) and (W,9,Ty) are subbundle charts for R in %, then
®(a) in §4.3b is a topological automorphism on G. Furthermore we have
®,(a)(G) C G and the map

(a,y) = Pr(a)y: o(VNW)x G — G

is a locally compact holomorphic map.
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(d) R is a submanifold of P.

Proof. Since A covers M, the restriction A is surjective. Let (V,p,T,),
(W,¢,Ty) be subbundle charts in . We use the notation of §4.3. By
definition, S, is a bijection from Ry onto ¢(V) x G satisfying \;S, = @A.
Thus (V, ¢, S,) is a bundle patch for R. Next, we want to prove that the map

Su,S;l . S@(RV N Rw) = (,O(V N W) x G — S¢(RV N Rw)

is a special locally compact tag. Take any (a,z) in S,(Ry N Rw) and write
(b,y) = SyS, (a,x). Then y = ®(a)z € G. Hence we have

Op(a)r = P(a)r —z € G.

Since the map (¢, z) — Px(c)z from p(V NW) x F into F is locally compact,
there exist an open neighborhood Y C (V) of a, an open neighborhood X
of z and a compact subset Cy of F' such that ®,(Y)X, C Cp. Now the set
C = CyNG is compact in the close subspace G of F' and X = Xy NG is
an open neighborhood of x € G. The map (¢,2z) — Px(c)z from Y x X into
C = CyNG is locally compact holomorphic. This proves (c¢). By symmetry,
(V.p,8,), (W,1,Sy) are compatible bundle patches of R. Therefore R is a
vector bundle with fiber space G and bundle atlas %g. Part (b) follows from
Q% R,, = G and ®(a) = Q¥ (Q¢)!. As a result of

T,(PyNR) = ¢(V)xG
= [p(V)x FIN(E x G)
= T,(Py)N(E xG)

R is an (E x G)-submanifold of P since F x G splits in E x F. O

6.6. Let G be a splitting subspace of F'. As a closed subspace of F', any topo-
logical complement H = F' © G is a quasi-complete locally convex space. Every
x € F has a unique decomposition x = y + z for some y € G and z € H. The
projection 7 : [’ — H is given by 7(z) = 2. For the quotient map 0 : F' — F/G,
the restriction 0| H is a topological isomorphism. Hence the quotient space F//G
is also a quasi-complete locally convex space. For 8 = (§|H)™! : /G — H, we
have 30 = 7. Identification of the equivalent class d(z) in F//G with the vector
7(x) in H means §(x) = 7(z) without writing the symbol g.

6.7. Let R be a subbundle of P on M with fiber subspace G. For each m € M,
R,, is a vector subspace of P,,. Let &, be the quotient map from F,, on to the
quotient space @, = Pp/Rp. Then Q = J,,c) @m is a disjoint union. Define
the projection p : Q@ — M by pu(Q,,) = m and the quotient map £ : P — @ by
§| P = &, for all m € M. Clearly we have m = pué.
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6.8. Let # be a subbundle atlas of P for R on M. Take any (V,¢,T,)
in #Z and B € Qy = p~ (V). Then B € Q,, for some m € V. Choose A € P,
satisfying £(A) = B. Write

T,(A) = (a,z) € (V) x F.
Define S, : Qv — ¢(V) x F/G by
S,(B) = (a,é(x)).

As usual, the projection of ¢(V) x F/G onto the first coordinate ¢(V') is also
denoted by p; and the projection to the second coordinate is denoted by ps. The
quotient fiber representation is the map

Afz - M2S¢‘Qm : Qm - F/G
Both p and @) are called the quotient bundle of P over R. The family
'%/R = {(‘/7 907 SSO) : (‘/7 (puTKP) € '%7}

is called the quotient bundle atlas. We may write P/R instead of Q.

P, Py i o(V)x F - o F
¢ \ 1% - w(lV;
Em % ) Tul 5 T
Qv - o(V) x F/G
/ . ~C)
O FIGL

6.9. Theorem. The map p: @ — M is a vector bundle under the quotient
bundle atlas. Furthermore the quotient map & : P — @ is a vector bundle map
over the identity map on M. Actually £ is a submersion.

Proof.  To show that S,(B) is well-defined, suppose B = £(Ay) for some
Ay € P and T,(A2) = (b,y). From m(As) = pu&(A2) = p(B) = m, we have
a = ¢(m) = b. Next, since

5(14—142):5(14)_5(142):3_3:07

we get A — Ay € R, = (2%)71(G). Therefore we obtain
v -y = O5(4) — 5 (Ay) = O5(A— 4y) €,
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or d(x) = 6(y), that is (a,d(z)) = (b,(y)). Consequently S,(B) is indepen-
dent of the choice of A and it is well-defined. Clearly, S, is surjective onto
o(V) x F/G. To prove that S, is injective, assume S,(B) = S,(B,), that
is, (a,0(z)) = (ag2,d(x2)). Choose m € V so that ¢(m) = a = ay. Now for
d(x) = 0(xa), we have

QF (A — Ay) = OF (A) — 0% (Ay) =2 — 15 € G,
or TQ(A_AQ) c (,O(V) X G:T¢(PvﬂR),

that is A— Ay € P, NR = R,,. Hence B = {(A) = {(Ay) = B,. Therefore S, is
bijective. Next, pick any m € V and B € @,,,. Write B = £(A) for A € P,, and
T,(A) = (a,x). Then

118,(B) = pa(a,6(z)) = a = p[u(B)].

Hence 115, = ¢u. Therefore (V, ¢, S,) is a bundle patch of ). Next take any
V.o, T,), (W, 9, Ty) € 2. With the notation of §4.3, we have

quTw_l(a, x) = (zﬁgo_l(a), CIJ(a)a:)

and ®(a) = ®; + Pi(a). Take any (
for some x € F. Define 6;(a)(x) = ¢
y € F. Then we obtain

Mz —y)=9z)—9dy)=x—x=0,

a,x) € o(VNW) x F/G. Write x = 0(x)
[®r(a)z]. Suppose x = §(y) for some other

that is x — y € G. Hence ®(a)(x —y) € G and
0[Pr(a)z] — §[Pr(a)y] = 0Pr(a)(x —y) =0.

Thus 6 (a)x is independent of the choice of z € §~!(x). Since § : F — F/G is
continuous linear, (a,x) — §[®(a)z] is also a holomorphic locally compact map.
In particular, the map a — 0(a)(x) = 0[P (a)z] is differentiable. The continuous
linear map x — 0;(a)(x) is also differentiable. Because (a,x) — 0Ok(a)(x) is a
locally compact map, it is holomorphic by the Generalized Hartogs” Theorem.
Clearly, 0(a)(x) = x + 6x(a)(x). Hence the bundle transformation

SpS;t S.(Qv NQw) — Sy(Qv NQw)

is a special locally compact tag. The bundle patches (V, ¢, S,) and (W, 4, Sy)
are compatible by symmetry. Therefore pu : ) — M is a vector bundle. From
Scpé‘TS;l(a,x) = (a,é(x)), the quotient map £ : P — ( is a vector bundle map
over the identity on M. Finally from

ARE(Qn) " (x) = ALE(A) = A (B) = 0(x),
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the quotient map
AR IAE(A)(Qf) ™ = ARE(Q)) T =0

is submersive and so is the differential d(A). Therefore the quotient map ¢ is a
submersion. O

6.10. Let m: P — M, A: (Q — M be vector bundles over the same base space
M with fiber spaces F,G respectively. Suppose that S : P — (@ is a vector
bundle map over the identity map on M. For each m € M, the restriction
Sm : P — @, is a continuous linear map. The kernel of S is defined by the
disjoint union

ker(S) = U, .ens ker(Sm) C P
and the range by

ran(S) = U, e ran(Sm) C Q.
We identify Fy @ Fy ~ F} x F} in the following theorem as in [11, 9.1].

6.11. Theorem. Both ker(S), ran(S) are subbundles of P, respectively
iff for every m € M there exist a bundle chart (V,¢,T,) of P at m, a bundle
chart (W,v¢,T,) of Q at m, split subspaces Fy @& F» = F, Gi & G2 = G and
topological isomorphisms A(a) : F; — G for each a € (V) such that V- C W,
A(a) = Aj + Ay(a) and

T"Z)Sng)_l(aaxla‘xQ) - (77Z)S0_1(a)7A(a>x170) (CL)
for every z1 € Fy and zo € F, where A; and Ag(a) belong to L(Fy,G4) and
the map (a,z1) — Ag(a)z; is holomorphic on ¢(V) x Fy. Furthermore if S is

holomorphic, then we may assume that the map (a,z1) — A(a)z; is holomorphic
on p(V) x Fy. A similar result holds for locally compact holomorphic map S.

Proof. Suppose that ker(S), ran(S) are subbundles of P,Q with fiber
subspaces F,, G7 of F,G respectively. Take any m € M. There are
subbundle charts (V, ¢, T,), (W, v, Ty) of P, at m respectively so that

T, [Py Nker(S)] = ¢(V) x Fy
and Ty [Qw Nran(S)] = (W) x Gy .

After replacing V' by a smaller one, we may assume that V' C W and that the
bundle representation

TpST, ' - (V) x F = (W) x G

is given by T,ST " (a,z) = (V¢ '(a), ®(a)x) where ®(a) = ©;4Py(a), B}, Py(a)
belong to L(F,G) and the map (a,x) — Px(a)z is holomorphic. Suppose that
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Fy = Fo F, and G, = G © G, are topological complements. Let ¢ : F} — F
denote the natural injection and 0 : G — G, denote the projection. Then all
A; = 00, Ap(a) = 0Qr(a)o, Ala) = A; + Ag(a) belong to L(Fy,Gy). Since
(a,x1) — Ag(a)x; is locally bounded and differentiable separately in a € ¢(V)
and x; € F}, it is holomorphic jointly in (a,z1). For every m € VN W, we have

QF [ker(Sp)] = mT,[Py, N ker(S)] = Fy
and QY [ran(Sy)] = Ao Ty[Qm Nran(S)] = Gy .

For every A € P,
A€ ker(S,,) iff Q¥S,.(A) =0 iff ®(a)Q?(A)=0.

Hence ker[®(a)] = QF [ker(S,,)] = F». Similarly we have

ran|®(a)] = Q¥ [ran(S,)] = G;.
Therefore

A(a) : Fy ~ F/ker|®(a)] — ran[®(a)] = G4
is a topological isomorphism and
®(a)(xq,x2) = Ala)zy

for all (z1,x9) in F' = F; x Fy. Consequently, we have obtained the required equa-
tion (a). Furthermore if S is (locally compact) holomorphic, then we may choose
®; =0 and then (a, 1) — ®(a)r; = Py(a)x; is also (locally compact) holomor-
phic. Obviously the given condition is also sufficient for ker(S), ran(S) to be
subbundles. O

6.12. Let P, @ be vector bundles under bundle atlases .7, % with fiber spaces
Fp, Fy over holomorphic manifolds M, N modelled on Ej, En respectively where
En, En, Fp, I are quasi-complete locally convex spaces. To construct the prod-
uct bundle over the product manifold M x N [14, §7], consider the disjoint union

PxQ= U P, xQ,.

(m,n)eMxN

The projections from P, () and P x @ onto M, N and M x N are denoted by
7, A, T respectively. Let (V,¢,T,) in o/ and (W, ¢, Ty) in & be bundle charts of
P, Q respectively. Define Q%% = Q¢ x Q¥ and

Typ - (P X Q)vxw — (¢ X ) (V x W) x (Fp x Fg)
by Tsow(A) = ((90 X w)(m’ n)’ Q%%(A) )
for each A € (P x Q)yxw where (m,n) =7(A) € V x W.
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6.13. Theorem. P X () is a vector bundle with fiber space Fip x Fi; over the
product manifold M x N under the product bundle atlas

A x B={(VxW,ox,T,): (V,o,T,) € o, (W, T,) € B}.

Naturally the projection 7 : P x ) — M x N is called the product vector bundle
of P,Q.

Proof. Clearly &/ x % covers M x N. Observe that the linear map
fIEMXFPXENXFQHEMXENXFPXFQ

given by &(a,z,b,y) = (a,b,z,y) is a topological isomorphism. For each
A€ (P x Q)yxw, we have A = (AP, A9) for some A € P, and A° € Q,
where m € V and n € W. Write a = ¢(m), b = ¢¥(n), z = Q% (AF) and
y = QY(A9). From
TWZ}(A) = (aab>x’y):€(aax>b’y)
= f(Tso(AP)>Tw(AQ)) = f(Tso X Tw)(A%
the map
Top = &(Ty x Ty) : (P X Q)vxw — (¢ x ¥)(V X W) x (Fp X Fg)

is bijective. Next, let m, A;, 71 be the projections of Fy x Fp, Ex x Fp and
(Eym x En) X (Fp x Fg) onto the first coordinates Ey, Ey and Epy X Ey
respectively. By

TlTsm/J(A) = (av b) = (90 X ¢)(7TAP7 )‘AQ) = (90 X 1/))7(14) )

we get 7T,y = (¢ x ¢)7. Therefore T, is a bundle patch on M x N. To study
the bundle transformations, let (Va, 2, T,,), (W2, 19, Ty,) be bundle charts of
P, Q in o7, & respectively. Then both

T, T p(VNVy) x Fp— po(VNV,) x Fp

P2 @
and Ty, Tyt (W N Wa) x Fo — (W N W) x Fy
are special locally compact tags. Let ®, ¥ be the holomorphic parts of T, T, L

TwQTgl respectively. Pick any a € o(VNV;), b € (W N W), x € Fp and
y € Fg. Define

Aa,b)(z,y) = (2(a)(z), ¥ (b)(y))-
Choose m € VNV, with a = ¢(m) and n € W N Wy with b = ¢(n). Since

QY = Q2 x QY P x Q, — Fp x Fy
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is an isomorphism, there exists A = (A A¥) € P, x Q, such that
Q2Y(A) = (x,y), or equivalently z = QF (AF) and y = QY(AQ). Clearly
(02 X 13)(¢ x ¥)~! is a special morphism from the following calculation:

TGDQTZJQTS;/;I (CL, b7 Z, y)
= TszzA
(02 X 1y
P2 X Uy

(m,n), Q22 (A) )
( (¢ x )7 (a,b), (57 x Q) x ) (a,0)(x,y))
(e~ (@), o™ (b), 22 (7)™ (@), 2 (2) 7 (D))

(207 (a), ot~ (), @(a)(x), ¥ (b)(y))

= ((p2 x ¥)(p x ¥)"H(a,), Ala, b)(z,y)) -

Next, take any ag € o(V NVa) and by € (W N Ws). Select open neighborhoods
V Co(VNVa), W C (WNWs) of ag, by respectively such that ®(a) = ;4P (a)
and U(b) = W; + Uy (b) for all a € V, b € W where ®;, U, are the identity maps

on Fp, Fp and &y, ¥}, are the holomorphic parts of ®, ¥ on V, W respectively.
Define

Aj(z,y) = @j(z) + ¥;(y) and Ag(a,b)(z,y) = Px(a)(x) + Vi(b)(y)

foralla € V, b € W, x € Fp and y € Fp. Clearly A; is the identity map on
Fp x Fg. The map

)
)

(av b? Z, y) - (I)k(a)(x) + \Ijk(b)(y)

is locally compact and separately differentiable. By the Generalized Hartogs’
Theorem, this map is holomorphic. Since A(a,b) = A; + A(a,b), the bundle
transformation me?T&j is a special locally compact tag on

(o x ) [(V x W) x (Va x Wa)] x (Fp x Fg).
By symmetry, T,,,, T,y are compatible. Consequently, P x () is a vector bundle
over M x N with the bundle atlas &/ x 4. O

6.14. It is easy to show that the projections from P x () onto P, () are vector
bundle maps.

7. Common Basic Atlas for Several Vector Bundles

7.1. Let P be a vector bundle with fiber space I’ over a holomorphic manifold
M modelled on E. For every bundle chart (V,¢,T,) of P, the pair (V,¢) is
called the basic chart of (V,¢,T,). An atlas &/ on M is basic for P if every chart
in o/ is a basic chart of some bundle chart of P.



132 Tsoy-Wo Ma ICGFTO06

7.2. Lemma. For every chart (U,§) at m € M, there is a bundle chart
(V.o,T,) of P at m such that V C U and ¢ = ¢|V.
Proof. Take any bundle chart (R,0,7p) at m. Let V. =UNR and ¢ = £|V.
Define T}, : Py — (V) x F by T,,(A) = (p(v), 2 A) where v = (A) € V. Since
QY . P, — F is an isomorphism, T}, is a bijection. By

m T, (A) = (v) = pm(A),
the map T, is a bundle patch at m. Next let (W,,T};) be a bundle chart of P.

Since (R, 0,Tp) and (W, 4, T,) are compatible, the bundle transformation T}, T, *
is a special locally compact tag. Let ® be the main part of Tngfl, that is

TyT; ' (c,2) = (v0 (), ®(c)z), VY (c,2) €(UNW) X F.

To study T, T, ', take any (a,z) € o(VAW)x F. Let (b,y) = TyT, ' (a,z). Then
we have v = ¢~ '(a) € VNW and A =T (a, ) € Pyaw. Thus a = p(v) = £(v)
and b = ¢ (A) = ¢(v), that is b = € (a). Next from y = mTy(A) = QY (A)
and z = mT,(A) = Q%(A), we obtain

y = QL) e = B(60)x = DB ()2

by §4.3. Hence T,T, " (a,x) = (& '(a), ®(0p~")(a)x). Consequently T,T " is
a special locally compact tag by §3.5. Similarly, 1T, is also a special locally

compact tag. Therefore (V,¢,Ty) and (W,4,Ty) are compatible. As a result,
(V,,Ty) is a bundle chart of P at m. O

7.3. Theorem. If P! P? ... P" are vector bundles over the same holomor-
phic manifold M, then there is an atlas on M that is basic for all P*, P2 ..., P".

Proof. It suffices to prove the case when r = 2. Let E, Fp, Fy be quasi-
complete locally convex spaces and let P, Q) be vector bundles over M modelled
on £ with fiber spaces Fp, I respectively. The projections of P, ) onto M are
denoted by the same symbol 7. Let &7 be the family of charts (V, ¢) on M such
that there are bundle charts (V, ¢, T, f ), (V. o, Tg ) of P, () respectively. Take any
m € M. There is a bundle chart (W, Tf) of @) at m. There is a bundle chart
(V,@,TF) of P at m such that V' C W and ¢ = ¢|V. Clearly for the restriction
Tf = Tf\@v, the triple (V] ¢, Tf) is also a bundle chart of () at m. Therefore
/ covers M. Consequently it is an atlas on M. U

74. Let E,F,G be quasi-complete locally convex spaces. Suppose that
™ : P — M is a vector bundle with fiber space F' over a holomorphic mani-
fold M modelled on E. Assume that A : Q — P is a vector bundle with fiber
space G over the holomorphic manifold P modelled on F x F' according to §4.7.
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It would be nice to know the conditions for the composite 7\ to be a vector
bundle on M with fiber space F' x G.

8. Direct Sums and Spaces of Compact Linear Maps

8.1. Let P, ) be vector bundles over the same manifold M modelled on F
with fiber spaces F'p, Fiy respectively where E, Fp, F are quasi-complete locally
convex spaces. The projections of P, () onto M are denoted by the same symbol
m. Let o/ be an atlas on M that is basic to both P, (). By definition, for each
(V,¢) € o, there are bundle charts (V,@,Tf), (V,@,Tf) of P, () respectively.
Write

Ao = {(V.p.TF): (Vi) € o} and g = {(V,p,T9) : (V) € ).

Then for every m € V', the fiber representations
QFe = Wng‘Pm : P, — Fp and Q%" :Qm — Fo

are topological isomorphisms.

8.2. In addition, consider bundle charts (W), Tf), (W, 4, Tf) of P, () respec-
tively. Let A, A, T be the main parts of the locally compact tags T,)(T%)~",

Tf(Té2 )~!, T(T,))~" respectively. The first two will be used in the construc-
tion of the direct sum P @ () and the last two in the construction of the bundle
Li(P, Q) of compact linear maps. Then for all a € o(VNW), y € Fp, z € Fy,
we have

TL(TE) Na,y) = (Yo (a), Ala)(y))
T(T9)  a, 2) = (Yo~ (a), Ala)(2)),

and TP(TP) Y (a,y) = (04 (a), D(a)(y))

Suppose that A;, A; I'; denote the identity maps on Fp, Fy, Fip respectively.
For each ap € o(V NW), let Ay, Ag, 'y be the holomorphic parts of A, AT
respectively on some open neighborhood V. C ¢(V N W) of ag. Then for each
a € V, we obtain

Aa) = Aj+ Ag(a) = Q0P Q)
Ala) = Aj+ Ag(a) = Q29 (QL)!
I(a) = Tj+Tk(a) =020
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where m = p~!(a) € V. N W. Furthermore all maps
(&,y)HAk(G)(y) . VXFP—>FP
(a,z) = Ag(a)(z) : VxFy— Fy
(a,y) = Tr(a)(ly) : VX Fp— Fp

are locally compact holomorphic.

8.3. Since the union P®Q = J,,cp; P ® @ is disjoint, the projection 7 from
the P & @ onto M is uniquely defined by 7(A) = m for every A € P, ® Qp,.
Take any (V,¢,T) € o/p and (V, @,Tf) € /y. The map

Qe =0 0% P, oQ, — Fr® Fy
is an isomorphism. Define
T, : (PoQ)v — (V) x (Fp® Fg)
by T,(A) = (a, Q% (A)) where m = w(A) and a = p(m).
8.4. Theorem. The direct sum P & @ is a vector bundle over M with the
bundle atlas o7p & o = {(V, ¢, T,) : (V,¢) € o/}

Proof. Clearly each T, is a bijection satisfying m T, = ¢m. Hence (V, ¢, T,) is
a bundle patch on P ® (). Next, for each a € V define

P(a) = Ala) ® Aa), Pr(a) = Ax(a) ® Ag(a) and @, =A; B A;.

Take any x € P, ® Qp,. Write (a,z) = T,(A) for some A € (P ® Q)ynw. Then
m = o (a) =n(A) € VNW. Therefore we have

TyT,  (a,x) = Ty(A)

n(4))

Pw D QQw)(A) )

Pw D QQIZJ)(QPVJ D QQ@) 1(3:) )
QP‘” Q.0 @ QR (QR9) 7 (2) )
(a)] (z))

’5@

e e e e e e
<
© |
— =
o e e e e
\_/\_/\%/\_/\_/\_/
l_|l_|’\
>

The map
(a,2) = (a,y,2) — p(a)(z) = (Ax(a)(y), Ax(a)(2))

is locally compact and separately differentiable in @ € V, y € Fp and
z € Fy. Hence it is locally compact holomorphic on V x (Fp @ Fy). Clearly
®; = A; @ A, is the identity map on Fp @ Fy. Because ®(a) = ®; + $4(a), the
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bundle transformation T;T; 1'is a special locally compact tag. By symmetry,
(V.o,T,) and (W,4,T,) are compatible. Therefore @7p @ <, is a bundle atlas
of P® Q. O

8.5. Because the proof of §7.3 works only for a finite number of vector bundles,
it is difficult for the time being to construct the direct sums of arbitrary families
of vector bundles. We do not know how to handle the tensor products of two
vector bundles either.

8.6. Take any bundle charts (V, gp,Tf) in @p and (V,@,Tf) in 7. For each
m € V, since QL% Q% are topological isomorphisms, the map

Qfl . Lk(Pman) - Lk(FP>FQ)

defined by Q% (A) = Q29 A(QL9)~ is a topological isomorphism. Now for every
A€ Li(Py, Qum), let T,(A) = (a,Q%,(A)) where a = ¢(m). The projection from
the disjoint union Ly (P, Q) = U,,car Li(Prm; @m) onto M is also denoted by 7 for
convenience. Since ¢m = mT,, we have a bundle patch (V, ¢, T,,) of Ly(P, Q).
Interested people may consider quasi-completions as alternative assumptions in
the following theorem that L (Fp, Fg) is quasi-complete.

8.7. Theorem. If Ly(Fp, Fy) is quasi-complete, then Lj(P,()) is a vector
bundle over M with fiber space Ly(Fp, Fy) equipped with the compact-open
topology under the bundle atlas o7, = {(V,¢,T,,) : (V, A) € &/}

P, Qm
w\ QQ#J
o GG wor
/ 1 A(a)
r(a)=(A@)
e z=QF, (A)
Fp Fo

Proof. We use the notation of §8.2. For every m in VNW and x in Ly (Fp, Fg),
let ®(a)(z) = A(a)xzT(a) where a = ¢(m). Because both A(a) and T'(a) are
topological isomorphisms by §3.4b, each ®(a) is a continuous linear operator
on Ly(Fp,Fg). Next, take any a in o(V NW) and z in Ly(Fp, Fy). Then

A=T;"(a,r) € Ly(Ppn, Qm) where m = ¢~ (a) € VA W. By

z =02 (A) = QW AQLY)
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we get
Tngl(a,x) = Ty(A)

(¥~ (a), 2 (A))
(¥~ (a), WA )
(W™ (@), Q2P (AF) a2 () )

= (Yy '(a), Ala)aT(a))

= (Yp~'(a), 2(a)()) .

Next, take any ay € o(V NW). Choose V according to §8.2. For every

a €V and x € Ly(Fp, Fp), define

fola)(x) = Apla)z, {p(a)(z) = 2T (a),
((a)(x) = Ap(a)zTi(a), and Pp(a) =&g(a) + Ep(a) + £(a).
From

®(a)(z) = [A; + Ar(a)] 2 [[; + Ti(a)] =[5 + Py(a)] (),

we obtain ®(a) = ®; + ®4(a) on Li(Fp, Fy) where ®; is the identity map on
Ly(Fp, Fg). We claim that the maps (a,z) — {g(a)z, (a,z) — &p(a)z and
(a,x) — &(a)x are locally compact and holomorphic. In this case, the map
(a,z) — Pg(a)x is also locally compact and holomorphic. Hence T,,,T, are
compatible by symmetry. Consequently, Li(P, Q) is a vector bundle over M
with the bundle atlas ;. This would complete the proof. Actually we only
prove that (a,z) — &(a)x is locally compact and holomorphic because the other
two &p, {g would follow in a similar but easier way.

Pick any xy € Ly(Fp, Fp). Since x( is a compact linear map, there is a
0-neighborhood i, of Fp and a compact subset 059 of Fg such that

zo(ty) € CF.

Because the map
(a,2) = Ag(a)(z) : Vx Fg — Fg

is locally compact, for every z € C’g') there is an open neighborhood V, C V of
ap, an open convex balanced 0-neighborhood 20, of Fy and a compact subset
C@ of Fy such that

Ap(V.) (2 +290.) € C9.

There is a finite subset H of C¢ such that C¢ C U,en(z +20.). Clearly the
closed convex balanced hull C% of |, C¥ is compact in Fy, Vi =, ., V. is
a neighborhood of ag and 20 = (,.,; 20. is a balanced 0-neighborhood of Fy.
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Take any a € V;, any COQ € C’(? and any w € 20. There is z € H such that

COQ € z+20.. Since 2, is convex, we have

Ag(a)(cff +w) € Ax(a)(z + 20 + 20)
C Ap(a)(z+ W, +2.) C Ap(a)(z +220.) C C°.
Therefore we conclude
A(V)(CE 4+ 20) C C@.
On the other hand, because the map
(a,y) = Tr(a)(y) : Vx Fp — Fp
is locally compact at (ag,0) € V x Fp, there is an open neighborhood V, C V;

of ag, a 0-neighborhood 4; of Fp and a compact subset C¥ of Fp such that
['1(Vo)(4hy) € CF. Choose A > 1 satisfying CF € A 4,. Now

N = {E S Lk(Fp, FQ) : E(OP) C QIT}
is a 0-neighborhood of Ly (Fp, Fg). We claim that
£(Vy) (20 + N)(Lhy) C MO,

Indeed, take any a € Vy, x € 29 + N and y € ;. Then we have

£(a)(x)(y) = Aw(a) 2 Ti(a)(y) € Ag(a) 2(CT).
Suppose &(a)(z)(y) = Ag(a) z(c") for some ¢ € CF. Write ¢’ = Aug for some
ug € Ho. Then w = (z — x0)(cF’) € 2, that is

z(c?) = 2o(c") +w = Axg(ug) +w = A [xo(uo) + %} e AMCF + 1)

because A > 1 and 2U is balanced. Hence we get
£(a)(2)(y) = Ax(a) 2(c”) € MAk(a)(CF +28) € ACC.

Now, let 209 denote any open convex balanced 0-neighborhood of Fy,.

Choose 7 > 1 such that C? C 720%. As a result of
£(Vy) (w0 + N)(L) € AC9 C AT 209,
we obtain
£(Va)(zo + N)(8y) C 209

where 4y = /(A7) C 4 is also a 0-neighborhood of Fp. Therefore the set
£(V3)(zo + N) is equicontinuous.

Next, take any y € Fp. Choose 6 > 0 with y € 64;. As a subset of
the compact set OAC?, the set £(Vy)(zo + N)(y) is relatively compact in Fyg.
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By Ascoli’s Theorem, the set £(V2)(zo + N) is relatively compact in Ly (Fp, Fp)
equipped with the compact-open topology.

It remains to show that the map (a,x) — &(a)(x) is differentiable on
Vy X Lg(Fp, Fg). Since x — £(a)(x) is linear, it is differentiable. To study
a — &(a)(x), without loss of generality we may assume x = zy so that we can
use the symbols such as Vs, 4, CT, A, ng, c?, 209 and 7 again. Take any
a € Vo and e € E. Select an open convex balanced 0-neighborhood Vj of E such
that a + 3V, C V,. Choose 6 > 0 such that de € V. Then for all 3; € C with
18] <6, we have

a+ﬂ1€+ﬂ2€+ﬂ3€€V2

so that all the terms below are well-defined. Write
E(a+te)(zo) — &(a)(xo)

fae(t) = ; )
A () = Ag(a+te)rg x(a+ te) — Ax(a)xo Tr(a + te)
ae t )
(1) = Ag(a) 2ol (a + te) — Ag(a) 2ok (a)

t

for all t € C with 0 < [t| < §. From I'y(Vy)(4y) C CF, each T'y(a + te) is a
compact linear operator on Fp. Also from Ay (V1)zo(Ly) C C9, each Ay (a+te)wg
is a compact linear map from Fp into Fy. Thus all &.(t),£2(t), EL(t) belong
to Ly (Fp, Fg). It is routine to verify &,.(t) = £5(t) + £L.(t). We claim that the
limits of €2 (¢), €L,(t) and hence also the limit of €ae(t) exist as t — 0. Note that
the partial derivative Oa[l'k(a)(y)] of the holomorphic map (a,y) — T'k(a)(y) is
a continuous linear map from E into Fp. Observe that for every y € Fp, we get

Ti(a +te)(y) - Fk(a)(y)}

L0 = Mo t

/ 0.[Ti(a + 01te) (y)](e) d@l}

6ﬁ2 Fk &‘i‘elt@‘i‘ﬁge)( )]d@l} at ﬂQZO

o
ol 2

_ {/ = 6Fk(a+91t6+ﬁ26)(y) d@del}
/

33
a) zol'x(a + O1te + [ae)(y)

df, db; .
falms 3 2

2mi 0
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On the other hand, for every t € C with |t| < ¢, the map [y : Fp — Fp
defined by

Fae(y) = 8a[Fk(&)(y)](e)

d
= 5 Mot o))

B2=0
_ L[ Dlet o) 0
211 |B2|=6 ﬂ%

is linear. Since Ay (a)zg is a compact linear map, it is continuous. For any y € 4y,
since C? is closed convex balanced we have

Ar(@)zoT e (y) = i /ﬁ . Ag(a)zol'r(a + Bae)(y) B, € C_Q

2mi (2 62
Although we do not know whether I',. is continuous, yet the map
I, = Ap(a)zolee : Fp — Fo
is compact linear and consequently it is continuous. @We want to prove

P (t) — T, in L(Fp, Fg) under the compact-open topology. Let C4 be a

ae

compact subset of Fp and we use the arbitrary 0-neighborhood 20¢ of Fy, again.
Now

N; = {E € Lk(Fp, FQ) : £(02P) C QITQ}
is a O-neighborhood of Ly (Fp, Fg). Choose u > 1 with CI C uily. Pick any
(NS C’QQ. It is a routine calculation to get

telaﬂ?a )
&ac®) () —Toe(y) = 5 / / P

2
where

Le(t, 01, 52, y)
= Ag(a) wolx(a + Oite 4 Bre)(y) — Ag(a) 2ol (a + B2e)(y)
= Ay(a) zo[Tr(a + Orte + Bae)(y) — Tila+ Bae)(y) ]

= Ag(a) xo/o 0Tk (a + 610ste + Poe)(y) | (b1te) dbs

= 61tAx(a) xo/o Oa[L'k(a + 0103te + Bae)(y) | () dbs

1

0
= HltAk(a) Zo %Fk(& -+ 9193t6 -+ ﬁge -+ ﬂ46)( ) d@g at ﬂ4 =0
0 4

- (Z + 9193t6 + ﬂze + ﬂ46)( )
= HltAk 1‘0 / 27TZ /ﬁ4| 5 ﬂ4 dﬂ4 d(93 .
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Hence we obtain

LW - T = 5o [ /.. [ [ o,

where F = Ag(a) 2ok (a + 6103te + Bae + Bye). Therefore we have
F(Cy) C Ap(V1)xolk(V2)(Cy)
C pAR(V1)zolk(Va)(th) C p Ag(Vi)ao(CT)
C pAAL(V1)zo(Ho) C pAAL(V1)(CE) C pAC? C pAr9.

Let §; = 6/uA7. Then for all |¢t| < d§;, we deduce
[&8.(t) = T2.] (CF) C tuAr20° C 29,

ae

that is &, (t) — '8, € Ny. We have proved &L, (t) — I's, in Ly(Fp, Fp) as t — 0.
Similarly for every z € Fiy and t € C with 0 < [¢t| < 01, we get

Ar(a+te)(z) — Ag(a)(z)
t

_ /O o, [Ar(a + Orte) ()] (e) dbs

1
= / J [Ar(a + Oite + Bre)(2)] dOy at B2 =0
o 0P

B k(a + Oite + [ae)(2)
N / 27”//2 =5 33 A2 0

Replacing z = o'y (a + te)(y) where y € Fp, we have

E0)(y) = Ag(a+te)xol'y(a + te) (g;) — A(a)zoTi(a +te)(y)

_ / / Ag(a+ Oite + Poe)xoly(a + te)(y )dﬁgd«%.
2mi |B2|=5

5

On the other hand, for every ¢t € C with [t| < 0, the map A, : Fp — Fp
defined by

Rac(2) = dulAk(a)(2)](e)

d
= o3 Buermo@)|

1 Ag(a + Bre)(2)
270 Jigs e o
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is linear. Replacing z = zol'x(a + te)(y) where y € Fp, we obtain

1 / Ap(a+ fre)zoli(a+te)(y)
2m1 |B2|=6 ﬁ22

Agelzol's(a +te)(y)] = s .

Now the map A?, : Fp — I given by
AGe(y) = Agel[zol'k(a + te)(y)]

is compact linear because A%, (4;) C C%/§%. Tt is a routine calculation to get

A . Ag(t, 01, B2, y)
Sae(t)(y) — AL, 27”/ / 5—52 dydb,

where

Ag(t, 01, B2, y)
= Ag(a+ bite + fae)xol'y(a + te)(y) — Ag(a + ae)zolk(a + te)(y)
= Ag(a+ bite + Bae)(z) — Ag(a+ fae)(z) for z = xoTk(a + te)(y)

= /1 Oa[Ak(a + 0103te + [ae)(2) ]| (O1te) dbs
= 01t/1 8a[Ak(a + 9193t6 + ﬂge) (Z)] (6) d(93

1
0
= 01t/ Ag(a + 0105te + Bae + [ae)(2) dbs at By, =0
0 3@1

_ Qlt/ / Ag(a + 0105te + Bae + Bie) (2 )dﬁ4d03.
27TZ 54‘ 5

e

Hence we obtain

200 - 2.0) = 5o [ /.. [ [ dvansdsan

where

G(y) = Ar(a + 010ste + Boe + Bae)wol'(a + te)(y).
Therefore we have
G(Cy) C AR(V)xel(Ve)(C) C pAT209.
Then for all |t| < 61, we deduce
[€8(t) — AL] (CF) C tuAT20° C 9,
that is £2(t) — A%, € Ny. We have proved
Ea(t) = A%, in Ly(Fp, Fg) ast — 0.
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As a result, we conclude

i €l 1)) — £(a) ()

t—0 t

=% + A

in Ly(Fp, Fy). Therefore the map a — &(a)(x) is differentiable. By the
Generalized Hartogs’ theorem, (a,z) — &(a)(z) is also a holomorphic map from
Vo % Li(Fp, Fg) into Ly(Fp, F). This completes the proof. O

8.8. Let FE,F be quasi-complete locally convex spaces and let M be a
holomorphic manifold modelled on E with an atlas .«/. Suppose that 7 is the
projection of the product space () = M x F' onto its first coordinate M. For all
charts (V, ) and (W, ) on M, let

T,(A) =Ty(A) =z for every A= (m,z) in Quaw.
Clearly (V, ¢, T,) and (W, 1, Ty) are compatible bundle patches with
Tngl(a,x) = (wcp_l(a), q)(a)(x)) for all (a,z) € (VNW) x F,

where ®(a) is the identity map on F. Therefore @) is a vector bundle under
the bundle atlas @ = {(V,,T,) : (V,p) € &/}. It is called the trivial bundle
over M with fiber space F'. When F' = C, it is also called the trivial line bundle
over M.

8.9. Let P be a vector bundle with fiber space I’ over a holomorphic manifold
M modelled on E and @ the trivial line bundle over M. Every continuous linear
form on F' is a compact linear map. Suppose that the topological dual space F™*
of all continuous linear forms is quasi-complete under the compact-open topology
and this is the case when F' is a barrelled space. Then P* = L (P, Q) is called
the dual vector bundle of P.

8.10. Let M be a holomorphic manifold modelled on a barelled space E. For
each m € M, the cotangent space 1), M is defined in terms of local functions
at m € M. The natural isomorphism [14, 6.3] from 7; M onto the dual space
(T, M)* of the tangent space T,,M is trivially extended to a bijection from the
cotangent bundle T*M =, T M onto the dual vector bundle (T'M)*. The
topological properties of T*M are derived from (T'M)* accordingly.
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