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Avoidance in words

Many problems in combinatorics on words have the following

form:

I Let S be a given set of words over an alphabet Σ.

I Does there exist an infinite word over the alphabet Σ that

avoids S?

I That is, does there exist an infinite word w such that no

factor of w is an element of S?



Avoiding squares

I e.g., S = {xx : x ∈ {0, 1, 2}∗}

I i.e., S is the set of squares over a 3-letter alphabet

I Thue (1906) showed that there is an infinite word over

{0, 1, 2} that avoids S.



Iterated morphisms

I Thue’s demonstration of this result is constructive.

I He explicitly produces an infinite word with the desired

property.

I This word is defined by iterating a morphism.



Non-constructive methods

I We focus on non-constructive methods for proving results

of this type.

I for instance: the probabilistic method,

I or other counting arguments



Finitary and infinitary results

I we are looking for an infinite word avoiding a set S

I many of the techniques we will see only give arbitrarily

large, finite words avoiding S

I the existence of an infinite word avoiding S can be

obtained by a standard argument

I sometimes presented topologically as a compactness

argument

I or derived combinatorially from König’s tree lemma



König’s Lemma (reformulated)

Theorem (König’s Lemma)

Let X be an infinite set of finite words over an alphabet Σ.

Then there is an infinite word x over Σ such that every factor

of x is a factor of infinitely many words in X.



Comments on König’s lemma

I König’s lemma is itself a non-constructive result.

I Even if X is given effectively, the result does not give an

explicit construction of the word x.

I The result can be strengthened somewhat.



Uniformly recurrent words

I a word is recurrent if each of its factors occurs infinitely

often

I it is uniformly recurrent if for each factor, the distance

between consecutive occurrences of that factor is bounded

I König’s result can be improved to get a uniformly

recurrent word



A stronger version of König

Theorem (Furstenburg 1981)

Let X be an infinite set of finite words over an alphabet Σ.

Then there is a uniformly recurrent word x over Σ such that

every factor of x is a factor of infinitely many words in X.

Proved by Furstenburg using ergodic theory; combinatorial

proof given by others, such as Justin and Pirillo; we present a

proof due to Currie and Linek.



Proof of Furstenburg’s result

Define

K = {x ∈ Σω : every factor of x

is a factor of infinitely many words in X}

Also define

S = {S ⊆ Σ∗ : ∃x ∈ K,x avoids S}

and let S be partially ordered by inclusion.

The proof is an application of Zorn’s Lemma to S .



Proof of Furstenburg’s result

I S is non-empty (there must exist x ∈ K, n ∈ N, a ∈ Σ

such that x avoids an).

I We show every chain in S has an upper bound in S .

I Let {Sα}α∈I be such a chain.

I Let S = ∪αSα.

I Claim: S ∈ S .



Proof of Furstenburg’s result

I Define Sn = {s ∈ S : |s| ≤ n}.

I Then Sn ⊆ Sβ for some β ∈ I.

I Since Sβ ∈ S , there exists x ∈ K such that x avoids Sβ

(and hence Sn).

I Let un be an arbitrary factor of x of length n.

I By König, there is an infinite word y such that every

factor of y is a factor of infinitely many words of {un}n≥1.



Proof of Furstenburg’s result

I We have y ∈ K.

I For every n, the word y avoids Sn, so y avoids S.

I So S ∈ S .

I By Zorn’s Lemma, S has a maximal element Ŝ.

I Then there is some z ∈ K that avoids Ŝ.



Proof of Furstenburg’s result

I Claim: z is uniformly recurrent.

I Suppose to the contrary that there is some factor s such

that there are arbitrarily large gaps between consecutive

occurrences of s.

I Then there are arbitrarily large factors of z that avoid

Ŝ ∪ {s}.

I By König there is an infinite word in K that avoids

Ŝ ∪ {s}.

I So Ŝ ∪ {s} ∈ S , contradicting the maximality of Ŝ.



A typical use of Furstenburg’s result

I given a set of forbidden words, we show the existence of

arbitrarily large words avoiding the forbidden words

I by Furstenburg’s result, there is an infinite, uniformly

recurrent word avoiding the set of forbidden words

I next we begin to examine different methods for showing

avoidability



An early use of the probabilistic method

One of the earliest uses of the probabilistic method in

combinatorics on words was to prove:

Theorem (Beck 1981)

For any real ε > 0, there exist an integer Nε and an infinite

binary word w such that for every factor x of w of length

n > Nε, all occurrences of x in w are separated by a distance

at least (2− ε)n.



The Lovász local lemma

I The proof is based on a lemma from probabilistic

combinatorics known as the Lovász local lemma.

I allows one to give lower bounds on the probability of an

intersection of several events when there are dependencies

among the events



Entropy compression

I Moser and Tardos (2010) gave an algorithmic version of

the Lovász local lemma based on an argument known as

entropy compression.

I led to many improvements on earlier results proved using

the local lemma

I well-suited for applications to avoidability in words

I easier to use than the local lemma

I gives sharper results



An application of the method

Theorem (Grytczuk, Kozik, and Micek 2013)

For every sequence L1, L2, . . . of 4-element sets, there exists a

squarefree word s1s2 · · · such that si ∈ Li for all i ≥ 1.



Squarefree words over 4 letters

I let’s apply the method to show the existence of an infinite

squarefree word over the alphabet {1, 2, 3, 4}

I there are squarefree words over a 3-letter alphabet, so

this result is not optimal

I the idea is to give a randomized algorithm that attempts

to generate a squarefree word

I then show that some sufficiently long execution of the

algorithm must generate a long squarefree word



The algorithm

Input: n

1: S = ε, i = 1

2: while i ≤ n do

3: randomly choose r ∈ {1, 2, 3, 4} and append r to S

4: let S = s1s2 · · · si
5: if s1s2 · · · si is squarefree then

6: set i to i+ 1

7: else s1s2 · · · si ends with a square xx

8: delete the second occurrence of x

9: set i to i− |x|
10: end if

11: end while



Analyzing the algorithm

I fix n

I let M be the number of insertions (line 3) made during

some execution of the algorithm

I let r1, r2, . . . , rM be the sequence of random choices of

letters inserted

I there are 4M such sequences

I this sequence uniquely determines the execution of the

algorithm



Another encoding of the execution

I we will describe the execution of the algorithm another

way; i.e., by specifying:

1. the sequence S = s1s2 · · · si at the end of the execution,

and

2. the time and length of each deletion

I since each deletion consists of half of a square xx, the

deleted block can be recovered from the first half still

present in S

I with this information, we can describe the execution of

the algorithm by running it backwards



Tracking the lengths of the deleted blocks

1→ 12→ 121→ 1212→ 12→ 123

(if we terminate with a word of length i, we add i down-steps to the path)



Counting the number of paths

I the sequence of deletions is thus represented by a

so-called Dyck path of length 2M

I the number of such paths is the Catalan number

CM =

(
2M

M

)
/(M + 1)

I since the execution of the algorithm is uniquely

determined by the final sequence S and this path, there

are at most (1/3)(4n+1 − 1)CM executions



Getting a contradiction

I suppose the algorithm fails to produce a squarefree word

of length n

I so for M arbitrarily large, every execution of the

algorithm fails to terminate after M steps

I from our two different counts of the number of

executions, we have 4M ≤ (1/3)(4n − 1)CM



The inequality fails to hold

Thus,

4M ≤
(

4n − 1

3

)
CM

� 4n
(

4M

M3/2
√
π

)
,

which is not possible for M sufficiently large.

The contradiction means that some execution of the algorithm

terminates after producing a squarefree word of length n.



Getting an infinite squarefree word

I so for all n there is a squarefree word of length n over

{1, 2, 3, 4}

I by König’s lemma, there is an infinite squarefree word

over 4 letters

I we can do better, since we know that there are ternary

squarefree words, but the method is very useful for

showing the avoidability of more complicated patterns



A recent result using entropy compression

Theorem (Camungol and R. 2013)

Let 0 < α < 1 and let k > 161/α be an integer. Then there

exists an infinite word z over a k-letter alphabet such that

whenever xx′ is a factor of z with |x| = |x′|, the length of the

longest common subsequence of x and x′ is at most α|x|.



Generating functions

I Bell and Goh (2007) used another non-constructive

method based on generating functions.

I This approach was originally due to Golod, and was used

by Golod and Shafarevich to disprove several longstanding

open problems in algebra.

I We give a version of the method specialized to our

setting of combinatorics on words.



The combinatorial lemma of Golod

Theorem (Golod)

Let S be a set of words over a k-letter alphabet, each word of

length at least 2. Suppose that for each i ≥ 2, the set S

contains at most ci words of length i. If the power series

expansion of

G(x) :=

(
1− kx+

∑
i≥2

cix
i

)−1

has non-negative coefficients, then there are least [xn]G(x)

words of length n over an k-letter alphabet that avoid S.



Patterns

I in his Ph.D. thesis, Cassaigne made a conjecture

concerning the avoidability of long patterns

I a square is an instance of the pattern xx

I in general, a pattern can have more variables

I e.g., 01 012 01 01 012 is an instance of the pattern xyxxy

I Which patterns are avoidable? What size of alphabet

does one need to avoid a given pattern?



Cassaigne’s Conjecture

The following was conjectured by Cassaigne in 1994 and

proved in 2013 simultaneously and independently by Ochem

and Pinlou and by Blanchet-Sadri and Woodhouse.

Theorem

Let p be a pattern with m distinct variables.

1. If |p| ≥ 3 · 2m−1, then p is avoidable over a binary

alphabet.

2. If |p| ≥ 2m, then p is avoidable over a ternary alphabet.



The proof techniques

I Pinlou and Ochem obtained this result by applying the

Moser–Tardos entropy compression method.

I Blanchet-Sadri and Woodhouse proved it by using the

generation function method based on Golod’s lemma.



A criterion of Miller

Here is another criterion for avoidability, somewhat similar to

the generating function approach.

Proposition (Miller 2011)

Let S be a set of non-empty words over a k-letter alphabet Σ.

If there exists c ∈ (1/k, 1) such that∑
s∈S

c|s| ≤ kc− 1,

then there is an infinite word over Σ that avoids S.



Showing the existence of squarefree words

As an example, let’s show that there are infinite squarefree

words over a 7 letter alphabet (a very weak result!).

Let k = 7 and let S = {xx : x ∈ Σ∗}. Let c ∈ (1/7, 1) be a

constant to be specified later.

∑
s∈S

c|s| =
∑
i≥1

c2i7i

=
∑
i≥1

(7c2)i

=
1

1− 7c2
− 1.



Satisfying the inequality

We need
1

1− 7c2
− 1 ≤ 7c− 1

If c = 0.22 then LHS is approx. 0.512 and RHS is 0.54.

By Miller’s criterion there is an infinite squarefree word over 7

letters.



Words with high Kolmogorov complexity

One can also show that there are infinite words for which every

factor has fairly high Kolmogorov complexity.

Theorem (Durand, Levin, Shen 2001)

Let 0 < α < 1. There is an infinite binary word x such that

every factor u of x satisfies K(u) > α|u| −O(1), where K(u)

denotes the prefix Kolmogorov complexity of u.



Proving the Kolmogorov complexity result

We do the obvious thing: avoid the low complexity words.

Define b = − log2(1− α) + 1 and

S = {s ∈ {0, 1}∗ : K(s) ≤ α|s| − b}.

Set c = 2−α. Then∑
s∈S

c|s| =
∑
s∈S

2−α|s| ≤
∑
s∈S

2−K(s)−b ≤ 2−b
∑

s∈{0,1}∗
2−K(s) ≤ 2−b,

where we have applied Kraft’s Inequality in the last step.

It is a routine calculation to verify that 2−b < 2c− 1, so there

is an infinite word avoiding S.



Avoiding sufficiently long forbidden words

Similarly, one can derive the following result, previously

established by Rumyantsev and Ushakov (2006) using the

Lovász local lemma.

Theorem (Rumyantsev and Ushakov 2006)

Let S be a set of non-empty words over a k-letter alphabet Σ

and let α ∈ [0, 1). There is a positive integer d such that if S

contains at most kαm words of length m for each m ≥ d, and

none of length less than d, then there is an infinite word over

Σ that avoids S.



Limitations of these methods

I often one does not obtain an optimal alphabet size

I none of these methods seem to be applicable to

avoidance of abelian patterns

I e.g., an abelian square is a repetition xx′, where x′ can

be obtained by rearranging the symbols of x

I the probability that a random word contains an abelian

square seems to be too high for these methods to work



Conclusion

I These are just some selected examples to illustrate

applications of some of these non-constructive methods.

I There are many other results on words that have been

proved using these types of techniques.



(“Zornaholic” – Abstruse Goose #133)

The End


