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REGULAR LANGUAGES AND FSA

� Regular languages can be represented equivalently as rational expressions
or as deterministic finite automata.

� A finite state automaton is denoted by

A=(Q,Σ,I,δ,F),
where Q is the set of states, Σ is the finite alphabet, I the set of
initial states, F the set of final states, δ the transition function
from Q� Σ to 2Q.

� The automaton is deterministic (DFA), denoted by A=(Q,Σ,i,δ,F), if it
has a unique initial state and if δ is a function from Q� Σ to Q.

� There is a unique DFA (up to a renaming of the states) with a minimal
number of states, called minimal automaton, recognizing a regular
language L.

� The description of a language with its minimal automaton is important
when space considerations matter in implementations of applications, such
as in Pattern Matching, Lexical Analysis, Coding Systems, and so on.

WORDS 2013 - Turku, September 16-20
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NERODE EQUIVALENCE

� The minimal automaton equivalent to a given 
automaton A (i.e. recognizing the same language)  is 
defined by the right-invariant Nerode equivalence. 

� Given a state p ∈Q, we consider the language

Lp(A)={v∈Σ* | δ(p,v) ∈F}

� The Nerode equivalence is defined as follows: 
p ∼ q if Lp(A)=Lq(A)

� It is a congruence, i.e. for any a ∈Σ , 

p ∼ q implies δ(p,a) ∼ δ(q,a), 
and it is the coarsest congruence such that F is
union of classes of the congruence. 

� The equivalence classes are the states of the 
minimal automaton. 
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HOW TO COMPUTE IT?
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MINIMIZATION ALGORITHMS

� There are lots of methods which can be used to minimize a finite
automaton, i.e. to find the minimal automaton equivalent to a given DFA.

� Some of them operate by successive refinements of a partition of the
states:
� Moore, 1956. Time complexity O(kn2), k=|Σ|
� Hopcroft, 1971. Time complexity O(knlogn), k=|Σ|

� The Bzrozowski’s method (1962) operates by reversal and
determinization repeated twice.

Time complexity: exponential worst case, but good performance in
practice.

� A taxonomy of finite automata minimization algorithms is given by B.
Watson, 1994.

� “Minimization of automata” by Berstel, Boasson, Carton, Fagnot, 2010.

� Polynomial variants of Brzozowski’s method have been recently
introduced.

� Many papers on experimental comparison between minimization
algorithms.

WORDS 2013 - Turku, September 16-20
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HOPCROFT’S ALGORITHM: THE FASTEST

WORDS 2013 - Turku, September 16-20

� No faster algorithm is known for general deterministic
automata

� In order to obtain the Nerode equivalence, a sequence
of refinements of equivalence relations is realized.

� The sequence starts with the partition in two classes
separating final and not final states.

� It is based on the so-called “smaller half” strategy
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EXECUTION OF HOPCROFT’S ALGORITHM

WORDS 2013 - Turku, September 16-20

Let A=(Q,Σ,i,δ,F) be a DFA.

1: Π ← {F, Fc} 
2: for all a ∈ Σ do
3: Add((min(F, Fc ), a),W) 
4: while W ≠ ∅ do
5: (C, a) ← TakeSome(W)
6: for each P ∈ Π which is 

split by (C, a) do
7: P′, P′′ ← (C, a)|P 
8: Replace P by P′ and P′′ in Π
9: for all b ∈ Σ do 
10: if (P, b) ∈ W then
11:             Replace (P, b) by (P′, b) 

and (P′′ , b) in W
12: else
13: Add((min(P′, P′′), b),W)
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Let Π a partition of Q:
� A pair (C,a) where C∈ Π

and a∈Σ is a splitter if
there exists a class P in Π
such that

∅ ⊄ δ−1
a(C) ∩ P ⊄ P

� The class P is split in
δ−1

a(C) ∩ P and P/ δ−1
a(C)

� The smallest set coupled
with some symbol of the
alphabet goes into the
waiting set.

� At each step a pair from
the waiting set is
extracted and the
algorithm stops when the
waiting set is empty.
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HOPCROFT’S ALGORITHM: AN EXAMPLE
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HOPCROFT’S ALGORITHM: AN EXAMPLE
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HOPCROFT’S ALGORITHM: THE DERIVATION TREE
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GENERAL FEATURES OF THE

ALGORITHM

� The refinement process leading to the final 
partition could be not unique.

� For a given automaton, there could be different 
executions with different time complexity.

Question: Is the time complexity tight?

[Berstel, Carton 2004]
There exist cyclic unary automata where you need 
Ω(n log n) time if you are “unlucky”.
They are related to De Bruijn words.
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CYCLIC UNARY AUTOMATA

w= 11101000

Aw

A natural question is: 
do there exist infinite families of automata for which
each execution of Hopcroft’s algorithm runs in 
O(n log n)?

w is a word 
a1a2…an over A={0,1}. 

Aw=(Q,Σ,δ,F)  the cyclic
automaton associated to w:
Q={1,2,…,n}, Σ={a}

δ(i,a)=(i+1), i<n
δ(n,a)=1

F={ i ∈Q | ai=1}
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CIRCULAR WORDS

A={0,1} binary alphabet.
� u,v ∈ A* conjugate: ∃ z,w in A* s.t. v=zw and u=wz
� conjugacy is an equivalence relation:

let w ∈ A*, by (w) we denote the class of all the
conjugates of the word w and we call it circular word;

� a factor of (w) is a factor of ww of length not greater
than |w|;

� u is a special factor of (w) if both u0 and u1 are
factors of (w).

Example: 

(01001100) 00 is a special factor

0
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CIRCULAR STANDARD WORDS

Recall the notion of standard word:

d1, d2,…,dn,… a sequence of natural integers d1≥0, di>0

{sn}n≥0 sequence of words over A={0,1} where

s1=0, sn+1= sn
dn sn-1 for n ≥1

Each finite word sn is called standard word.

(d1, d2,…,dn,… ) directive sequence

(1,1,…,1,…) corresponds to Fibonacci words.

(w) is a circular standard word if w is a standard word.
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Proposition (Borel, Reutenauer). Let v be a word of length n≥2. 
(v) is a circular standard word iff for k=0,…,n-1, (v) has exactly k+1
factors of length k;

Proposition. Let v be a word of length n. 

(v) is standard iff ∀ k=0,…,n-2, (v) has a unique special 

factor of length k.

CIRCULAR STANDARD WORDS

1
0

01

0
0

0

1

(10010010)

is standard

For k=2, there are 3 distinct 

factors of length 2

1
0

01

0
0

0

1

(10010010)

is standard

Special factors:

k=0 ε

k=1 0

k=2 10

k=3 010

k=4 0010

k=5 10010

k=6 010010
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SOME ANSWERS ON UNARY AUTOMATA

� [Castiglione, Restivo, S. 2008] 
- There exist cyclic unary automata for which the 
execution of Hopcroft’s algorithm is unique. 
They are associated to circular standard words.
- There exist unary automata where you need always 
Ω(n log n) time. They are associated to circular 
Fibonacci words.

� [Berstel, Boasson, Carton, 2009]
The same holds for cyclic unary automata associated 
to all circular standard words having directive 
sequences for which the sequence of geometric 
means is bounded.
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SOME ANSWERS ON UNARY AUTOMATA

� [Castiglione, Restivo, S. 2008] 
- There exist cyclic unary automata for which the 
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DERIVATION TREE
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And so on…



FACTORIZATION OF CIRCULAR

STANDARD WORDS

� Each circular standard 
words can be uniquely
‘’circularly’’ factored in 
{0,01} and {10p, 10p+1}.

� By using such encoding we
obtain again circular
standard words. 

� Example: 

w=0010010010=
� 0|01|0|01|0|01|0|

->1010101 denoted by L(w)

� 00|100|100|10
->100 denoted by R(w)
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REDUCTION TREE OF A CIRCULAR STANDARD WORD

� if (w)=(0) or 
(w)=(1), τ(w) is a 
single node with 
label (0);

� if |w| > 1, τ(w) is 
a tree with root 
labeled by (w) 
having respectively 
as left and right 
subtrees τ(L(w)) 
and τ (R(w)).
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and (v) be circular standard words, then τ (w)=τ(v) iff 
(w)=(v) up to exchanging 0 with 1. 

w= 0010010010



ISOMORPHISM BETWEEN TREES

� THEOREM (Castiglione, Restivo, S. 2009): 
If (w) is a circular standard word then the 
derivation tree of Aw and the reduction tree are 
isomorphic. 
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TIGHTNESS PROBLEM: UNARY CASE?

REMARK:

The unary case is a very special case because automata
minimization can be achieved also in linear time when the
alphabet has only one letter [Paige,Tarjan, Bonic, 1985]
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Do there exist infinite families of binary automata
for which each execution of 
Hopcroft’s algorithm runs in O(n log n) ?



LABELED BINARY TREES

Let Σ={0,1} (alphabet for the shape) and A={a,b} (alphabet for the 
labels) be two binary alphabets.

A binary labelled tree is a map τ: Σ* -> A whose domain dom(τ) is a 
prefix-closed subset of Σ*.
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EXAMPLE
If dom(t) is finite, the tree is finite, 
else the tree is infinite.

Height of a finite tree: the maximal 
length plus 1 of the elements of 
dom(t).

Complete infinite tree: 
the domain is Σ*. 

Complete finite tree of height n: 
the domain is Σn−1.

Factor: a finite complete subtree

subtree

factor
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STANDARD TREES

Given a finite tree τ, we denote by τω the complete infinite tree 
obtained by recursively concatenating τ to each node of the frontier. 
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Circular factor: a factor of τω of height at 
most h(τ)

Example:
a

b a

a b

b

a

b a

a b

b

a

b a

a b

b

Standard tree: if for each 0 ≤ h ≤ h(τ)−2
it has exactly one special circular factor of 
height h and it has exactly 2 estensions
(2-special circular factor).

Special circular factor: a circular factor 
having at least two complete extensions in τω

a

b a

a b

b a

a aba

h=0 Empty tree

h=1

h=2

a is 2-special 

a

b a
is 2-special 

a
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TREE-LIKE AUTOMATA
� Given a finite binary labeled tree τ we can uniquely associate a

tree-like automaton Aτ having τ as skeleton.

WORDS 2013 - Turku, September 16-20

• For each missing edge we
add a transition to the
root of the tree.

• Moreover, the root is the
initial state and the
states corresponding to
nodes labelled by a (resp.
b) are non-final (resp.
final) states.
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HOPCROFT’S ALGORITHM ON

STANDARD TREE-LIKE AUTOMATA

A standard tree-like automaton is a tree-like automaton
Aτ =(Q,Σ,i,δ,F) associated to a standard tree τ.

We denote by Qσ the set of states

where the tree σ occurs as a circular factor.

For instance if σ= then Qσ={1,4}

THEOREM (Castiglione, Restivo, S. 2010): Let Aτ be a 
standard tree-like automaton. The sequence of the refinement 
process Π1,Π2, ...Πm is uniquely determined, m=h(τ)−2 and 
Πk = {Qσ| σ is a circular factor of τ with h(σ) = k} and |Πk|=k+1
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IDEA OF THE PROOF

The proof is by induction on k. 

It uses the following result:

Proposition: Let Aτ be a standard tree-like automaton.
Let Qσ and Qγ be classes of a partition of Q.
If (Qγ, x) splits Qσ, for some x ∈ Σ, with h(γ) =h(σ),
then σ is a 2-special circular factor of τ. The resulting
classes are Qσ’ and Qσ′′, where σ′ and σ′′ are the only
two possible extensions of σ in τ.

We proved that at each step, the splitter in the
waiting set satisfies the hypothesis of the
proposition.
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WORD TREES AND WORD AUTOMATA

Given a word w, a word tree tw is a binary labeled tree in which
the alphabet of the shape and the labels coincide.
Moreover, dom(tw) is the set of prefixes of w.
The word automaton Aw is the tree-like automaton associated to
tw
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w=abaababa
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b
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standard word tree
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TIGHTNESS OF HOPCROFT’S ALGORITHM

We consider the executions of Hopcroft’s algorithm
on binary word automata.

THEOREM (Castiglione, Restivo, S. 2010): There
exists an infinite family of binary automata for which
each execution of Hopcroft’s algorithm runs in time
Θ(n log n).

The bound is tight on word automata associated to
standard word trees constructed with Fibonacci
words.
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IN THE PROOF

WORDS 2013 - Turku, September 16-20

We prove and use the following:

Proposition: Let τw be a standard word tree. 
Each execution of Hopcroft’s algorithm on Aτw has time complexity CH 
satisfying  

∑ σ∈sp(τw) min(|Qσ’ |, |Qσ’’ |) +n-1≤ CH(Aτw) ≤ 2 × ∑ σ∈sp(τw) min(|Qσ’ |, |Qσ’’ |)

where with sp(τw) we denote the set of 2-special circular factor of τw.

REMARK: If we consider the circular standard word w=anb, all the
executions run in time Θ(n). If word automata associated to fibonacci
words, the time complexity is Θ(n log n).
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SOME RESULTS ON AVERAGE

[David 2012]
� For the uniform distribution on complete deterministic

automata, the average time complexity of Moore's state
minimization algorithm is O(nloglogn).

� There is a family of implementations of Hopcroft’s state
minimization algorithm are always faster than Moore’s
algorithm.

[Bassino, David, Sportiello 2012]
� For the uniform distribution on complete deterministic

accessible automata, there exists a family of
implementations of Hopcroft’s state minimization
algorithm whose average complexity is O(n log log n).
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WHAT ABOUT OTHER MINIMIZATION

ALGORITHMS?

� Word automata associated to Fibonacci words 
are a challenging class for other minimization 
algorithms.

W
O

R
D

S
 2

0
1

3
 -

T
u

rk
u

, S
e

p
te

m
b
e
r 1

6
-2

0

34



BRZOZOWSKI’S METHOD

Given the automaton A= (Q,Σ,δ,q0,F) recognizing the language L

� With d(A) we denote the deterministic automaton equivalent to A
(obtained by the subset construction).

� With r(A) we denote the reverse of A.

The minimal automaton recognizing L is  d(r(d(r(A))))
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TIME COMPLEXITY OF BRZOZOWSKI’S
ALGORITHM

� Since the reverse of an automaton can be computed in
linear time with respect to the number of states and
transictions, the critical part is the accessible subset
construction.

� Time complexity is exponential in the worst case.

� The sum of the size of all accessible states in the subset
construction d(r(A)), is a lower bound of the time
complexity of the accessible subset construction and then
a lower bound for the algorithm.

WORDS 2013 - Turku, September 16-20
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BRZOZOWSKI’S ALGORITHM AND WORD

AUTOMATA

� [Castiglione, Nicaud, S. 2011]
Brzozowski’s algorithm has a Ω(n2) time complexity 
for word automata constructed by Fibonacci words.
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OTHER RESULTS

� De Felice, Nicaud: Brzozowski Algorithm is Generically 
Super-Polynomial for Deterministic Automata, 2013.

� Brzozowski, Tamm: Minimal Nondeterministic Finite 
Automata and Atoms of Regular Languages, 2013

� Brzozowski, Tamm: Quotient Complexities of Atoms of 
Regular Languages, 2012.

� Vazquez de Parga, García, López: A polynomial double 
reversal minimization algorithm for deterministic finite 
automata, 2013

� Vazquez de Parga, García, López: DFA minimization: from 
Brzozowski to Hopcroft, 2013
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WHAT ABOUT THE VARIANTS?

� We consider the recent variant proposed by 
[Garcia, Lopez, Vazquez de Parga, 2013]
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PARTIAL REVERSE DETERMINIZATION

Minimization by PRD (A = (Q;Σ; δ; q0; F))

1. Π ← {F;Q \ F}

2. S = F

3. L = ∅

4. for all a ∈ Σ do

5. L ← (S; a)

6. while L ≠ ∅ do

7. choose and delete a pair (S; a) from L

8. for all B ∈ Π  do

9. if B is split by (S; a) then

10. B′  ← δ−1
a(S) ∩ B

11. B′′ ← B\ δ−1
a(S) 

12. Π ← Π \ B ∪ {B’∪ B’’}

13. for all b ∈ Σ do

14. L ← L ∪ {( δ−1
a(S),b)}
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PRD ALGORITHM ON WORD AUTOMATA

� We consider the word automaton associated to 
fibonacci word fn

� Example  f6= abaababaabaab
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If n is even, if we consider a set of δ-1 operations by using the letters of fn-2,
we obtain sets that are complement of singletons

Ex. f6 = abaababaabaab

{7}c {6}c {1}c

- At each step only a subset causes a split and then goes into the waiting set
L.

- The subsets {Fn-1−1}c, ...,{1}c are obtained as inverse image by δ and cause a
split.

- The waiting set contains Fn-1-1 sets of cardinality Fn-1
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TIME COMPLEXITY FOR

STANDARD WORD AUTOMATA

� THEOREM: Let Aw the word automaton
associated to a circular standard word. The
minimal automaton is obtained by PRD algorithm
by a sequence of δ-1

b1
, δ-1

b2
, ..., δ-1

b|w|-2
where

b1b2…b|w|-2 is the prefix of length |w|-2 of w.

� THEOREM: Let Afn the word automaton
associated to the n-th Fibonacci word fn with Fn

states. Then

CPRD(Fn)= Θ(Fn
2) 

They represent the worst case of the algorithm!
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PROBLEMS AND PERSPECTIVES

� Are Fibonacci word automata challenging for the 
minimization process? Is there any better 
minimization algorithm for DFA?

� Characterizing the words for which the 
correspondent word automata are always 
difficult to be  minimized.
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W

O
R

D
S

 2
0

1
3

 -
T

u
rk

u
, S

e
p

te
m

b
e
r 1

6
-2

0

46


