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Structure of Quantum Mechanics

State of a physical system: Unit-trace, positive operator
T :

T = λ1 |x1〉〈x1 | + . . . + λn |xn〉〈xn |,
where λi ≥ 0, λ1 + . . .+ λn = 1 (density matrix).

Observable: Self-adjoint operator A:

A = µ1 |y1〉〈y1 | + . . . + µn |yn〉〈yn |,

where µi ∈ R are the potential values of A

Minimal interpretation:

P(µi) = Tr(T |yi〉〈yi |)

is the probability of seeing value µi if A is observed
when the system is in state T .
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Projection Postulate

For a state

T = λ1 |x1〉〈x1 | + . . . + λn |xn〉〈xn |,

and observable

A = µ1 |y1〉〈y1 | + . . . + µn |yn〉〈yn |

P(µi) = Tr(T |yi〉〈yi |).
If µi was observed, the post-observation state is

|yi〉〈yi | T |yi〉〈yi |
Tr(T |yi〉〈yi |)

(Projection postulate)
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Example

Let n = 2 (quantum bit), |0〉 =

(

1

0

)

, |1〉 =

(

0

1

)

T =
1

2
|0〉〈0 | +

1

2
|1〉〈1 |=

(

1

2
0

0 1

2

)

and
A = σz = 1· |0〉〈0 | −1· |1〉〈1 | .

Then

P(1) = Tr(T |0〉〈0 |) = Tr(
1

2
|0〉〈0 |) =

1

2
, and

P(−1) = Tr(T |0〉〈0 |) = Tr(
1

2
|0〉〈0 |) =

1

2
.
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Example

T = 1· |0〉〈0 | +0· |1〉〈1 |=
(

1 0

0 0

)

and
A = σz = 1· |0〉〈0 | −1· |1〉〈1 | .

Then

P(1) = Tr(T |0〉〈0 |) = Tr(1 |0〉〈0 |) = 1, and
P(−1) = Tr(T |1〉〈1 |) = Tr(0) = 0.
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Example

T =
1

2
|0〉〈0 | +

1

2
|1〉〈1 |=

(

1

2
0

0 1

2

)

and

A = σx =

(

0 1

1 0

)

= 1· |y1〉〈y1 | −1· |y2〉〈y2 |,

where y1 = 1√
2
(1, 1) and y2 = 1√

2
(1,−1). Then

P(1) = Tr(T |y1〉〈y1 |) =
1

2
, and

P(−1) = Tr(T |y2〉〈y2 |) =
1

2
.
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Remark

The expected value of observable A in state T is

ET (A) =

n
∑

i=1

µiP(µi)

=
n
∑

i=1

µiTr(T |yi〉〈yi |)

= Tr(TA).
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The State Set Structure

If T1 and T2 are states, and λ ∈ (0, 1), then also
λT1 + (1 − λ)T2 is. (convexity)

T is extremal if T = λT1 + (1 − λ)T2 with λ ∈ (0, 1)
implies T1 = T2.

Extremals are called pure or vector states

Lemma: T is pure if and only if T =|x〉〈x | for some
unit-length x.

For a pure state T =|x〉〈x | and observable
A =

∑n
i=1

µi |yi〉〈yi |

P(µi) = Tr(T |yi〉〈yi |) = |〈x | yi〉|2 .
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Pure states

Let T =|x〉〈x | be a pure state and

A = µ1 |y1〉〈y1 | + . . . + µn |yn〉〈yn |

an observable. In representation

x = α1y1 + . . . + αnyn

αi = 〈yi | x〉 (amplitude of yi), so

P(µi) = |αi|2 .

Corollary: For each pure state T there is a nontrivial
observable A such that P(µ1) = 1 for a potential value µ1 of
A.
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Remark

For a pure state T =|x〉〈x | the expected value of
observable A is

ET (A) = Tr(TA) = Tr(|x〉〈x | A) = 〈x | Ax〉.
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Example

Let |0〉 =

(

1

0

)

and |1〉 =

(

0

1

)

vector 1√
2
|0〉 + 1√

2
|1〉 corresponds to a state

(

1√
2

1√
2

)

⊗ (
1√
2
,

1√
2
) =

(

1

2

1

2
1

2

1

2

)

,

but vector representation gives that for
A = 1· |0〉〈0 | −1· |1〉〈1 | we have

P(1) =

∣

∣

∣

∣

1√
2

∣

∣

∣

∣

2

=
1

2
= P(−1).
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Example

Let y1 = 1√
2
(|0〉 + |1〉), y2 = 1√

2
(|0〉 − |1〉), and

A = 1 |y1〉〈y1 | −1· |y2〉〈y2 | .

Vector state x = 1√
2
(|0〉 + |1〉) can then be written as

x = 1 · y1 + 0 · y2,

so
P(1) = 1 and P(−1) = 0.
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Quantum Bit (Qubit)

Quantum Bit = Two-level quantum system

|0〉 =

(

1

0

)

, |1〉 =

(

0

1

)

is called computational basis.

Computational basis ↔ preferred observable

A = v0 |0〉〈0 | +v1 |1〉〈1 |, (v0 6= v1)

“(Vector) state
ψ = α0 |0〉 + α1 |1〉 ,

observed” refers to observable A:

P(|0〉) = P(v0) = |α0|2 and P(|1〉) = P(v1) = |α1|2
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Quantum Bit (Qubit)

-

6

|0〉

|1〉

�
�

�
�

�
�

�
�

�
�

�
��>

a |0〉 + b |1〉

|a|2 + |b|2 = 1

Superposition of
|0〉 and |1〉

@R�	

Amplitudes

Measurement of

v0 |0〉〈0 | +v1 |0〉〈0 |:
P(v0) = |a|2, P(v1) = |b|2

Minimal interpretation!
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Quantum Bit (Qubit)

-

6

�
�

�
�

�
�

�
��

|0〉

|1〉
1√
2
|0〉 + 1√

2
|1〉

Basis 1:

{|0〉 , |1〉}
P(0) = 1

2

Basis 2:

{ 1√
2
|0〉 + 1√

2
|1〉 = |0′〉 ,

1√
2
|0〉 − 1√

2
|1〉 = |1′〉}

P(0′) = 1

= |0′〉

|1′〉

�
�

�
�

�
�

�
��

@
@

@
@

@
@

@
@R
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Compound Systems

Down → Up: Tensor product construction: T = T1 ⊗ T2,
A = A1 ⊗A2

Up → Down: Partial trace:
T1 = Tr1(T ) ⇐⇒ Tr(T (A1 ⊗ I)) = Tr(T1A1) for each A1

Example: Pure state

1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) =

1

2
(|00〉+ |01〉+ |10〉+ |11〉)

Or:

(

1

2

1

2
1

2

1

2

)

⊗
(

1

2

1

2
1

2

1

2

)

=











1

4

1

4

1

4

1

4
1

4

1

4

1

4

1

4
1

4

1

4

1

4

1

4
1

4

1

4

1

4

1

4










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Compound Systems

A vector
1√
2
|00〉 +

1√
2
|11〉

corresponds to a pure state

T =













1√
2

0

0
1√
2













⊗ (
1√
2
, 0, 0,

1√
2
) =











1

2
0 0 1

2

0 0 0 0

0 0 0 0
1

2
0 0 1

2











Subsystem states:

T1 = T2 =

(

1

2
0

0 1

2

)
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von Neumann Entropy

S = −Tr(T log T ),

where

f(T ) = f(λ1 |x1〉〈x1 | + . . . + λn |xn〉〈xn |)
= f(λ1) |x1〉〈x1 | + . . . + f(λn) |xn〉〈xn | .

For
T = p1 |x1〉〈x1 | + . . . + pn |xn〉〈xn |

T log T = p1 log p1 |x1〉〈x1 | + . . . + pn log pn |xn〉〈xn |
and

S(T ) = −Tr(T log T ) = −(p1 log p1 + . . . + pn log pn).
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von Neumann Entropy

For a pure state T =|x〉〈x |

S(T ) = −1 · log 1 = 0.

Example: Let A and B be qubits with joint state T =|x〉〈x |,
where x = 1√

2
|00〉 + 1√

2
|11〉.

S(T ) = 0, but for subsystem states S(T1) = S(T2) = 1.

Conditional entropy
S(T1 | T2) = S(T1, T2) − S(T2) = 0 − 1 = −1

Mutual information:

I(T1 : T2) = S(T1) − S(T1 | T2) = 1 − (−1) = 2

Quantum Information: Part II – p. 19/43



Compound Systems

Vector state x is decomposable, if x = x1 ⊗ x2 for
subsystem states x1 and x2. Otherwise, state is entangled.
Example:

1

2
(|00〉 + |01〉 + |10〉 + |11〉) =

1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 + |1〉)

is decomposable, whereas

1√
2
(|00〉 + |11〉)

is entangled.

Quantum Information: Part II – p. 20/43



Compound Systems

For pure state
1√
2
|00〉 +

1√
2
|11〉

P(|00〉) = P(|11〉) =

∣

∣

∣

∣

1√
2

∣

∣

∣

∣

2

=
1

2
,

and
P(|01〉) = P(|10〉) = 0

(perfect correlation)
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Compound Systems

Experiment on Canary islands 2007
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Compound Systems

Correlation over distance also possible in classical
mechanics:

1

2
[00] +

1

2
[11]

But
1√
2
|00〉 +

1√
2
|11〉

violates a Bell inequality.

For classical case:

I(A : B) = H(A) −H(A | B)

= H(A) +H(B) −H(A,B) = 1 + 1 − 1 = 1.
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EPR Paradox

Einstein, Podolsky, Rosen: Can
Quantum-Mechanical Description of
Physical Reality Be Considered
Complete?

Physical Review 47, 777–780 (1935)

Niels Bohr (1885–1962) & Albert Einstein (1879–1955)
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EPR Paradox (Bohm formulation)

Einstein: The physical world is local and realistic

Assume distant qubits in state 1√
2
|00〉 + 1√

2
|11〉

Quantum mechanics: neither qubit has definite
pre-observation value

Observe the first qubit

⇒ The value of the second qubit is known certainly
(without “touching” or “disturbing” it)

⇒ The value if the second qubit is “an element of reality”

⇒ Quantum mechanics is an incomplete theory
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John Bell

Bell inequalities

John Steward Bell (1928–1990)
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Bell Inequalities

Itamar Pitowsky: Quantum Probability – Quantum Logic,
Springer (1989)

Ballot box of 100 balls

Each red or blue, wooden or plastic

80 red, 60 wooden

30 red and wooden?

Then 80+60-30=110 are red or wooden. No way!

In other words: (0.8, 0.6, 0.3) does not express probabilities
(p1, p2, p12) of two events and their intersection.

Reason: P(1 ∨ 2) = p1 + p2 − p12 is a probability, too.
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Bell Inequalities

Lemma: (p1, p2, p12) is an “eligible” probability vector if and
only if

0 ≤ p12 ≤ p1, p2 ≤ 1 and 0 ≤ p1 + p2 − p12 ≤ 1

Bell inequalities!
Idea of proof:

Correlation polytope in R
3

Formed from collection {{1}, {2}, {1, 2}} as follows:
(e1, e2) 7→ (e1, e2, e1e2), where e1, e2 ∈ {0, 1}.

Extremals: (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1).

Polytope: Convex hull of the extremals

(p1, p2, p12) is an eligible probability if and only if it is in
the convex hull
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Bell Inequalities

Now

(p1, p2, p12)

= (1 − p2 − p2 + p12)(0, 0, 0)

+ (p2 − p12)(0, 1, 0)

+ (p1 − p12)(1, 0, 0)

+ p12(1, 1, 1).

However, the representation is not generally unique.
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Bell Inequalities

Example: {{1}, {3}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} generates a
correlation polytope in R

6 with extremals

{(e1, e3, e1e3, e1e4, e2e3, e2e4) | ei ∈ {0, 1}}

Easy to verify:

e1e4 + e1e3 + e2e3 − e2e4 − e1 − e3 ∈ {−1, 0}

for each extremal.

⇒ −1 ≤ p14 + p13 + p23 − p24 − p1 − p3 ≤ 0

is satisfied for each “eligible” vector (p1, p3, p13, p14, p23, p24)
(another Bell inequality).
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CHSH Inequality

Two communicating parties Alice and Bob (distance
large)

Alice chooses to measure A1 or A2, Bob B1 or B2 (all
±1-valued observables)

For fixed i, j ∈ {−1, 1} let p1 = P(i | A1), p2 = P(i | A2),
p3 = P(j | B1), p4 = P(j | B2).

Locality: p1 = P(i | A1) = P(i | A1, B1) = P(i | A1, B2),
p3 = P(j | B1) = P(j | A1, B1) = P(j | A2, B1), etc.

Also, p13 = P(i, j | A1, B1), p14 = P(i, j | A1, B2),
p23 = P(i, j | A2, B1), p24 = P(i, j | A2, B2).
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CHSH Inequality

For fixed i, j ∈ {−1, 1} let p1 = P(i | A1), p2 = P(i | A2),
p3 = P(j | B1), p4 = P(j | B2).

Locality: p1 = P(i | A1) = P(i | A1, B1) = P(i | A1, B2),
p3 = P(j | B1) = P(j | A1, B1) = P(j | A2, B1), etc.

Also, p13 = P(i, j | A1, B1), p14 = P(i, j | A1, B2),
p23 = P(i, j | A2, B1), p24 = P(i, j | A2, B2).

Bell:

−1 ≤ P(i, j | A1, B1) + P(i, j | A1, B2) + P(i, j | A2, B1)

− P(i, j | A2, B2) − P(i | A1) − P(j | B1) ≤ 0

Multiply with ij for all i, j ∈ {−1, 1} and sum:
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CHSH Inequality

−1 ≤ P(i, j | A1, B1) + P(i, j | A1, B2) + P(i, j | A2, B1)

− P(i, j | A2, B2) − P(i | A1) − P(j | B1) ≤ 0

Multiply with ij for all i, j ∈ {−1, 1} and sum:

−2 ≤ E(A1B1) + E(A1B2) + E(A2B1) − E(A2B2) ≤ 2

(CHSH inequality). Here

E(AkBl) =
∑

i,j∈{−1,+1}
ijP(i, j | Ak, Bl)

is the expected value (correlation).
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EPR Paradox Resolved

Assume Alice and Bob share state x = 1√
2
|00〉+ 1√

2
|11〉.

Define observables

A1 =

(

0 1

1 0

)

, A2 =

(

1 0

0 −1

)

,

B1 =
1√
2
(A1 + A2), B2 =

1√
2
(A1 − A2)

(eigenvalues = potential values =±1)

On state x, E(A1B1) = 〈x | (A1 ⊗B1)x〉
Likewise for E(A1B2), etc.
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EPR Paradox Resolved

E(A1B1) + E(A1B2) + E(A2B1) − E(A2B2) = 2
√

2,

which contradicts CHSH inequality

−2 ≤ E(A1B1) + E(A1B2) + E(A2B1) − E(A2B2) ≤ 2.

Conclusion:

Locality, realism, and quantum mechanics form a
contradictory set of assumptions.
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Cryptography

Classical:

Recovering the encryption key is computationally difficult /
impossible

Quantum:

Recovering the encryption key is physically difficult /
impossible
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One-Time Pad

Plaintext: p = 0011101010110101100

Key: Random string k = 0101010110111001010

Cryptotext: c = p ⊕ k = 0110111100001100110

To retrive the plaintext: c ⊕ k = p ⊕ k ⊕ k = p

If c1 = p1 ⊕ k and c2 = p2 ⊕ k, then
c1 ⊕ c2 = (p1 ⊕ k) ⊕ (p2 ⊕ k) = p1 ⊕ p2

BB84: Protocol for key generation
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Protocol BB84

Let |0′〉 = 1√
2
|0〉 + 1√

2
|1〉, |1′〉 = 1√

2
|0〉 − 1√

2
|1〉.

|0〉 = 1√
2
|0′〉 + 1√

2
|1′〉, |1〉 = 1√

2
|0′〉 − 1√

2
|1′〉.

|〈0 | 0′〉|2 = |〈0 | 1′〉|2 = |〈1 | 0′〉|2 = |〈1 | 1′〉|2 = 1

2
.

1. Alice selects a random bit string x1 . . . xn

2. For i = 1 to n:

3. If xi = 0, Alice sends |0〉 or |0′〉 (50% − 50%). If xi = 1,
Alice sends |1〉 or |1′〉 (Alice uses encoding
A = {|0〉 , |1〉} and A′ = {|0′〉 , |1′〉}).

4. Bob selects observable B = 1· |0〉〈0 | −1· |1〉〈1 | or
B′ = 1· |0′〉〈0′ | −1· |1′〉〈1′ | (50% − 50%).
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Protocol BB84

Let |0′〉 = 1√
2
|0〉 + 1√

2
|1〉, |1′〉 = 1√

2
|0〉 − 1√

2
|1〉.

|0〉 = 1√
2
|0′〉 + 1√

2
|1′〉, |1〉 = 1√

2
|0′〉 − 1√

2
|1′〉.

5. If e.g. Alice’s qubit is |0′〉 and Bob selected observable
B, he sees zero with 50% probability. If Bob selected
observable B′, he sees zero with 100% probability.

6. For approximately 1/2 of the sent qubits we have
correspondence A ↔ B and A′ ↔ B′.
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Protocol BB84

7. Alice and Bob publish lists A1, . . ., An and B1, . . ., Bn,
telling Alice’s codings {|0〉 , |1〉} or {|0′〉 , |1′〉} and the
observables used by Bob.

8. Alice ja Bob pick from sequence x1, . . ., xn the bits y1,
. . ., yk, where Alice’s coding corresponds to Bobs basis
(k ≈ n/2). Alice’s and Bob’s bits should coincide.

9. Alice chooses randomly indices i1, . . ., il ≤ k (l = k/2)
and publishes those.

10. Alice and Bob publish the bits corresponding to the
indices and compare the bits.

11. If the published bits coincide, Alice and Bob conclude
that the communication has been secret, and use the
unpublished bits as an encryption key.
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Protocol BB84

1. Eavesdropper (Eve), (A special case):

2. If Eve uses basis B and Alice encoding A, the quantum
bit does not change when Eve observes.

3. If Eve uses basis B′ and Alice encoding A, the quantum
bit will change when Even observes: |0〉 7→ |0′〉 with 50%
probability, and |0〉 7→ |1′〉 with 50% probability.

4. The probability of not changing the bit is 50%.

General case:
Dominic Mayers: Unconditional Security in Quantum
Cryptography. Journal of the ACM 48:3, 351–406 (2001)
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http://www.idquantique.com/
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