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Basic Definitions

Let 2 be an alphabet of constants and = an alphabet of variables.
e A word a € =1 is called a (constant-free) pattern.
The set of variables in « is denoted by var(«).

The empty word is denoted by .

A morphism is a mapping h: =* — ¥* such that

h(aB) = h(a)h(B) for all a, € =*.

A morphism h is non-erasing (w.r.t. ) if h(x) # ¢ for all x € var(«).

A non-erasing morphism h is length-increasing (w.r.t. «) if |h(x)| > 2
for at least one x € var(a).
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Unambiguity

A morphism h is (strongly) unambiguous w.r.t. a pattern « if there is no
other morphism g such that h(«a) = g(«).

“Other” should be interpreted w.r.t. .

Two questions that have been studied are:
@ For which patterns does there exist an unambiguous morphism?

@ For which patterns does there exist a non-erasing unambiguous
morphism?

(Morphisms h for which h(«) = ¢ do not count.)
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Strong Unambiguity

Examples

Example 1
Consider the pattern xxyy.

@ The morphism defined by x — a, y + b is unambiguous w.r.t. xxyy.
Consider the pattern xyy.

@ The morphism defined by x — a, y + € is unambiguous w.r.t. xyy.

e If his a non-erasing morphism and g is defined by g(x) = h(xyy),
g(y) = ¢, then h(xyy) = g(xyy). Thus no non-erasing morphism is
unambiguous w.r.t. xyy.

Consider the pattern xyxy.

o If his a morphism and g is defined by gi1(x) = h(xy), g1(y) = ¢ and
&> is defined by g»(x) = ¢, g2(y) = h(xy), then
h(xyxy) = gi1(xyxy) = g2(xyxy) and at least one of g1, g is not h.
Thus no morphism is unambiguous w.r.t. xyxy.
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Strong Unambiguity

One Result

Theorem 2 (Freydenberger, Reidenbach and Schneider, 2006)
Let o be a pattern.

There is a non-erasing morphism that is unambiguous w.r.t. «
if and only if

« is not the fixed point of any nontrivial morphism.
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Weak Unambiguity

A non-erasing morphism h is weakly unambiguous w.r.t. a pattern « if there
is no other non-erasing morphism g such that h(a) = g(«).

If his not length-increasing, then h is weakly unambiguous w.r.t. every
pattern. Thus the interesting question in this case is the following:

@ For which patterns does there exist a length-increasing weakly
unambiguous morphism?

Example 3

Consider the pattern xxy.

The morphism defined by x — ab, y — ba is weakly unambiguous w.r.t.
xxy, because no other non-erasing morphism maps xxy to ababb.

The morphism defined by x — aa, y — b is not weakly unambiguous w.r.t.
xxy, because also the morphism defined by x — a, y — aab maps xxy to
aaaab.
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Neighbors

Let a = apa1 . .. anans1, where ag = ap41 =€ and ag,...,a, € =.
The set of left neighbors of x in « is

La(X) = {a,- | 0 < i < n,aj+1 :X},
and the set of right neighbors of x in « is
Ru(x)={ai|1<i<n+1a_1=x}.

Example 4
If @ = xyzxy, then L,(x) = {e,z} and R,(x) = {y}.
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Loyal Neighbors

Given a pattern «, a variable x has loyal neighbors in « if at least one of
the following two conditions is satisfied:

e ¢ Lo(x) and Ry(y) = {x} for all y € L,(x),
£ ¢ Ry(x) and Lo(y) = {x} for all y € R,(x).

Example 5

Let & = xyzy. The variable y has loyal neighbors in o because

Lo(y) = {x,z} and Ry(x) = Ra(z) = {y}. The other variables do not have
loyal neighbors in a:

@ x does not, because € € L,(x), and R,(x) = {y} but Lo(y) # {x}.

@ z does not, because L,(z) = {y} but Ry(y) # {z}, and Ry(2) = {y}
but La(y) # {2).
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Weak Unambiguity

Result

Theorem 6 (Freydenberger, Nevisi and Reidenbach, 2012)
Let #> > 3 and let o be a pattern.

There is a length-increasing morphism that is weakly unambiguous w.r.t. o
if and only if

at least one variable does not have loyal neighbors in c.

@ In the case #¥ =1 there is a different characterization.

@ In the case #X = 2 there are only partial results.

A. Saarela (Univ. Turku) Weakly Unambiguous Morphisms WORDS 2013 11 /27



Outline

© Constants

A. Saarela (Univ. Turku)

Weakly Unambiguous Morphisms



Basic Definitions

Let 2 be an alphabet of constants and = an alphabet of variables.

o Aword a € (ZUX)" is called a pattern (with constants).
e A morphism is a mapping h: (ZUX)* — ¥* such that

h(aB) = h(a)h(B) for all a, f € (ZUX)* and
h(a) = a for all a € X.

Thus all morphisms are assumed to be constant-preserving.
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Weak Unambiguity

A non-erasing morphism h is weakly unambiguous w.r.t. a pattern « if there
is no other non-erasing morphism g such that h(a) = g(«).

If his not length-increasing, then h is weakly unambiguous w.r.t. every
pattern. Thus the interesting question in this case is the following:

@ For which patterns does there exist a length-increasing weakly
unambiguous morphism?

Example 7

Let = = {x,y} and X = {a, b}. Consider the pattern xay.

The morphism defined by x — a, y — ba is weakly unambiguous w.r.t. xay,
because no other non-erasing morphism maps xay to aaba.

The morphism defined by x + a, y +— ab is not weakly unambiguous w.r.t.
xay, because also the morphism defined by x — aa, y — b maps xay to
aaab.
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Neighbors

Let & = agay - .. apant1, where ag = app1 =€ and a1,...,3, € ZUL. The
set of left neighbors of x in « is

La(X) = {a,- | 0 < i < n,aj+1 :X},
and the set of right neighbors of x in « is
Ru(x)={ai|1<i<n+1a_1=x}.

Example 8
If & = xyaxy, then L,(x) = {e,a} and R,(x) = {y}.
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Loyal Neighbors

Given a pattern « with constants, a variable x has loyal neighbors in « if at
least one of the following two conditions is satisfied:

Lo(x) € = and Ru(y) = {x} for all y € L,(x),
Ra(x) € = and Lo(y) = {x} for all y € Ry(x).

Example 9

Let = ={x,y,z t}, ¥ = {a}, and a = xayzyt. The variable y has loyal
neighbors in a because R,(y) = {z,t} and L,(z) = Lo(t) = {y}. The
other variables do not have loyal neighbors in a:

@ x does not, because € € L,(x) and a € Ry(x).

@ z does not, because L,(z) = {y} but R.(y) # {z}, and R.(2) = {y}
but Lo(y) # {z}.

o t does not, because L,(t) = {y} but Ry(y) # {t}, and € € R,(t).
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A Single Pattern with Constants

Lemmas

Lemma 10

Let uq,...,up, v,.

eV €EX*. Ifuy...up is a factor of vy ... v,, then

either u; = v; for all i or u; is a proper factor of v; for some i.
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A Single Pattern with Constants

Lemmas

Lemma 11

Let « be a pattern and h a non-erasing morphism. If there is x € = such

that |h(x)| > 1 and x has loyal neighbors in o, then h is not weakly
unambiguous w.r.t. a.

Proof (sketch).

o WLOG, let Ly(x) € = and Ro(y) = {x} for all y € Lo(x).
o Let h(x) = auwhereae X and ue X+,

o Let g be defined by g(x) = u, g(y) = h(y)a for all y € L,(x) and
g(z) = h(z) for all other z € =.

@ Then h(a) = g(a).
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A Single Pattern with Constants

Lemmas

Lemma 12

Let a be a pattern and x a variable that does not have loyal neighbors in a.
Let a, b, c € X be different letters such that L,(x) "X # {a} and

Ra(x) N X # {b}. The morphism h defined by h(x) = ab and h(y) = ¢ for
all y € =\ {x} is weakly unambiguous w.r.t. c.

Proof (sketch).

o Let g # h be a length-increasing morphism and h(«a) = g(«).

@ Lemma 10 implies that g(x) is a proper factor of h(x), say h(x) = a.
e |g(y)|a =0 for all y # x, because otherwise |g()|, > |h(a)]..

@ g(y) begins with b for all y € R,(x) and R,(x) C =.

@ x does not have loyal neighbors, so |g(«)|p > |h(c)|p (contradiction).

Ol
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Result

Theorem 13

Let #Y > 3 and let a be a pattern.

There is a length-increasing morphism that is weakly unambiguous w.r.t. «
if and only if

at least one variable does not have loyal neighbors in c.

Proof.

Assume first that all variables have loyal neighbors in « and h is a
length-increasing morphism. Then some variable x satisfies the conditions of
Lemma 11, so h is not weakly unambiguous w.r.t. a.

Assume then that a variable x does not have loyal neighbors in . Because
#3 > 3, the three letters of Lemma 12 exist, and there is a
length-increasing morphism that is weakly unambiguous w.r.t. a. []
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Multiple Patterns with Constants

Result

Theorem 14

Let #Y > n+ 2 and let oy, ..., a, be patterns.

There is a morphism h that is length-increasing w.r.t. every a; and weakly
unambiguous w.r.t. every «;
if and only if

at least one variable does not have loyal neighbors in any «;.

The assumption #X > n+ 2 is necessary.
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Multiple Patterns with Constants

Example

Example 15

Let == {x,y1,y2, 21,22, t1, 1} and X = {ay, ..., an, b}. Let agp = a, and
Qj = Y1y2aiXz1Z2Xaj1t1t2

for i € {0,...,n—1}. The variable x does not have loyal neighbors in any

«j, but there does not exist a length-increasing morphism that would be
weakly unambiguous w.r.t. every o;:

@ If h would be a length-increasing morphism that is weakly
unambiguous w.r.t. g, then |h(x)| > 1 by Lemma 11.

o If h(x) starts with a;, then h is not weakly unambiguous w.r.t. a;.
@ If h(x) ends with a;;1, then h is not weakly unambiguous w.r.t. a;.

@ If h(x) = bub, then h is not weakly unambiguous w.r.t. any «;.
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Further Questions

@ What about the case #¥ =27
(Open for constant-free patterns also.)

@ What about strong unambiguity?
(More important, potential for applications.)
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