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Definitions

Σs = {0, 1, . . . , s − 1} we call an alphabet.
Σ∗ = {ε} ∪

⋃
n∈IN Σn — the set of finite words over Σ.

x = x0x1 . . . ∈ ΣIN0 — an infinite word over Σ.

u ∈ Σn is a factor [A. Thue 1906] of x = x0x1 . . . occurring at
position i in x = x0x1 . . . iff u = xixi+1 . . . xi+n−1. In the case
i = 0, the word u is a prefix of x .

The language of factors (of length n) of x is denoted by Fx
(Fx(n)) and the language of prefixes — by Px .
A morphism ϕ : Σ∗ → ∆∗ is a mapping satisfying to
ϕ(vw) = ϕ(v)ϕ(w) for each pair of words v ,w .
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Definitions

An infinite word x = x0x1 . . . over Σ.

Factor complexity [Ehrenfeucht et al. 1975] fx(n) = |Fx(n)|.

Arithmetical complexity [Avgustinovich et al. 2001]
fx(n) = |{xkxk+d . . . xk+(n−1)d : k ∈ IN0 , d ∈ IN}|.

Maximal pattern complexity [T. Kamae, L.Q. Zamboni 2002]
p∗x(n) = supt1<t2<...<tn |{xk+t0xk+t1 . . . xk+tn : k ∈ IN0}|.

Abelian complexity [G. Richomme et al. 2009]
f abx (n) = |Fx(n)/ ∼ab |, where v ∼ab w iff |v |a = |w |a for each
a ∈ Σ.

k-abelian complexity [J. Karhumaki et al. 2012]

f k,abx (n) = |Fx(n)/ ∼k,ab |, where v ∼k,ab w iff |v |u = |w |u for
each u ∈ Σ6k .
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Key definitions

u ∈ Σn is a subword of x = x0x1 . . . iff u = xI = xi1xi2 . . . xi|u| for
some set I = {i1 < i2 < . . . i|u|} ⊂ IN0.

Binomial coefficient [Lothaire’s “Combinatorics on Word”
Section 6.3] of u in v is

(v
u

)
= |{I ⊆ [0, |v |) : vI = u}|.

v ,w are k-binomial equivalent v ∼k w iff
(v
u

)
=
(w
u

)
for each

u ∈ Σ6k .

Examples(an
ak

)
=
(n
k

)
,
( u
ak

)
=
(|u|a

k

)
01100 ∼2 10010

(01100
01

)
= |{01100, 01100}| = 2 =

(10010
01

)
01100 6∼3 10010

(01100
110

)
= |{01100, 01100}| = 2 6=

(10010
110

)
= 1
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Classes of k-binomial equivalence

For a word v define the class B(k)(v) ∈ Σ∗/ ∼k s.t. v ∈ B(k)(v).

Observation (
vw

u

)
=

∑
ps=u, p,s∈Σ∗

(
v

p

)(
w

s

)
.

Corollary

For a given k , the operation ◦ satisfying to the property
B(k)(v) ◦ B(k)(w) = B(k)(vw) for each v ,w is well defined.

M. Rigo, P. Salimov



Monoid of k-binomial equivalence classes

For a word v and a word u = u0u1 . . . uk−1 of length k define the
(k + 1)× (k + 1) matrix

Mu(v) =



1
( v
u0u1...uk−1

) ( v
u0u1...uk−2

)
. . .

( v
u0u1

) ( v
u0

)
0 1 0 . . . 0 0
0

( v
uk−1

)
1 . . . 0 0

0
( v
uk−2uk−1

) ( v
uk−2

)
. . . 0 0

. . . . . . . . . . . . . . . . . .
0

( v
u2u3...uk−1

) ( v
u2u1...uk−2

)
. . . 1 0

0
( v
u1u2...uk−1

) ( v
u1u1...uk−2

)
. . .

( v
u1

)
1


.

The statement Mu(vw) = Mu(v)Mu(w) holds for each v ,w .

Parikh matrices should be there.
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Monoid of k-binomial equivalence classes

For a word v and a number k define the matrix

Mk(v) =


Mu(1)(v) 0 . . . 0

0 Mu(2)(v) . . . 0
. . . . . . . . . . . .
0 0 . . . M

u(|Σ|k )(v)

 ,

where the sequence u(1), u(2), . . . is the lexicographical of Σk .
The statement Mk(vw) = Mk(v)Mk(w) holds for each v ,w .

Conclusion

The monoid 〈B, ◦〉 is isomorphic to a submonoid of matrices.

M. Rigo, P. Salimov



The number of k-binomial equivalence classes

For 2-abelian equivalence |Σn
2/ ∼2,ab | = n2 − n + 2

And, in general, |Σn
s / ∼k,ab | = Θ(n(s−1)sk−1

)

Lemma

|Σn
2/ ∼2 | = n3+5n+6

6

|Σn
2/ ∼k | ∈ O(n(k−1)2k+1+2)

The family of words of the 1i0j10l1m has a representative in each
2-binomial class. ∑

u∈Σn

(
v

u

)
=

(
|v |
n

)
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k-binomial complexity

k-binomial complexity of a word x = x0x1 . . . is

b
(k)
x (n) = |Fx(n)/ ∼k | the number of its factors of length of n

distinct up to k-binomial equivalence.

b
(k)
x (n) 6 b

(k+1)
x (n)

f abx (n) 6 b
(k)
x (n) 6 fx(n)

M. Rigo, P. Salimov



k-binomial complexity, Sturmian case

An infinite word x = x0x1 . . . is Sturmian iff x is aperiodic and for
any two factors v ,w of equal length ||v |1 − |w |1| 6 1.

Example

Consider the morphism ϕ : 0 7→ 01, 1 7→ 0 and its fixed point
0100101001001 . . .

fx(n) ≡ n + 1 , f abx (n) ≡ 2 , p∗x(n) ≡ 2n

Theorem

For a Sturmian word x , b
(k)
x (n) ≡ n + 1 for each k > 1.
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k-binomial complexity, Sturmian case, proof sketch

Let 00 ∈ Fx for a Strumian x .
There exists a unique k and a Sturmian word y s.t. for any v ∈ Fx

v = 0r10k+ε010k+ε11 . . . 0k+εn−110s ,

where r , s 6 k + 1 and ε = ε0ε1 . . . εn−1 ∈ Fy .

Define S(ε) =
∑n−1

i=0 (n − i)εi .

Consider
( v

01

)
= r(n + 1) + S(ε) + k n(n+1)

2

Lemma

Let n ≥ 1. If ε 6= ε′ are factors of length n occurring in a Sturmian
word, then S(ε) 6≡ S(ε′) (mod n + 1).

M. Rigo, P. Salimov
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k-binomial complexity, Sturmian case, proof sketch

S(ε,m) =
∑m−1

i=0 (n − i)εi and S(ε) = S(ε, n − 1)

Lemma

Let n ≥ 1. If ε 6= ε′ are factors of length n occurring in a Sturmian
word y , then S(ε) 6≡ S(ε′) (mod n + 1).

Define ∆(m) := |ε0ε1 · · · εm−1|1 − |ε′0ε′1 . . . ε′m−1|1 ∈ {−1, 0, 1}
Note that ∆ is either non-negative or non-positive due to
balanceness of a y .

S(ε, j + 1)− S(ε′, j + 1) =

∆(j + 1) > ∆(j) ⇒ S(ε, j)− S(ε′, j) + (n − j − 1)

∆(j + 1) = ∆(j) ⇒ S(ε, j)− S(ε, j)

∆(j + 1) < ∆(j) ⇒ S(ε, j)− S(ε′, j)− (n − j − 1).

In view of these observations, we have 0 < S(ε)− S(ε′) < n + 1

M. Rigo, P. Salimov



k-binomial complexity, Thue-Morse case

Consider the morphism ϕ : 0 7→ 01, 1 7→ 10
Its fixed point 011010011001 . . . is the Thue-Morse word.

fx(n) grows linearly.

f abx (n) ∈ [2, 3]

ax(n), p∗x(n) ≡ 2n

A morphism ϕ is balanced if ϕ(a) 'ab ϕ(b) for all symbols
a, b ∈ Σ.

Theorem

A fixed point of a balanced morphism has bounded k-binomial
complexity for each k .
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Complexity in Thue-Morse case, sketch of a good proof

Theorem

A fixed point of a balanced morphism has bounded k-binomial
complexity for each k .

Let x = ϕ(x) and ϕ(a) 'ab ϕ(b) for all symbols a, b ∈ Σ. Fix n.

Each v ∈ Fx(n) admits a decomposition v = pϕk(u)s, where p, s
are from finite set.

B(k)(v) = B(k)(p) ◦ B(k)(ϕk(u0)) ◦ B(k)(ϕk(u1)) ◦ . . . ◦ B(k)(s)

Lemma

If ϕ is a balanced morphism then B(k)(ϕk(a)) = B(k)(ϕk(b)) for
all a, b.

M. Rigo, P. Salimov
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Complexity in Thue-Morse case, sketch of a good proof

Lemma

If ϕ is a balanced morphism then B(k)(ϕk(a)) = B(k)(ϕk(b)) for
all a, b.

ϕ(a) 'ab ϕ(b) for all symbols a, b ∈ Σ. Prove by induction.

For a ∈ Σ define the word v0v1 . . . vl = ϕ(a). Denote the set of
monotonous increasing subsequences of size p of a finite set A by
IS(A, p). For an element f ∈ IS(A, p) denote by f (i) the i ’s
element of the sequence f starting numeration from 1.(

ϕm+1(a)

u

)
=

(
ϕm(v)

u

)
=
∑

06i6l

(
ϕm(vi )

u

)
+

+
∑

e(1)e(2)...e(p)=u, e(i)∈Σ+

∑
f ∈IS([0,l ],p)

p∏
i=1

(
ϕm(vf (i))

e(i)

)
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Complexity in Thue-Morse case, sketch of a bad proof

Let v = ϕ(u) for the Thue-Morse ϕ. Lets count
( v

01

)
.( v

01

)
= |u|0 +

(|u|
2

)
.

** * *

0 1 1 0 1 0 0 1

v = ϕ(u′) = ϕ2(u) and we are calculating
( v

011

)
* * *

[*] [*] [*] [* *] [*] [*] [* *](|u′|
3

)
[[* *]] [[*]] [[**][*]] [[*]][[**]] [[*][**]]

2
(|u|

2

)
|u|0 0

(|u|
2

)
0|u|0

For any u considering a deep enough partition of v the coefficient(v
u

)
may be expressed.
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Bounded complexities

Let x = x0x1 . . ., complexity f abx is bounded iff there exists ∆ and,
for each letter a, the frequency λa s.t.

||v |a − |v |λa| 6 ∆

for each factor v of x .

Bounded b
(2)
x implies bounded f abx , what additional properties does

x have?

Lemma

If b
(2)
x for a recurrent x is bounded, then frequencies of letters are

rational.

M. Rigo, P. Salimov
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Rationality of frequencies, proof sketch

Lemma

If b
(2)
x for a recurrent x is bounded, then frequencies of letters are

rational.

Let pvp ∈ Fx , for long p and v . Define n = |pv |. Let b
(2)
x 6 c.

For words u(i) = pipi+1 . . . p|p|−1vp0p1 . . . pi−1 we have:(
u(i+1)

01

)
=

{ (u(i)

01

)
− |pv |1, pi = 0 ;(u(i)

01

)
+ |pv |0, pi = 1 .

There are i , j s.t.
(u(i)

01

)
=
(u(j)

01

)
and i , j 6 c . It implies existence of

c0, c1 6 c such that c0|pv |0 + c1|pv |1 = 0.

c0(nλ0 + δ) + c1(n(1− λ0)− δ) = 0 ,

where δ 6 ∆ is some real number.

λ0 =
c1

c1 − c0
− δ

n
.
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Summary and open problems

Family of new equivalence relations and corresponding complexities
introduced using word binomial coefficients.
Classes form a monoid isomorphic to a submonoid of matrixes.
Complexities of Sturmian words grows as n + 1. For the
Thue-Morse and similar words complexities are bounded.

1 What are the words having all binomial complexities bounded?

2 Are 2-binomial squares avoidable on 3 letters? Is it true for
the fixed point of ϕ : 0 7→ 012, 1 7→ 02, 2 7→ 1. “Yes” by M.
Rao, M. Rigo.

3 What about Toeplitz words?
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Thank you!

M. Rigo, P. Salimov


