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REGULAR LANGUAGES AND FSA

Regular languages can be represented equivalently as rational expressions
or as deterministic finite automata.

A finite state automaton is denoted by

A=(Q,Z,I,3,F),
where Q is the set of states, X is the finite alphabet, I the set of
initial states, F the set of final states, & the transition function
from QX X to 2%,

The automaton is deterministic (DFA), denoted by A=Q,Z,i,d,F), if it
has a unique initial state and if & is a function from QX X to Q.

There is a unique DFA (up fo a renaming of the states) with a minimal
humber of states, called minimal automaton, recognizing a reqular
language L.

The description of a language with its minimal automaton is important
when space considerations matter in implementations of applications, such
as in Pattern Matching, Lexical Analysis, Coding Systems, and so on.
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NERODE EQUIVALENCE

The minimal automaton equivalent to a given
automaton A (i.e. recognizing the same language) is
defined by the right-invariant Nerode equivalence.

Given a state p € Q, we consider the language
L,(A)={veZ* | 8(p.v) e F}
The Nerode equivalence is defined as follows:
p~qif L(A)=Ly(A)
It is a congruence, i.e. foranyaeX,

p ~ q implies d(p,a) ~ 8(q.a),
and it is the coarsest congruence such that F is
union of classes of the congruence.

The equivalence classes are the states of the
minimal automaton.
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How 170 COMPUTE IT?
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MINIMIZATION ALGORITHMS

There are lots of methods which can be used fo minimize a finite
automaton, i.e. to find the minimal automaton equivalent to a given DFA.

Some of them operate by successive refinements of a partition of the
states:

Moore, 1956. Time complexity O(kn?), k=|Z|
Hopcroft, 1971. Time complexity O(knlogn), k=|Z|

The Bzrozowski's method (1962) operates by reversal and
determinization repeated twice.

Time complexity: exponential worst case, but good performance in
practice.

A taxonomy of finite automata minimization algorithms is given by B.
Watson, 1994,

"Minimization of automata” by Berstel, Boasson, Carton, Fagnot, 2010.

Polynomial variants of Brzozowski's method have been recently
introduced.

Many papers on experimental comparison between minimization
algorithms.
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HoPCROFT'S ALGORITHM: THE FASTEST

No faster algorithm is known for general deterministic
automata

In order to obtain the Nerode equivalence, a sequence
of refinements of equivalence relations is realized.

The sequence starts with the partition in two classes
separating final and not final states.

It is based on the so-called "smaller half" strategy
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Let TT a partition of Q:

A cJ:)(lir' (Ca) where Ce TI
and acX is a splitter if
there exists a class P in T1
such that

Sgd!l(C)NPczP

The class P is split in
01 (C) N Pand P/ &1 (C)

The smallest set coupled
with some symbol of the
alphabet goes into the
waiting set.

At each step a pair from
the  waiting set s
extracted and the
algorithm stops when the
waiting set is empty.

EXECUTION oF HOPCROFT'S ALGORITHM

Let A=(Q,Z,i,d,F) be a DFA.

1: TT — {F, F¢}
2: forallae X do

3: Add((min(F, F¢), a),W)

4: while W # & do

5: (C, a) < TakeSome(W)

6: for each P € TT which is

split by (C, a) do

7: P',P" — (C,a)l|P

8: Replace P by P'and P" in TT

9. forall b e Z do

10: if (P, b) € W then

11: Replace (P, b) by (P', b
and (PP' . b) i(n’w) v (. 0)

12: else

13: Add((min(P', P"), b),W)
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HoPCROFT'S ALGORITHM: AN EXAMPLE

Q

{t’q5p’r} {m5q’r}
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HoPCROFT'S ALGORITHM: AN EXAMPLE

Q
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HOPCROFT'S ALGORITHM: THE DERIVATION TREE

a Q
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GENERAL FEATURES OF THE
ALGORITHM

The refinement process leading to the final
partition could be not unique.

For a given automaton, there could be different
executions with different time complexity.

Question: Is the time complexity tight?

[Berstel, Carton 2004]

There exist cyclic unary automata where you need
()(n log n) time if you are "unlucky".

They are related to De Bruijn words.
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CYclLic UNARY AUTOMATA

w= 11101000
i "'1{:_3__;'.__. _l'.'l
oR O}
AW Lll'x ,ﬂ'll!x.
o ©)
ﬂ\’_ﬂ. p ___‘:_r-"'r.z
Lafx_'x__ o }'!f"'f'
a s

A natural question is:

w is a word
a,a, a,over A={0,1}.

A,=(Q.2,0,F) the cyclic

automaton associated to w:

Q=(1,2,..,n}, Z={a}

3(i,a)=(i+1), in
d(n,a)=1

F={ieQ | a=1}

do there exist infinite families of automata for which
each execution of Hopcroft's algorithm runs in

O(n log n)?
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CARCULAR WORDS

A={0,1} binary alphabet.
uyv e A conjugate: 3 zw in A" s.t. v=zw and u=wz

conjugacy is an equivalence relation:
let w € A*, by (w) we denote the class of all the
conjugates of the word w and we call it circular word;

a factor of (w) is a factor of ww of length not greater
than |wl;

u is a special factor of (w) if both u0O and ul are
factors of (w).

Example: 0 ™\

(01001100) nE=m)

00 is a special factor
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CARCULAR STANDARD WORDS

Recall the notion of standard word:
d;, d,,...,d,,.. a sequence of natural integers d;>0, d>0
{s.}n0 Sequence of words over A={0,1} where
s=0, s,.1= s,&s, for n 21
Each finite word s, is called standard word.

(d,, dz, . d,,... ) directive sequence
(11,..1,.) corresponds to Fibonacci words.
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CARCULAR STANDARD WORDS

Proposition (Borel, Reutenauer). Let vbe a word of length n22.
(v)is a circular standard word iff for =0...,n-1, (v) has exactly k+/
factors of length 4

For k=2, there are 3 distinct
factors of length 2

(10010010) jpm=m)> 1

Is standard

Proposition. Let vbe a word of length ».
(v)is standard iff V £=0,...,n-2, (v) has a unique special

t length 4.
factor of leng Special factors:

1
0 0 k=0 3
(10010010) [||]|::> 1 Q 0 k=1 0
is standard k=2 10
0 0 1 k=3 010
k=4 0010
k=5 10010
k=6 010010
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SOME ANSWERS ON UNARY AUTOMATA

[Castiglione, Restivo, S. 2008]

- There exist cyclic unary automata for which the
execution of Hopcroft's algorithm is unique.

They are associated to circular standard words.

- There exist unary automata where you need always
()(n log n) time. They are associated to circular
Fibonacci words.

[Berstel, Boasson, Carton, 2009]

The same holds for cyclic unary automata associated
to all circular standard words having directive
sequences for which the sequence of geometric
means is bounded.

02-91 Jequialdag ‘nying - €102 SAHOM



SOME ANSWERS ON UNARY AUTOMATA

[Castiglione, Restivo, S. 2008]

- There exist cyclic unary automata for whigh the
execution of Hopcroft's algorithm is 1nin:

They are associated to circular

- There exist unary automata w N
()(n log n) time. They are associ A Splits &
Fibonacci words. ,,@\a&e«).%ﬂ}

[Berstel, Boasson, Carton, 2009] e civeslay Wovd
The same holds for cyclic unary ¢

to all circular standard words hay

sequences for which the sequence vi geometric
means is bounded.
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DERIVATION TREE

w= 0010010010
{1,2,3,4,5,6,7,8,9,10}

o T 100
{1,2.4,5,7,8,10} {3.6,9]
00 ./~ \ VRN
{1,4,7.10} {2,5,8} (3,6} {9}
0010 / /N /N
{1,4,7} {10} {2,5} {8} {3} {6}
;N A
{47y {1} {2} {5}
/N
{4y {7}

And so on... Q




FACTORIZATION OF CIRCULAR
STANDARD WORDS

w= 0010010010 Each circular standard
words can be uniquely
“circularly” factored in

{0,01} and {107, 10r+1},
By using such encoding we

obtain again circular
standard words.

Example:
w=0010010010-=
0|01]|0|01|0|01|0|
->1010101 denoted by L(w)
00/100|100]10
->100 denoted by R(w)
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REDUCTION TREE OF A CIRCULAR STANDARD WORD

if (w)=(0) or w= 0010010010

(w)=(1), ©(w) is a (0010010010)

single node with _—

label (0); (1010101) (001) =
if lw| > 1,1(w)is (0001{ \{001} (10)/ \{0) %
a tree with root o\ JRN VAN :
labeled by (w) (110) (0) (10) (0) (0) (0) 5
having respectively  / \ / A\ ;
as left and right (10) (0) (@) () g
subtrees t(L(w)) (U} \{U) ;
and t (R(w)). i

THEOREM (Castiglione, Restivo, S. 2009): Let (w)
and (v) be circular standard words, then t (w)=t(v) iff
(w)=(v) up to exchanging O with 1.



[SOMORPHISM BETWEEN TREES

THEOREM (Castiglione, Restivo, S. 2009):

If (w) is a circular standard word then the
derivation tree of A, and the reduction tree are
isomorphic.

w= 0010010010

(0010010010) {1.2,3,4,5.6,7,8.9,10}
e ~ - ~
(1010101) (001) {1,2,4,5.7.8,10} {3.6,0}
AN VAN VAN AN
(0001) (001) (10) (0) {1.4,7.10} {2.5.8) (3,6} {9}
VARRY /N /N /N VAR /N
(110) (0) (10) (0) (0) (0) {1.4.7} {10} {2.5} {8} {3} {6}
/N /N VAR FARRY
(10) (0) (0) (0) {47y {1} {2} {5}
FARAY A

) (0 (4; {7}
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TIGHTNESS PROBLEM: UNARY CASE?

REMARK:

=
The unary case is a very special case because automataz
minimization can be achieved also in linear time when theg
alphabet has only one letter [Paige, Tarjan, Bonic, 1985]
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Do there exist infinite families of binary automata
for which each execution of
Hopcroft's algorithm runs in O(n log n) ?



LABELED BINARY TREES

Let 2={0,1} (alphabet for the shape) and A={a,b} (alphabet for the
labels) be two binary alphabets.

A binary labelled tree is a map t: £* -> A whose domain dom(t) is a

prefix-closed subset of Z*. o o =
EXAMPLE If dom(t) is finite, the tree is finite, 2
else the tree is infinite. N
a subtree  Height of a finite tree: the maximal g‘
S length plus 1 of the elements of "f,)
5 C/OM(T). c!;;
3
or (' b @ Complete infinite tree: >
| | the domain is Z*. >
¢ a)b b Complete finite tree of height n:

the domain is X,

Factor: a finite complete subtree



STANDARD TREES

Given a finite free t, we denote by t® the complete infinite tree
obtained by recursively concatenating t to each node of the frontier.

Examp

Circular factor: a factor of 1®of height at
most h(t)

Special circular factor: a circular factor
having at least two complete extensions in T

Standard tree: if for each O < A < A(t)-2
it has exactly one special circular factor o
height A and it has exactly 2 estensions
(2-special circular factor).
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h=0 Empty tree
h=1 a is 2-special
a

h=2 / \ is 2-special
b a



TREE-LIKE AUTOMATA

Given a finite binary labeled free 7 we can uniquely associate a
tree-like automaton A_having 7 as skeleton.

« For each missing edge we
add a transition to the
root of the tree.

* Moreover, the root is the
initial state and the
states corresponding to
nodes labelled by a (resp.
b) are non-final (resp.
final) states.
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HopPcROFT'S ALGORITHM ON
STANDARD TREE-LIKE AUTOMATA

A standard tree-like automaton /s a tree-like automaton
A.=(Q2,.0,F) associated to a standard tree 7.

We denote by Q,the set of states

where the tree ¢ occurs as a circular factor.
0,1

a
For instance if o= b/ \ then Q.={1,4}
a
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THEOREM (Castiglione, Restivo, S. 2010): Let A_ bea
standard tree-like automaton. The sequence of the refinement
process TT;,TT,, ...TT, is uniquely determined, m=h(t)-2 and

T, = {Q,] o is a circular factor of t with h(c) = k} and |TT, |=k+1



IDEA OF THE PROOF
The proof is by induction on k.

It uses the following result:

Proposition: Let A_be a standard tree-like automaton.
Let Q, and Q, be classes of a partition of Q.

If (Q, x) splits Q, for some x € X, with h(y) =h(o),
thencisa -specicﬁ circular factor of 1. The resulting
classes are Q. and Q,-, where ¢’ and ¢" are the only

two possible extensions of G in t.

We proved that at each step, the splitter in the
waiting set satisfies the hypothesis of the
proposition.
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WORD TREES AND WORD AUTOMATA

Given a word w, a word free t,is a binary labeled tree in which
the alphabet of the shape and the labels coincide.
Moreover, dom(t,) is the set of prefixes of w.
The word automaton A, is the tree-like automaton associated to

Tw a

/
b
i

standard word

1 <a
/

Ly

w=abaababa

standard word tree

o7
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TIGHTNESS OF HOPCROFT'S ALGORITHM

We consider the executions of Hopcroft's algorithm
on binary word automata.

THEOREM (Castiglione, Restivo, S. 2010): There
exists an infinite family of binary automata for which

each execution of Hopcroft's algorithm runs in time
O(n log n).

The bound is tight on word automata associated to
standard word trees constructed with Fibonacci
wonrds.
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IN THE PROOF

We prove and use the following:

Proposition: Let 1, be a standard word tree.

Each execution of Hopcroft's algorithm on At, has time complexity C,,
satisfying

2 cesp(tw) min(lQG' |, IQG“ I) +n-1< CH(ATW) <2 x 2 cesp(tw) min(ch’ I: IQG“ I)
where with sp(t,) we denote the set of 2-special circular factor of t,,.

REMARK: If we consider the circular standard word w=a"b, all the
executions run in time ©(n). If word automata associated to fibonacci
words, the time complexity is ®(n log n).
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IN THE PROOF

We prove and use the following:

Proposition: Let 1, be a standard word tree.

Each execution of Hopcroft's algorithm on At, has time complexity C,,
satisfying

2 cesp(tw) min(lQG' I: |Q0" |) +n-1< CH(ATw) <2 %2 cy@cnf'n“h | |QG" |)

where with sp(t,) we denote the set of 2.

¢ For do Brain wordss
Landavd \The circular : hack implemest oue, Ul the
exe  a case ot ST ). If word autc e in o(n), A g« onacel

wore | ds, Hime ok is ©(n log n). '\M‘)\Q/MM"'AHOA n
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SOME RESULTS ON AVERAGE

[David 2012]

For the uniform distribution on complete deterministic
automata, the average time complexity of Moore's state
minimization algorithm is O(nloglogn).

There is a family of implementations of Hopcroft's state
minimization algorithm are always faster than Moore's
algorithm.

[Bassino, David, Sportiello 2012]

For the uniform distribution on complete deterministic
accessible automata, there exists a family of
implementations of Hopcroft's state minimization
algorithm whose average complexity is O(n log log n).
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WHAT ABOUT OTHER MINIMIZATION
ALGORITHMS?

Word automata associated to Fibonacci words
are a challenging class for other minimization
algorithms.
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BRZOZOWSKI'S METHOD

Given the automaton A= (Q,Z,8,q9,,F) recognizing the language L

With d(A) we denote the deterministic automaton equivalent tfo A4
(obtained by the subset construction).

With r(A) we denote the reverse of A.

The minimal automaton recognizing L is d(r(d(r(A4))))
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TIME COMPLEXITY OF BRZOZOWSKI'S
ALGORITHM

Since the reverse of an automaton can be computed in
linear time with respect to the number of states and
transictions, the critical part is the accessible subset
construction.

Time complexity is exponential in the worst case.

The sum of the size of all accessible states in the subset
construction d(r(A)), is a lower bound of the time
complexity of the accessible subset construction and then
a lower bound for the algorithm.
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BRZOZOWSKI'S ALGORITHM AND WORD
AUTOMATA

[Castiglione, Nicaud, S. 2011]
Brzozowski's algorithm has a Q(n?) time complexity
for word automata constructed by Fibonacci words.
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OTHER RESULTS

De Felice, Nicaud: Brzozowski Algorithm is Generically
Super-Polynomial for Deterministic Automata, 2013.

Brzozowski, Tamm: Minimal Nondeterministic Finite
Automata and Atoms of Regular Languages, 2013

Brzozowski, Tamm: Quotient Complexities of Atoms of
Regular Languages, 2012.

Vazquez de Parga, Garcia, Lépez: A polynomial double
reversal minimization algorithm for deterministic finite
automata, 2013

Vazquez de Parga, Garcia, Lopez: DFA minimization: from
Brzozowski to Hopcroft, 2013

02-91 Jequialdag ‘nying - €102 SAHOM



WHAT ABOUT THE VARIANTS?

We consider the recent variant proposed by
[Garcia, Lopez, Vazquez de Parga, 2013]
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PARTIAL REVERSE DETERMINIZATION

Minimization by PRD (A= (QZ & ¢y F)) ‘
1. T {(FQ\F
2. 5= F

3-L=0 A YN s
4. for all a€Xdo ‘Zﬁxjﬁ'\n’\za\-“loﬂ \s
5.L— (5 a) ‘,o\(jnom'w\\!

6. while L # ddo
7
8
9

choose and delete a pair (S, a)

for all B €177 do

: if Bis split by (S a) then
10. B — 5, (8N A

11. B"— B\ 61(S)
12. I I\ BU{BUB}
13. for all b € Xdo

14, L— L U{(5S)b))
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PRD ALGORITHM ON WORD AUTOMATA

We consider the word automaton associated to
fibonacci word f,

Example f,= abaababaabaab

b
e 4

o=l

S
"'\MQ/ ? . WQ/
}o considr

b a "::‘_Q/ &£ 5100\“‘05 going

a e b \f\"'o L

02-91 Jaquwaldas ‘myn] - €102 SAHOM



PRD ON WORD AUTOMATA

If nis even, if we consider a set of ! operations by using the letters of f,,,
we obtain sets that are complement of singletons

Ex. f, = abaababaabaab

Other sets do not cause any split

| Joquialdas ‘N - €102 SAHOM

- At each step only a subset causes a split and then goes into the waiting s&t
L

- The subsets {F, -1}¢, ....{1}¢ are obtained as inverse image by 3 and cause a
split.
- The waiting set contains F, -1 sets of cardinality F,-1



PRD ON WORD AUTOMATA

If nis even, if we consider a set of ! operations by using the letters of f,_,,
we obtain sets that are complement of singletons

Ex. f, = abaababaabaab

Other sets do not cause any split
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- At each step only a subset causes a split anc A 4. ) set
L.

- The subsets {F, -1}¢, ... {1}° are obtained as i  ecuuSe Q
split.

- The waiting set contains F,_ ;-1 sets of cardinality F,-1



TIME COMPLEXITY FOR
STANDARD WORD AUTOMATA

THEOREM: Let A, the word automaton
associated to a circular standard word. The
minimal automaton is obtained by PRD algorithm
by a sequence of &1, , &1, , ... , Where
b;b,...b},-2 S the pr'eflx of leng’rh |w| é of w.

THEOREM: Let A, the word automaton
associated to the n-th Fibonacci word f,with F,
states. Then

CPRD(Fn): ®(Fn2)
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They represent the worst case of the algorithm!



PROBLEMS AND PERSPECTIVES

Are Fibonacci word automata challenging for the
minimization process? Is there any better
minimization algorithm for DFA?

Characterizing the words for which the
correspondent word automata are always
difficult to be minimized.
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THANKS FOR YOUR ATTENTION...I!!
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