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Y, =4{0,1,...,s — 1} we call an alphabet.
Y*={e}Ul,ew X" — the set of finite words over ¥.

X =xox1... € YN0 —  an infinite word over ¥.
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Y, =4{0,1,...,s — 1} we call an alphabet.
Y*={e}Ul,ew X" — the set of finite words over ¥.

X =xox1... € YN0 —  an infinite word over ¥.

u € X" is a factor [A. Thue 1906] of x = xpx1 ... occurring at
position i in x = xgx1 ... iff U = xjxj11 ... Xjyn—1. In the case
i =0, the word u is a prefix of x.

The language of factors (of length n) of x is denoted by Fy
(Fx(n)) and the language of prefixes — by Px.

A morphism ¢ : ¥* — A* is a mapping satisfying to
o(vw) = p(v)p(w) for each pair of words v, w.
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An infinite word x = xgx71 ... over .

Factor complexity [Ehrenfeucht et al. 1975] £ (n) = |F«(n)|.
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An infinite word x = xpxy ... over X.
Factor complexity [Ehrenfeucht et al. 1975] £ (n) = |F«(n)|.

Arithmetical complexity [Avgustinovich et al. 2001]
fe(n) = {XkXk+d - - Xkt (n-1)g * k € No,d € IN}|.

Maximal pattern complexity [T. Kamae, L.Q. Zamboni 2002]
pPi(n) = suPy <y« <t {XkttoXktty - - Xiere, + k € INo}|.
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An infinite word x = xpxy ... over X.
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Maximal pattern complexity [T. Kamae, L.Q. Zamboni 2002]
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Abelian complexity [G. Richomme et al. 2009]

£22(n) = |Fx(n)/ ~ab |, where v ~ap w iff |v|, = |w|, for each
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An infinite word x = xpxy ... over X.
Factor complexity [Ehrenfeucht et al. 1975] £ (n) = |F«(n)|.

Arithmetical complexity [Avgustinovich et al. 2001]
fe(n) = {XkXk+d - - Xkt (n-1)g * k € No,d € IN}|.

Maximal pattern complexity [T. Kamae, L.Q. Zamboni 2002]
pPi(n) = suPy <y« <t {XkttoXktty - - Xiere, + k € INo}|.

Abelian complexity [G. Richomme et al. 2009]
£22(n) = |Fx(n)/ ~ab |, where v ~ap w iff |v|, = |w|, for each
acl.

k-abelian complexity [J. Karhumaki et al. 2012]
%P (n) = |Fi(n)/ ~k.ab |, where v ~p b wiff [v], = |w], for
each u € ¥k,
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Key definitions

u € X" is a subword of x = xgx1 ... iff u = x; = X, x;, .. Xijy, for
some set | = {il <b<... i\u|} C INp.

Binomial coefficient [Lothaire’'s “Combinatorics on Word"
Section 6.3] of win vis () =[{/ C[0,|v]) : vy = u}|.

u
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Key definitions

u € X" is a subword of x = xgx1 ... iff u = x; = X, x;, .. Xijy, for
some set | = {il <b<... i\u|} C INp.

Binomial coefficient [Lothaire’'s “Combinatorics on Word"
Section 6.3] of win vis () =[{/ C[0,|v]) : vy = u}|.

v,w are k-binomial equivalent v ~; w iff (V) = () for each
u€ xSk

Y

[ul )
k
01100 ~; 10010 (° 01100) = 1{01100,01100}| = 2 = (%)
01100 23 10010 (%13°) = [{01100,01100}| = 2 # (19%:%) =1

B=0 =]
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Classes of k-binomial equivalence

For a word v define the class B()(v) € ¥*/ ~ s.t. v € B(v).

(0)-,2.C0)

ps=u, p,sE€X*

Observation

For a given k, the operation o satisfying to the property
B (v) o B (w) = B (vw) for each v, w is well defined.

M. Rigo, P. Salimov



Monoid of k-binomial equivalence classes

For a word v and a word u = wguy ... ux_1 of length k define the
(k+1) x (k + 1) matrix

1 (uoul.f/.uk_l) (UOUl.T/.Uk_Q) T (uovul) (l)/o)
0 1 0 e 0 0
0 (u)) 1 .. 0 0
MU(V) = 0 ukfgvukfl (uk\iz) e 0 0
(U2U3.;uk71) (u2u1.;uk,2) e 1 0
uiup...Ug_1 uiul...Ug_o Tt (ul)

The statement M, (vw) = M,(v)M,(w) holds for each v, w.
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Monoid of k-binomial equivalence classes

For a word v and a word u = wguy ... ux_1 of length k define the
(k+1) x (k + 1) matrix

1 (uoul.f/.uk_l) (UOUl.T/.Uk_Q) T (uovul) (l)/o)
0 1 0 e 0 0
0 (u)) 1 .. 0 0
MU(V) = 0 ukfgvukfl (uk\iz) e 0 0
(U2U3.;uk71) (u2u1.;uk,2) e 1 0
uiup...Ug_1 uiul...Ug_o Tt (ul)

The statement M, (vw) = M,(v)M,(w) holds for each v, w.
Parikh matrices should be there.
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Monoid of k-binomial equivalence classes

For a word v and a number k define the matrix

M, (v) 0 0
My(v) = 0 M) 0 7
0 0 coo Mz (v)
where the sequence u®, u(® .. is the lexicographical of L.

The statement My (vw) = My (v)My(w) holds for each v, w.

The monoid (B, o) is isomorphic to a submonoid of matrices.
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The number of k-binomial equivalence classes

e For 2-abelian equivalence |¥5/ ~p .5 | = n> — n+2

@ And, in general, |X7/ ~kap | = @(n(s—l)skﬂ)
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The number of k-binomial equivalence classes

e For 2-abelian equivalence |¥5/ ~p .5 | = n> — n+2
0/ ~kan | = O(nlmD)

@ And, in general,

3
o |T3/ v | = 2t

o |Z5/ ~i | € O(ntk—12""+2)
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The number of k-binomial equivalence classes

e For 2-abelian equivalence |¥5/ ~p .5 | = n> — n+2
0/ ~kan | = O(nlmD)

@ And, in general,

3
o |T3/ v | = 2t

o |Z5/ ~i | € O(ntk—12""+2)

The family of words of the 1'0/10'1™ has a representative in each

2-binomial class.
<v> < v|>
Z u n
uexn
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k-binomial complexity

k-binomial complexity of a word x = xpxy ... is
b{) (n) = |Fx(n)/ ~k | the number of its factors of length of n
distinct up to k-binomial equivalence.

o b{(n) < bY¢*(n)
o £2°(n) < b (n) < f(n)
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k-binomial complexity, Sturmian case

An infinite word x = xpx1 ... is Sturmian iff x is aperiodic and for
any two factors v, w of equal length ||v]1 — |w]|1| < 1.

Consider the morphism ¢ : 0 — 01,1 — 0 and its fixed point
0100101001001 ..
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k-binomial complexity, Sturmian case

An infinite word x = xpx1 ... is Sturmian iff x is aperiodic and for
any two factors v, w of equal length ||v]1 — |w]|1| < 1.

Consider the morphism ¢ : 0 — 01,1 — 0 and its fixed point
0100101001001 ..

o f(n)=n+1,fP(n)=2,pi(n)=2n

X
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k-binomial complexity, Sturmian case

An infinite word x = xpx1 ... is Sturmian iff x is aperiodic and for
any two factors v, w of equal length ||v]1 — |w]|1| < 1.

Consider the morphism ¢ : 0 — 01,1 — 0 and its fixed point
0100101001001 ..

o f(n)=n+1,fP(n)=2,pi(n)=2n

X

For a Sturmian word x, bgk)(n) =n+1 for each k > 1.
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k-binomial complexity, Sturmian case, proof sketch

Let 00 € F, for a Strumian x.
There exists a unique k and a Sturmian word y s.t. for any v € F,

v = 0r10kFe01pk+er  pkten-1105 |

where r;s < k+1and € = €per ... €5-1 € Fy.
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k-binomial complexity, Sturmian case, proof sketch

Let 00 € F, for a Strumian x.
There exists a unique k and a Sturmian word y s.t. for any v € F,

v = 0r10kFe01pk+er  pkten-1105 |

where r;s < k+1and € = €per ... €5-1 € Fy.

Define S(e) = Zf’ o(n—1i)e; .
Consider (57) = r(n+1) + S(e) + k™5~ ("+1)
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k-binomial complexity, Sturmian case, proof sketch

Let 00 € F, for a Strumian x.
There exists a unique k and a Sturmian word y s.t. for any v € F,

v = 0r10kFe01pk+er  pkten-1105 |

where r;s < k+1and € = €per ... €5-1 € Fy.

Define S(e) = Z ( ie;
Consider (5;) = r(n+1) + S(e) + k™5~ (”+1)

Let n > 1. If € # € are factors of length n occurring in a Sturmian
word, then S(e) # S(€/) (mod n+1).
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k-binomial complexity, Sturmian case, proof sketch

S(e,m) =N (n— i)e; and S(e) = S(e,n — 1)

Let n > 1. If € # ¢ are factors of length n occurring in a Sturmian
word y, then S(e) Z S(¢') (mod n+1).

Define A(m) := |eger - €m—1]1 — |€p€] - - - €h_q]1 € {—1,0,1}
Note that A is either non-negative or non-positive due to
balanceness of a y.

S(e,j+1)—S(€,j+1)=
AG+1)>A>G) = S(e))—S(€))+(n—j—1)
A(+1)=A40G) = S(ej)—S(e))
AG+1)<A@Y) = S(eJj)—S(€,j))—(n—j—1).

In view of these observations, we have 0 < S(e) — S(¢/) < n+1
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k-binomial complexity, Thue-Morse case

Consider the morphism ¢ : 0 — 01,1 — 10
Its fixed point 011010011001 ... is the Thue-Morse word.

e f(n) grows linearly.
o £2%(n) €[2,3]
@ ay(n),pi(n)=2"
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k-binomial complexity, Thue-Morse case

Consider the morphism ¢ : 0 — 01,1 — 10
Its fixed point 011010011001... is the Thue-Morse word.

e f(n) grows linearly.
o £2%(n) €[2,3]
@ ay(n),pi(n)=2"

A morphism ¢ is balanced if ¢(a) ~, ©(b) for all symbols
a,bel.

A fixed point of a balanced morphism has bounded k-binomial
complexity for each k.
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Complexity in Thue-Morse case, sketch of a good proof

A fixed point of a balanced morphism has bounded k-binomial
complexity for each k.

Let x = ¢(x) and ¢(a) ~,p @(b) for all symbols a, b € ¥. Fix n.
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Complexity in Thue-Morse case, sketch of a good proof

A fixed point of a balanced morphism has bounded k-binomial
complexity for each k.

Let x = ¢(x) and ¢(a) ~,p @(b) for all symbols a, b € ¥. Fix n.

Each v € F(n) admits a decomposition v = po*(u)s, where p, s
are from finite set.

B®(v) = BY(p) o B (p*(u0)) o BW (K (1)) 0. 0 BH(s)
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Complexity in Thue-Morse case, sketch of a good proof

A fixed point of a balanced morphism has bounded k-binomial
complexity for each k.

Let x = ¢(x) and ¢(a) ~,p @(b) for all symbols a, b € ¥. Fix n.

Each v € F(n) admits a decomposition v = po*(u)s, where p, s
are from finite set.

B®(v) = BY(p) o B (p*(u0)) o BW (K (1)) 0. 0 BH(s)

If ¢ is a balanced morphism then B()(xk(a)) = B (X (b)) for
all a, b.
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Complexity in Thue-Morse case, sketch of a good proof

If ¢ is a balanced morphism then B()(pk(a)) = B (oK (b)) for
all a, b.

©(a) ~ap @(b) for all symbols a, b € X. Prove by induction.

For a € X define the word vyv; ... v, = p(a). Denote the set of
monotonous increasing subsequences of size p of a finite set A by
ZS(A, p). For an element f € ZS(A, p) denote by (i) the i's
element of the sequence f starting numeration from 1.

(go'”ul(a)> _ <wu(v)> -5 <<P’"£vl')>+

Py > I (*e)

e(l)e(2),,,e(P):u7 e(”)gf* fEIS([O l] p) i=1
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Complexity in Thue-Morse case, sketch of a bad proof

Let v = p(u) for the Thue-Morse ¢. Lets count (7).

(3) =10l + (4).

*

of1]1]of1]ojo]1
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Complexity in Thue-Morse case, sketch of a bad proof

Let v = p(u) for the Thue-Morse ¢. Lets count (7).

(3) =10l + (4).

*

of1]1]of1]ojo]1
v =¢(u') = ¢?(u) and we are calculating (,;;)

("] [*] [*] **1 %] [ [* ]
(4n) e e | e | e
2(5) uo | o(5) | ojulp |
For any u considering a deep enough partition of v the coefficient

() may be expressed.




Bounded complexities

Let x = xpxy . .., complexity £2? is bounded iff there exists A and,
for each letter a, the frequency A, s.t.

Ivla = [v]Xal < A
for each factor v of x.

Bounded b>(<2) implies bounded f)f'b, what additional properties does
x have?
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Bounded complexities

Let x = xpxy . .., complexity £2? is bounded iff there exists A and,
for each letter a, the frequency A, s.t.

Ivla = [v]Xal < A
for each factor v of x.

Bounded b>(<2) implies bounded f)fb, what additional properties does
x have?

If b)(<2) for a recurrent x is bounded, then frequencies of letters are
rational.
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Rationality of frequencies, proof sketch

If b)((z) for a recurrent x is bounded, then frequencies of letters are
rational.

Let pvp € Fy, for long p and v. Define n = |pv/|. Let b(2)
For words u(/ ) = PiPi+1 - - - P|p|~1VPOP1 - - - Pi—1 We have:

<U(i+1)> _ { (UE)) lpv]i, pi=0;
01 (01)+’PV’0> Pi=1-
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Rationality of frequencies, proof sketch

If b)((z) for a recurrent x is bounded, then frequencies of letters are
rational.

Let pvp € Fy, for long p and v. Define n = |pv/|. Let b(2)

For words u(/ ) = PiPi+1 - - - P|p|~1VPOP1 - - - Pi—1 We have:
<u(i+1)> B (u()) ],DVh, pi=0;
- ul)
01 (01)+’pV’0, p,'Zl.

There are i, s.t. (‘6(1)) = (‘61) and i,j < c. It implies existence of

co, 1 < ¢ such that  ¢|pvlo + ai|pv]1 = 0.
Co(n)\o + 5) + cl(n(l — )\0) — (5) =0,

where § < A is some real number.

C1 1)

Ao =
1 —Q n
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Summary and open problems

Family of new equivalence relations and corresponding complexities
introduced using word binomial coefficients.

Classes form a monoid isomorphic to a submonoid of matrixes.
Complexities of Sturmian words grows as n+ 1. For the
Thue-Morse and similar words complexities are bounded.
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Summary and open problems

Family of new equivalence relations and corresponding complexities
introduced using word binomial coefficients.

Classes form a monoid isomorphic to a submonoid of matrixes.
Complexities of Sturmian words grows as n+ 1. For the
Thue-Morse and similar words complexities are bounded.

© What are the words having all binomial complexities bounded?

@ Are 2-binomial squares avoidable on 3 letters? s it true for
the fixed point of v : 0 +— 012,1 — 02,2 +— 1.
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Summary and open problems

Family of new equivalence relations and corresponding complexities
introduced using word binomial coefficients.

Classes form a monoid isomorphic to a submonoid of matrixes.
Complexities of Sturmian words grows as n+ 1. For the
Thue-Morse and similar words complexities are bounded.

© What are the words having all binomial complexities bounded?

@ Are 2-binomial squares avoidable on 3 letters? s it true for
the fixed point of ¢ : 0 +— 012,1 +— 02,2 +— 1. "Yes” by M.
Rao, M. Rigo.

© What about Toeplitz words?
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Thank you!
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