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From the monoid to the group

A alphabet (always finite in this talk)

A* = {words written with letters in A} is the free monoid on A
(product by concatenation).

A* embeds into F(A), the free group on A.
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The free group on A

To describe F(A), we need the alphabet A*! = AUA~L. An
element of F(A) is a reduced word on A*! (no aa=! or a71a)

The product is concatenation/reduction. Every element has an
inverse: (aba=2b3)"! = b3a%p a7t
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Automorphisms of free groups

A key difference between A* and F(A): the group is much more
symmetric.

A free group F has a large group of automorphisms Aut(F).

Example: a+ ab™!, b a7t

ar— bl b a_lb_l).

To apply an automorphism to a word, apply it to each letter and
reduce: a 'ha— ba talab=! = ba~1lp1.

is an automorphism (with inverse
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The study of Aut(F) and Out(F) = Aut(F)/Inn(F) (where
Inn(F) is the group of inner automorphisms iy : g > xgx~ 1) is a
very active topic.

For instance, Bestvina-Feighn-Handel proved a Tits alternative:
every subgroup H C Out(F) either contains a nonabelian free
group or has an abelian subgroup of finite index.

In particular, either H contains «, 3 satisfying no relation, or
aVpN = gNaN for all a, 3 € H (with N depending only on the
rank of F).
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Abstract free groups

Other point of view on the symmetry of free groups: like a
vector space, a free group F may exist as an abstract object, with
no preferred basis A (e.g. a subspace/subgroup).

An element of F is represented by a word once we choose a

basis. Different bases give words that differ by an automorphism
(“transition matrix").
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We are interested in intrinsic properties of elements of F.
Two equivalent viewpoints:

e view F as abstract, look for properties independent of the
basis A chosen to make F concrete

e view F as F(A), look for properties of words which are
invariant under automorphisms.

I'll focus on length and complexity.
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Given a basis A of a free group F, the (word) length £4(g) of
any g € F is the length of the reduced word in A*! representing g,
e.g. a(aba=2b) = 5.

If B is another basis, /4 and g are Lipschitz-equivalent: 3 M
(depending on A, B) such that

1 la(g)
— < <M v
M~ Ilpg(g) ~ ¢
(applying an automorphism does not change length of words too

much).

(&n
In particular, statements like £(g,) = O(n?), or z(g ) — 00,

make sense.
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A digression: groups as geometric objects

If G is an arbitrary group, with a finite generating set A, define
¢a(g) as the minimal length of a word in A*! representing g.

Different generating sets give Lipschitz-equivalent length
functions (— growth of groups).

G may be viewed as a metric space, with distance
da(g, h) = La(g™"h).

The large-scale geometry of G is independent of A. This is a key
idea of geometric group theory (Gromov).
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Back to free groups: geometric interpretation of length

The length of g is the length of the non-backtracking loop
representing it.

a b

a, b have length 1
a’,ab, a'b have length 2.

Gilbert Levitt Subword complexity in free groups



Using a different graph with the same fundamental group gives a
Lipschitz-equivalent length function.

a b ¢(a) = 4(b) =2
{(ab) = ¢(ba~ 1) = 4

((a=tbh) =2
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One may also assign variable lengths to edges (e.g. subdivide).
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Complexity

A right-infinite word on an alphabet has a complexity function
p(n), counting subwords of length n.

Right-infinite reduced words on A*! form the boundary of F(A).

A free group F has an intrinsic boundary OF (space of ends,
Gromov boundary), like a plane has a “circle at infinity”. It
describes the “ways to go to infinity” in F.

(It is a Cantor set compactifying F, with an action of Aut(F) by
homeomorphisms.)
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If Ais a basis of F, any X € OF is represented by a right-infinite
reduced word X4 in ATL. If B is another basis, X4 and Xg differ
by an automorphism of F.

Xa has a complexity function pa(n), so a given X € OF has a
complexity function pa(n) depending on the basis A.
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If A and B are bases of F, the complexities of X are equivalent:
there exists M (depending on A, B) such that

pa(n) <M pg(Mn+ M).

so the following make sense:

X has linear (quadratic, exponential...) complexity

@ — 0 = p bounded, and X = lim, g" for some g € F
(sublinear complexity implies eventually periodic)
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Geometric interpretation

Geometrically, X is an infinite path on the graph, and p(n) is the
number of subpaths of length n.

Gilbert Levitt Subword complexity in free groups



Complexity may be computed (up to equivalence) on any graph
with the same fundamental group.

One may assign variable lengths to edges (e.g. subdivide).
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Automorphisms of free groups

Automorphisms of free groups, e.g.
arab 1 b a7l

are

@ more general than substitutions (negative letters allowed)
@ less general (invertibility required)

Common generalization: endomorphisms of free groups.
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Here are 3 nice facts about substitutions:

o the length of ¢©"(a) grows like n9\" as n — 400
e.g. ar>ab+— abavr» abaab— ...
b— a

o after replacing ¢ by a power, lim, ©"(a) is a fixed infinite
word X (if ©"(a) does grow)
@ the complexity of X is severely restricted (Pansiot's theorem)
None of these facts is obvious for automorphisms of free groups,
because of cancellation.

The key tool for studying automorphisms of free groups is train
tracks (Bestvina, Feighn, Handel), a way to control cancellation.

Price to pay: forget words, think about graphs!
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Any automorphism ¢ of F is represented by a map on a graph

with 1 vertex, with vertex going to vertex and edges going to

edge-paths. For instance, a — 2b~ ! b a7l

o0
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But this map may not be well-adapted (no control over
cancellation).

Analogy: given an endomorphism of a vector space, there are
bases in which the matrix is especially simple (diagonal,
triangular...).
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A (relative, completely split,...) train track map is a “nice”
representative H of ¢ on a graph, which may have several vertices
if © is not a substitution (the topology of the graph is dictated by
).

Silly example: a+— b, b+ a~1b7! is best viewed as permuting
the edges of
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A key fact about train track maps:

Given a finite path -, there exists q such that, when applying
powers of H to HI(y), cancellation only occurs in:

@ MNielsen subpaths
arsab, b a1
bab=la 1l a7 lapablal =pabla 'l ...

@ exceptional subpaths
arac, b c2b, c— ¢
abr— acc2b=ac b ... ac 9b+— acc 9¢c2b

@ connecting subpaths
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Cancellation only occurs in slowly growing subpaths, so:

If o € Aut(F) and g € F, the length of ©"(g) grows like n9\" as
n— 4oo (withd >0 and A > 1).

©"(g) grows like some H"(~y), with ~ a loop in a train track
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We know how ¢"(g) grows, but what happens to it?

Theorem (L.-Lustig)

After replacing ¢ by a power, the following holds: given g € F,
either p(g) = g orlim, ©"(g) = X with X € OF fixed by .
(same behavior as for a substitution)

The proof uses train tracks and geometric machinery, such as
real trees.
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Pansiot's theorem

Any ¢ € Aut(F) of infinite order has ¢-periodic infinite words
X. What about their complexity?

Recall Pansiot's theorem:

If © is a substitution on A, and X = lim ¢"(a) is a p-fixed
right-infinite word, its complexity function is Lipschitz-equivalent
to one of the following 5 functions:

e 1 (bounded)
n (linear)
n? (quadratic)

°
°
@ nlogn
°

nloglogn
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Examples (with invertible substitutions and X = lim ¢"(a)):

@ ar~>ab, b— b 1
@ a— ab, b— a

@ ar— abc, b— bc, c— ¢ n?
@ ar— a’bc, b—a, c—cd, d— ¢ nlogn
@ ar— abc, b—a, c—cd, d—c nloglogn

These examples show the stratified structure of a train track:
edges of the graph are grouped into strata (colors), the set of
strata is linearly ordered: red < blue < black, and the image of an
edge contains no edge belonging to a higher stratum.

This allows inductive arguments.
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Theorem (Hilion-L.)

Pansiot's theorem extends to the complexity of fixed infinite words
X =lim, ¢"(g) in OF, for ¢ € Aut(F).

Besides combinatorial arguments, the proof is based on the
proposition controlling cancellation in iterated images of paths in
train tracks.

The complexity of X depends on the nature of the strata
involved.
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