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Integer base

base p > 2
alphabet A, ={0,1,...,p—1}

m evaluation 7(a, - -+ a1d0) = Y iy aip'
m (A;) =N
m representation (n), = (n')p.a

m (n',a) is the Euclidean division of n by p.

<N>p = (Ap\{o}) ) A;
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Rational base

m a base g with p > g and p coprime with g

m representation (n)p = (n')r.a:
q q

m (n’,a) is the Euclidean division of (q x n) by p.

Example: computation of (3);:

(3)
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2 x 3 = 3 x Nj+ agp; = Ny =2 and ap = 0.
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m representation (n)p = (n')r.a:
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2x2=3x Ny + ay;



Rational base

m a base g with p > g and p coprime with g

m representation (n)p = (n')r.a:
q q

m (n’,a) is the Euclidean division of (q x n) by p.

Example: computation of (3);:

(3)3 =(2):0=

2x2=3x Ny + ay; = N, =1and a; = 1.
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m a base g with p > g and p coprime with g

m representation (n)p = (n')r.a:
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Rational base

m a base g with p > g and p coprime with g

m representation (n)p = (n')r.a:
q q

m (n’,a) is the Euclidean division of (q x n) by p.

Example: computation of (3);:

(3)3 =(2)30=(1)510 =

2x1=3x N3+ as; = N3 =0 and a, = 2.



Rational base

m a base g with p > g and p coprime with g

m representation (n)p = (n')r.a:
q q

m (n’,a) is the Euclidean division of (q x n) by p.

Example: computation of (3);:

(3); = (2)30 = (1); 10 = 210

NIw



Rational base

m a base g with p > g and p coprime with g
m alphabet A, ={0,1,...,p—1}

m representation (n)p = (n')r.a:
q q
m (n’,a) is the Euclidean division of (q x n) by p.

m L =(N)
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Rational base

m a base g with p > g and p coprime with g
alphabet A, ={0,1,...,p—1}

representation (n)p = (n')r.a:
q q
m (n’,a) is the Euclidean division of (q x n) by p.

Lo = (N)

|
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m evaluation m(a, -~ a1a0) = 1 o(%)(2)’



Rational base

m a base g with p > g and p coprime with g
alphabet A, ={0,1,...,p—1}

representation (n)p = (n')r.a:
q q
m (n’,a) is the Euclidean division of (q x n) by p.

Lo = (N)

|
ars
ar

evaluation 7(a,---ajap) = Z?ZO(%)(g)’

m if 7(u) = n €N, u is of the form 0%(n)
a NCr(A)CQ



Rational base — the language Lg

m Lo is prefix-closed and right-extendable.
q
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Rational base — the language Lg

m Lo is prefix-closed and right-extendable.
q

m Lo is not rational (not even context-free) [AFS'08].
q
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Rational base — the automaton Tb @
q

m Tp accepts 0*Lp (that is, the words u such that 7(u) € N)
q q
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Minimal words — Definition @

wp: the (infinite) word starting from n taking the lowest branch.
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Minimal words — Properties

Given an integer n, the minimal word w,, is
m over the alphabet {0,...,(¢g — 1)} = Aq

m the unique word over Aq readable from n
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Minimal words — Properties

Given an integer n, the minimal word w,, is
m over the alphabet {0,...,(q — 1)} = Aq
m the unique word over Aq readable from n
m different from wy, (for m # n)

m aperiodic

Proposition [AFS'08]

w, and w,, have the same prefix of length k.

n=m[q]



Minimal words — Set properties

W: the set of minimal words.

Topological properties

m The topological closure of W is Ay’ whole.

m The interior of W is empty.

Shift operation

m W is stable by shift
m W cannot be finitely generated through shift.






Derived function

. w w
v Ay — A
Wp +——> Wpy

Remark

W, = a.Wnip for some letter a and integer p.
(Or, equivalently vP(wj,) is the shifted of w;,.)
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Derived transducer for D3
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A simple label substitution...
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Auto-similarity

Proposition
Iflp=2g—1|
m the underlying graph of De and Tpr are identical;
q q

m the labels of the transitions of Dp are obtained by an

q
(injective) substitution from those of Tpe.
q



Auto-similarity

Proposition
Iflp=2g—1|
m the underlying graph of De and Tpr are identical;
q q

m the labels of the transitions of Dp are obtained by an

q
(injective) substitution from those of Tpe.
q

Theorem

The derived transducer D» is locally computable from Tb.
q q



Transformation from Tr to De
q q

Step 1: changing the alphabet
Ap — Bpg={p—-(29-1),...,p—1}

m B, 4 always has (2g — 1) elements

m The maximal element of A, and B, ; are the same.



Transformation from Tr to De
q q

Step 1: changing the alphabet
Ap — Bpg={p—-(29-1),...,p—1}

m B, 4 always has (2g — 1) elements

m The maximal element of A, and B, ; are the same.

mifp=(29-1), A, =Bpq
mif p<(29-1), Ay C Bpq (the base £ is “"too small”)
mif p>(29—1), Ay 2 Bpg (the base £ is “too big")



Example of the “small” base 2 (Step 1)

3

m Ay ={0,1,2,3} C {-1,0,1,2,3} = B3

OO 2-@ 2@ @ @@

3 Jor¥o
Q @2*( @
— 3»@2»@1»< /3 @)X, 0\@
o DO
\g {§< P @-@-@

@3\
T4 \‘ -1 @ @

3 @@

O,



Example of the “small” base 3 (Step 1)

m Ay ={0,1,2,3} C {-1,0,1,2,3} = B3
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Transformation from T» to De
q q

Step 1: changing the alphabet
Ao — Bpg={p—(29-1),...,p—1}

Step 2: changing the labels

w: Bpg — P(A, x Ap)
a  — {(ble) | (b=c)=a—-(p—q)}
—_—————

distance to the center of B



Example of the “small” base 3 (Step 2) @
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Example of the “big” base £ (Step 1)

m A7 ={0,1,2,3,4,5,6} O {2,3,4,5,6} = B3



Example of the “big” base £ (Step 1)

m A7 =1{0,1,2,3,4,5,6} 2 {2,3,4,5,6} =83




Example of the “big” base £ (Step 2)
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Real evaluation

p(ala2...an...)




Span and renormalised span

Definition — span of the node X

The length of the interval reachable from X in the tree.



Span and renormalised span

span("2") (= span("21"))

span("02") = span("2") X%

span("002") = span("2") x (%)2



Span and renormalised span

Definition — span of the node X
The length of the interval reachable from X in the tree.

Definition — renormalised span of the node X

the span of X multiplied by (g)k, where k is the depth of X.

Sp denotes the set of the renormalised span of every node.
q



Span words

Definition

m The span of n is represented by the word (w), © w,), where:

m w, is the maximal word starting from n;
m "“S" denotes the digit-wise subtraction.
(Example : 321©012 = 31(-1))

m |t is called the span-word of n and is over the alphabet B, .



Span words

Definition

m The span of n is represented by the word (w), © w,), where:

m w, is the maximal word starting from n;
m "“S" denotes the digit-wise subtraction.
(Example : 321©012 = 31(-1))

m |t is called the span-word of n and is over the alphabet B, .

Proposition

Te accepts the topological closure of the language of the
q
span-words.



Topological Property of 55

Theorem

mIf p<2g—1, Sp is dense.
q

m If p>2g—1, Sp is nowhere dense.
q



Conclusion and future work @

m The derived transducer somehow requires the same structure
as the original tree.

m The topological properties of the set of spans divides the
rational base number systems in two classes.

m The cases p =2q — 1 is remarkable in both constructions.

Next question

For a given integer n,
is there a finite transducer realising wy, — wy,, ?
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