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Definitions

A deterministic finite automaton (DFA) is a triple
A = 〈Q,Σ, δ〉.

The transition function δ : Q× Σ → Q naturally extends to
the free monoid Σ∗, this extension is still denoted by δ.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a
word w which leaves the automaton in one particular state no
matter at which state in Q it is applied: δ(q, w) = δ(q′, w) for
all q, q′ ∈ Q.

Any such word is said to be reset for the DFA A .

Syn(A ) – the language of all reset words for a given
automaton A .
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Example

2 1

0

ba

a

b ab

A reset word is ab: applying it at any state brings the automaton
to the state 1.
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Ideals

For every synchronizing automaton A over Σ it holds

Σ∗ Syn(A )Σ∗ = Syn(A )

Every regular (two-sided) ideal language is a language of reset
words for some synchronizing automaton (e.g. for the minimal
automaton recognizing this language).

sq0 q1 q2

b a

a b a

a, b

b

L(A ) = I = Σ∗abaΣ∗ = Syn(A )
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Reset complexity

New description of ideal languages:
given a regular ideal I and a synchronizing automaton A with
Syn(A ) = I, to check whether a word w belongs to I it is
enough to apply it to each state of A and see whether
δ(q, w) = δ(q′, w) holds for arbitrary states q, q′. This check is
linear in the length of w.

Complexity of such a representation is measured by reset

complexity. It is the number of states in the smallest
synchronizing automaton A with Syn(A ) = I. Notation:
rc(I).

In general case rc(I) ≤ sc(I).

Theorem [M, 2011]

For every n ≥ 3 there are ideals In such that sc(In) = 2n − n, and
rc(In) = n.
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Illustration
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Main problems

Let Σ be a finite alphabet with |Σ| > 1.

Question

Is it possible to construct a strongly connected synchronizing
automaton for a given ideal language I yielding the minimum of
the reset complexity?

In general, this is not the case.

Problem

Input: a finitely generated ideal language I over Σ, i.e.
I = Σ∗SΣ∗ for some finite set of words S.
Task: to construct a strongly connected synchronizing automaton
B such that Syn(B) = I.
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Considered cases

Ideal languages generated by Σn

Ideal languages generated by a set of words of fixed length

Ideal languages generated by a finite set of words

Ideal languages generated by two words
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Ideal language generated by Σ
n

Theorem 1

Let Σ = {a, b}. There is unique up to isomorphism strongly
connected synchronizing automaton B such that Syn(B) = Σ≥n.

The automaton B is actually De Brujin automaton (Rauzy graph)
for the words of length n. Thus, it has 2n states. However
rc(Σ≥n) = n+ 1.
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Ideal language generated by a set of words of fixed length

Theorem 2

Let U ( Σn. There is a strongly connected synchronizing
automaton BU with 2n states such that Syn(BU ) = Σ∗UΣ∗.

The construction is based on the De Bruijn automaton for the
language Σ≥n. Actually, we redefine some transitions in the
automaton B to obtain the required DFA BU .

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina



Ideal language generated by a set of words of fixed length

Theorem 2

Let U ( Σn. There is a strongly connected synchronizing
automaton BU with 2n states such that Syn(BU ) = Σ∗UΣ∗.

The construction is based on the De Bruijn automaton for the
language Σ≥n. Actually, we redefine some transitions in the
automaton B to obtain the required DFA BU .

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina



Redefinition of the transitions in B

Let we had the transition (x, u)
y
−→ (z, v).

If uy 6∈ U ∪ {an, bn} we put (x, u)
y
−→ (x, v).

If uy = an /∈ U we put

(a, an−1)
a
−→ (b, an−1). (1)

If uy = bn /∈ U we put

(b, bn−1)
b
−→ (a, bn−1). (2)

The other transitions remain unchanged.
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Example

Let U = {aaa, aab, baa, aba}.
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Ideal languages generated by a finite set of words

A finite set of words S is anti-factorial if no word in S is a factor of
another word in S.

Theorem 3

Let S be finite and anti-factorial set of words in Σ+. There is a
strongly connected synchronizing automaton CS such that
Syn(CS) = Σ∗SΣ∗. This automaton has at most 2n states, where
n = max {|s| | s ∈ S}.
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Algorithm. Step 1: reduction to the previous construction

Let T = {w ∈ Σn | ∃s ∈ S, s ∈ Fact(w)}, where n is the
maximal length of words in S.
Example: for S = {aa, aba} we have
T = {aaa, aab, baa, aba}.

Construct the automaton BT .

The states of BT are viewed not as pairs (x, u) with
x ∈ Σ, u ∈ Σn−1, but as words xu of length n.
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Algorithm. Step 2: factor automaton BT/ '

Every word in T can be uniquely factorized as usv, where
s ∈ S, u, v ∈ Σ∗ and sv does not contain factors in S except
s.

Define congruence ': for w,w′ ∈ T w ' w′ iff w = usv and
w′ = u′sv for some s ∈ S, u, u′, v ∈ Σ∗; every w 6∈ T forms
its own class.

Construct the factor automaton BT/ ' .
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Example

Let S = {aa, aba}. Then T = {aaa, aab, baa, aba}.
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Example

Let S = {aa, aba}. Then T = {aaa, aab, baa, aba}.
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Ideal languages generated by two words

Let Σ = {a, b}, and let u ∈ Σn \ {abn−1, an−1b, ban−1, bn−1a},
v ∈ Σm \ {abm−1, am−1b, bam−1, bm−1a}.

Theorem 4

There is a strongly connected synchronizing automaton Du,v

having n+m states such that Syn(Du,v) = Σ∗(u+ v)Σ∗.

The construction is based on the minimal automata recognizing
languages Σ∗uΣ∗ and Σ∗vΣ∗.
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Example

Let u = abaab and v = babab.
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Results

The minimal DFA recognizing an ideal language can be
exponentially smaller than a minimal strongly connected
synchronizing automaton for which given language serves as
the language of reset words.

An algorithm to construct strongly connected synchronizing
automaton with at most 2n states whose language of reset
words is generated by a finite set of words S (n is the
maximal length of words in S).

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina



Results

The minimal DFA recognizing an ideal language can be
exponentially smaller than a minimal strongly connected
synchronizing automaton for which given language serves as
the language of reset words.

An algorithm to construct strongly connected synchronizing
automaton with at most 2n states whose language of reset
words is generated by a finite set of words S (n is the
maximal length of words in S).

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina


