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Quasisymmetric Structure and Quasisymmetry on
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Abstract. The purpose of this paper is to study the group QS2 of quasisym-
metric homeomorphisms of a one-dimensional manifold J with respect to a
given quasisymmetric structure on J . Under a natural neighborhood system
of the identity, the group QS2 is a partial topological group. Its characteristic
topological subgroup is identified as the collection of all elements in QS2 with
vanishing ratio distortion. When J is a Jordan curve in the plane, denote the
group of quasisymmetric homeomorphisms of J with respect to the Euclidean
metric by QS1. Sufficient conditions and necessary conditions are established
for the two groups QS1 and QS2 to coincide with each other.
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1. Introduction

A homeomorphism h : I1 → I2 between intervals on the real axis R is said to
be quasisymmetric if there is constant M such that

(1.1)
1

M
≤
h(x+ t) − h(x)

h(x) − h(x− t)
≤ M

for all x and t for which x − t, x, x + t ∈ I1. The condition (1.1) is the well
known so called M-condition introduced by Beurling and Ahlfors [BA] in their
study of boundary values of quasiconformal mappings. The class of all such
quasisymmetric maps, denoted by QS, form a pseudogroup under composition.
A quasisymmetric structure (or QS structure), like a differential structure, on
any topological one-manifold J is a maximal atlas of coordinate charts hα such
that the transition maps hα ◦h

−1
β are elements of QS whenever they are defined.

Then, for a given QS structure on J , we say that a homeomorphism f : J → J is
quasisymmetric if for each pair of charts hα and hβ , the composition hα ◦f ◦h

−1
β ,

denoted by fβ
α , is in the pseudogroup QS whenever it is defined. It is easy to see

that the set QS2 of all QS homeomorphisms of a manifold J with respect to a
given QS structure form a group.
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In Section 2, we study the topological structure of the group QS2 under a
neighborhood system. In particular, we identify the characteristic topological
subgroup of QS2 for any compact one-dimensional manifold, extending a result
of Gardiner and Sullivan [GS] on the unit circle.

Next, let J be a Jordan curve in the plane. Then one can define another group,
denoted by QS1(J), of quasisymmetric homeomorphisms of J with respect to
the Euclidean metric in the plane as follows. We say that a homeomorphism
f : J → J is in the group QS1 if there is a constant M such that

(1.2)
|a− x|

|b− x|
≤ 1 =⇒

|f(a) − f(x)|

|f(b) − f(x)|
≤M

for all a, b, x ∈ J . Therefore, there are two notions of quasisymmetry on a
Jordan curve J . In Section 3, we will explore the relations between the two
quasisymmetric groups QS1 and QS2 and find necessary conditions and sufficient
conditions for them to coincide with each other.

2. The topology of QS2

In this section we introduce a neighborhood system in the group QS2 to make
it a partial topological group and identify its characteristic topological subgroup.

Let J be a compact one-dimensional manifold and Q be a given QS structure
on J . Following [GS] and [St], in order to define a system of neighborhoods of
the identity in the group QS2, we introduce a finer structure subordinate to the
given QS structure. Suppose that we are given a finite PSL(2,R)-structure H
subordinate to a QS structure Q. By this we mean that there is a finite collection
of charts hα for the given QS structure such that the composition hα ◦ h−1

β is in
PSL(2,R) whenever it is defined.

In what follows we assume that J is a compact one-dimensional manifold and
H a finite PSL(2,R)-structure subordinate to a given QS structure Q on J .
As shown in [St, 2.1.3], the quasisymmetric groups QS2(H) with respect to H
and QS2(Q) with respect to Q are the same. Thus the restriction to a finite
PSL(2,R)-structure H will not change the group structure QS2; it will only
make the topology of QS2 better.

2.1. Characteristic topological subgroup of a partial topological group.

Recall that a topological group is a groupG with a topological structure such that
the group operations are continuous under the topological structure. A partial

topological group is a group with a neighborhood system at the identity with the
property that given a neighborhood V of the identity, there is a neighborhood U
such that U ◦U ⊂ V and U−1 ⊂ V , that is, the neighborhood system is complete
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under group operations. In general, a partial topological group may not be a
topological group.

Lemma 2.1. [GS] Let G be a partial topological group. Then G is a topolog-

ical group with the given neighborhood system of the identity if and only if the

conjugate map: h→ g ◦ h ◦ g−1 is continuous at the identity for every g ∈ G.

For a given partial topological group G, let

G1 = {g ∈ G : the map h→ g ◦ h ◦ g−1 is continuous at the identity}.

Then one can show that G1 is a topological subgroup of G with the given neigh-
borhood system. This subgroup is called the characteristic topological subgroup

of G. For more details on this, we refer the reader to [GS] and [St].

2.2. Vanishing ratio distortion. To define a topology in QS2, we need the
following concept. Let f : I1 → I2 be a QS map of intervals. The ratio distortion

of f is the function ψf defined by

ψf (x, t) =
f(x+ t) − f(x)

f(x) − f(x− t)
− 1

for all t > 0 and x such that the interval [x − t, x + t] is contained in I1. Fur-
thermore, f is said to have vanishing ratio distortion if there is a function ǫf (t)
converging to zero as t→ 0 such that |ψf(x, t)| ≤ ǫf (t) whenever the ratio distor-
tion ψf(x, t) is defined. Similarly, an element f ∈ QS2 is said to have vanishing

ratio distortion if for each pair of charts hα and hβ in the given PSL(2,R) struc-
ture, the composition map fβ

α = hα ◦ f ◦h
−1
β has vanishing ratio distortion in the

above sense.

Note that the class of homeomorphisms of S1 with vanishing ratio distortion
is precisely the class of symmetric homeomorphisms [BY], which was used to
characterize symmetric quasicircles.

2.3. QS2 as a partial topological group. Now we can define a neighborhood
system of the identity in QS2 that will make QS2 a partial topological group. For
any ǫ: 0 < ǫ < 1, we define neighborhood Nǫ to be the collection of all f ∈ QS2

such that for each chart hα in the given finite PSL(2,R)-structure H on J we
have

(2.1) |fα
α (x) − x| < ǫ and |(fα

α )−1(x) − x| < ǫ

whenever fα
α (x) and (fα

α )−1(x) are defined, and

(2.2) −ǫ < ψfα

α

(x, t) < ǫ and − ǫ < ψ(fα

α
)−1 < ǫ
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whenever the functions are defined. Recall that fα
α = hα◦f ◦h

−1
α is the conjugate

map on an interval in R with respect to a given chart hα. In words, a neighbor-
hood of identity is defined by small movement of points x (condition (2.1)) and
small distortion of symmetric triples x − t, x and x + t (condition (2.2)), when
viewed on each coordinate chart. Using quasiconformal extension properties of
quasisymmetric maps on the real line (see[Ah, GS]), one can show that QS2 is a
partial topological group under the neighborhood system {Nǫ}.

2.4. The characteristic topological subgroup of QS2. Now we can identify
the characteristic topological subgroup of QS2.

Theorem 2.2. Let J be a compact one-dimensional manifold with a finite

PSL(2,R)-structure H. Let QS2 be the partial topological group of quasisymmet-

ric homeomorphisms of J with respect to H. Then the characteristic topological

subgroup of QS2 is the class of all f ∈ QS2 with vanishing ratio distortion.

Proof. According to Lemma 2.2 and the definition of characteristic topological
subgroup given above, it suffices to show that for any f ∈ QS2 the conjugate
map: f ◦h◦f−1 is continuous at the identity in QS2 if and only if f has vanishing
ratio distortion.

Assume f ∈ QS2 has vanishing ratio distortion. We need to show that the
map f ◦ h ◦ f−1 is near the identity when h ∈ QS2 is near enough to the identity
in the sense of (2.1) and (2.2). Note that the notion of quasisymmetry, vanishing
ratio distortion and neighborhoods of identity in QS2 are all defined in terms of
charts in the given finite PSL(2,R) structure of J . Therefore, in proving the
above statement, one can assume that all maps are defined on finite intervals in
R. Then condition (2.1) for f◦h◦f−1 follows easily from the uniform continuity of
quasisymmetric maps and the fact that h is near the identity. To verify condition
(2.2) for f ◦ h ◦ f−1, we need to show that its distortion function

ψf◦h◦f−1(x, t) =
f ◦ h ◦ f−1(x+ t) − f ◦ h ◦ f−1(x)

f ◦ h ◦ f−1(x) − f ◦ h ◦ f−1(x− t)
− 1

has small absolute value for all t > 0 and x. This can be achieved by using
similar ideas as in [GS, Lemma 2.1]. For small values of t, one uses the fact that
f and f−1, having vanishing ratio distortion, distort small symmetric intervals
[x− t, x] and [x, x+ t] by no more than 1 + ǫ. For large values of t, one uses the
Hölder continuity of f and f−1. The details, which can be found in [St, Lemma
2.13], are omitted here.

Conversely, assume f ∈ QS2 does not have vanishing ratio distortion. We
need to show that conjugation by f is not continuous at the identity in QS2.
Again, as noted above, by composing with coordinate charts we may assume
that all maps are defined on finite intervals in R.
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Since f satisfies an M-condition and does not have vanishing ratio distortion,
there exists a sequence xn → x and a decreasing sequence of positive numbers
tn → 0 such that

lim
n→∞

f(xn + tn) − f(xn)

f(xn) − f(xn − tn)
= L 6= 1.

By choosing appropriate coordinate charts, we may further assume that all xn,
xn + tn, and x are contained in an open interval I1 where f satisfies an M-
condition. Without loss of generality, we can also assume that L > 1. Thus
there is an integer N such that

(2.3)
f(xn + tn) − f(xn)

f(xn) − f(xn − tn)
≥
N + 1

N

for all (large) n.

To show that the conjugation map h → f ◦ h ◦ f−1 is not continuous at
the identity, we consider the sequence < sn > of translation maps given by
sn(x) = x+ tn. Since tn → 0, the sequence < sn > converges to the identity. It
remains to show that the conjugate sequence f ◦sn◦f

−1 does not converge to the
identity. Suppose otherwise. We will derive a contradiction with the M-condition
satisfied by f .

For simplicity of notation, let yn = f(xn), y−n = f(xn−tn) and y+
n = f(xn+tn).

By (2.3), one can choose ỹ+
n such that yn < ỹ+

n ≤ y+
n and

ỹ+
n − yn

yn − y−n
= 1 +

1

N
.

This allows one to partition the interval [y−n , ỹ
+
n ] into exactly 2N + 1 intervals of

equal length by

y−n = p(0)
n < p(1)

n < · · · < p(N)
n = yn < p(N+1)

n < · · · < p(2N+1)
n = ỹ+

n .

By examining the distortions on consecutive symmetric intervals [p
(i−1)
n , p

(i)
n ] and

[p
(i)
n , p

(i+1)
n ], one can deduce that there exists δ > 0 such that if a map g is in the

δ-neighborhood Nδ of the identity, then

(2.4)
g(y+

n ) − g(yn)

g(yn) − g(y−n )
≥
g(ỹ+

n ) − g(yn)

g(yn) − g(y−n )
≥ 1 +

1

2N
.

Next, fix an integer k so that (1 + 1
2N

)k > M , where M is the constant in the
M-condition satisfied by f . By our contrapositive hypothesis that the sequence
gn = f ◦ sn ◦ f−1 converges to the identity, we can fix a sufficiently large n such
that for each m : 1 ≤ m ≤ k, the m-th iteration (gn)m = f ◦ (sn)m ◦ f−1 is in Nδ.
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Finally, applying (2.4) to g = (gn)m and its inverse, respectively, we obtain
that

f(xn + (m+ 1)tn) − f(xn +mtn)

f(xn +mtn) − f(xn + (m− 1)tn)
=

(gn)
m(y+

n ) − (gn)m(yn)

(gn)m(yn) − (gn)m(y−n )
≥ 1 +

1

2N

and

f(xn − (m− 1)tn) − f(xn −mtn)

f(xn −mtn) − f(xn − (m+ 1)tn)
=

(gn)
−m(y+

n ) − (gn)
−m(yn)

(gn)−m(yn) − (gn)−m(y−n )
≥ 1 +

1

2N
.

This yields that

f(xn + ktn) − f(xn)

f(xn) − f(xn − ktn)
=

∑k−1
m=0[f(xn + (m+ 1)tn) − f(xn +mtn)]

∑

m=1 k[f(xn − (m− 1)tn) − f(xn −mtn)]

≥

∑k−1
m=0(1 + 1

2N
)m

∑

m=1 k(1 + 1
2N

)−m
= (1 +

1

2N
)k > M,

which contradicts the M-condition satisfied by f . Therefore, conjugation by f is
not continuous at the identity. This completes the proof of Theorem 2.2.

3. Relation between QS1 and QS2

Let J be a Jordan curve in the plane. In this section we investigate the relation
between QS1, the group of QS maps of J with respect to the Euclidean metric,
and QS2, the group of QS maps of J with respect to a given PSL(2,R)-structure
H . We begin with two examples.

Example 3.1. Let H be the PSL(2,R) structure on the unit circle S1 deter-
mined by the charts:

Uα =

{

e2iπt : −
3

8
< t <

3

8

}

; hα(e2iπt) =

{

t, −3
8
< t ≤ 0 or 1

8
≤ t < 3

8
,

8t2, 0 ≤ t ≤ 1
8
;

Uβ =

{

e2iπt :
1

4
< t <

3

4

}

; hβ(e2iπt) = t.

Then any rotation given by rθ(z) = eiθz for θ 6= 2kπ is in the group QS1. But it
is not in QS2 because the transition map hα ◦ rθ ◦ h

−1
α (t) is not quasisymmetric.

Recall that QS2 is the group of homeomorphisms of S1 that are quasisymmetric
with respect to the given PSL(2R) structure.

Example 3.2. Let G be another PSL(2R) structure on S1 determined by the
charts:

U1 =

{

e2iπt : −
3

8
< t <

3

8

}

; h1(e
2iπt) =

{

t, −3
8
< t ≤ 0 or 1

8
≤ t < 3

8
,

8t2, 0 ≤ t ≤ 1
8
;
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U2 =

{

e2iπt :
1

8
< t <

7

8

}

; h2(e
2iπt) =

{

t− 1
2
, 1

8
< t ≤ 3

8
or 1

2
≤ t < 7

8
,

−8(t− 1
2
)2, 3

8
≤ t ≤ 1

2
.

Let f : S1 → S1 be defined by

f(e2iπt) =



























t+ 1
2
, −3

8
≤ t ≤ −1

8
or 1

8
≤ t ≤ 3

8
;

− 1
2
√

2
(−t)

1

2 + 1
2
, −1

8
≤ t ≤ 0;

8t2 + 1
2
, 0 ≤ t ≤ 1

8
;

−8(t− 1
2
)2, 3

8
≤ t ≤ 1

2
;

1
2
√

2
(t− 1

2
)

1

2 , 1
2
≤ t ≤ 5

8
.

Then f is in QS2, but not in QS1.

The above two examples show that in general the groups QS1 and QS2 do not
have any containment relation with each other. However, we can still establish
the following relations.

Theorem 3.3. Let J be a Jordan curve in the plane with a finite PSL(2,R)
structure H. If each of the charts in H is quasisymmetric with respect to the

Euclidean metric, then QS2 = QS1.

Proof. Assume f ∈ QS1. Then for each pair of charts hα and hβ in H , the map
hα ◦ f ◦ h−1

β is quasisymmetric whenever it is defined since it is a composition of
quasisymmetric maps. Hence f is in QS2.

Next assume f ∈ QS2. Then for each pair of charts hα and hβ in H , the map
hα ◦ f ◦ h−1

β is quasisymmetric. Since hα and hβ are quasisymmetric, it follows

that f = h−1
α ◦ hα ◦ f ◦ h−1

β ◦ hβ satisfies an M-condition on the open arc where
the right hand side is defined. Covering J by a finite number of such open arcs,
we see that f satisfies an M-condition on each of these open arcs. Therefore, by
[TV, Theorem 2.23], f satisfies a global M-condition on J . Hence f is in QS1.

As seen in the above examples, it is not always the case that each chart is
quasisymmetric. But, nevertheless, we have the following necessary condition for
QS1 = QS2.

Theorem 3.4. Let J be a Jordan curve in the plane with a finite PSL(2,R)
structure H. If QS1(J) = QS2(J,H), then either each chart in H is quasisym-

metric, or every chart is nowhere quasisymmetric.

We say that a map h from an open arc on J into the plane is nowhere qua-

sisymmetric if the restriction to any subarc fails to be quasisymmetric.

Proof of Theorem 3.4. As shown in [St, 3.12], piecing together a minimal
collection of charts in H covering J and using the exponential covering map
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exp(2πiθ) : R → S1, one can construct a homeomorphism f : J → S1 such that
locally f is the composition of a chart in H and the above exponential map.
This map f , called a complementary homeomorphism of H , enables one to lift
quasisymmetric homeomorphisms of S1 to maps in the class QS2.

Assume that QS1 = QS2. By the construction of the complementary map f , it
is sufficient to show that f (or its inverse, denoted by g) is either quasisymmetric
or nowhere quasisymmetric. For each s ∈ R define a rotation Rs : S1 → S1 by
Rs(e

2iπt) = e2iπ(t+s). Since the charts in H are quasisymmetrically compatible
with each other, one can verify that the map gs = g ◦Rs ◦ g

−1 : J → J is in the
class QS2. Thus, by the assumption that QS1 = QS2, gs is quasisymmetric in
the Euclidean metric for each s. Suppose that g : S1 → J is not quasisymmetric.
Then there exists a sequence of real numbers xn ∈ [0, 1] with xn → x0 ∈ [0, 1]
and a sequence of positive numbers tn → 0 such that

lim
n→∞

|g(e2iπ(xn+tn)) − g(e2iπxn)|

|g(e2iπxn) − g(e2iπ(xn−tn))|
= ∞ or 0.

Since gs is quasisymmetric and

g(e2iπ(x+s)) = g ◦Rs(e
2iπx) = gs ◦ g(e

2iπx),

for any x, it follows that

lim
n→∞

|g(e2iπ((xn+s)+tn)) − g(e2iπ(xn+s))|

|g(e2iπ(xn+s)) − g(e2iπ((xn+s)−tn))|
=

|gs ◦ g(e
2iπ(xn+tn)) − gs ◦ g(e

2iπxn)|

|gs ◦ g(e2iπxn) − gs ◦ g(e2iπ(xn−tn))|

= ∞ or 0.

This shows that g is not quasisymmetric in any neighborhood of e2iπ(x0+s) for all
s. Thus g, and hence f , is nowhere quasisymmetric. This completes the proof
of Theorem 3.4.

Remarks. It is not known whether the condition in Theorem 3.3 is necessary.
However, it is true that if each chart in a finite PSL(2,R) structure J is qua-
sisymmetric, then J is a quasicircle. It is also open whether there is a finite
PSL(2,R) structure such that each chart is nowhere quasisymmetric.
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