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Question

()

For a word α and morphisms g , h, does the equality g(α) = h(α)
hold?()

Example: x1x2x2x1 = x3x4x4x3
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Question

Post Correspondence Problem:

Does there exist a word α such that, for two given morphisms, the
equality g(α) = h(α) holds?

Example: x1x2x2x1 = x3x4x4x3
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Question

Word Equations:

For two words α, β, does there exist a morphism h such that
h(α) = h(β)?

If α is a (strict) renaming of β, this is equivalent to g(α) = h(α)
for morphisms g , h.
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Question

Word Equations (A Special Case):

For a given word α, do there exist morphisms g , h, such that the
equality g(α) = h(α) holds?()

Example: x1x2x2x1 = x3x4x4x3
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Question

Ambiguity of Morphisms:

For a given word α and a given morphism g, does there exist a
morphism h such that the equality g(α) = h(α) holds?()

Example: x1x2x2x1 = x3x4x4x3
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Question

Morphism equivalence on languages:

For a set of words {α1, α2 . . .} and morphisms g , h, do the
equalities g(αi ) = h(αi ) hold?

Example: x1x2x2x1 = x3x4x4x3

Joel Day, Daniel Reidenbach, Johannes Schneider

Periodicity Forcing Words



Introduction Problem Definition Main Results Conclusion

Periodic Morphisms

A morphism g : A∗ → B∗ is periodic if, for every a ∈ A,
g(a) ∈ {w}∗ for some fixed word w .

Example: g : {x , y}∗ → {a, b}∗,

g(x) = ab

g(y) = abab
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Periodicity Forcing Words

A word α is periodicity forcing if g(α) = h(α) implies that at least
one of g , h is periodic.

Question:

For a given word α, do there exist morphisms g , h, such that at
least one is non-periodic, and the equality g(α) = h(α) holds?
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Periodicity Forcing Words

I Words which do not belong to a non-trivial equality set.

I Words for which the highest portion of morphisms are
unambiguous.

I Also related to the topics of word equations, test sets etc.
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Example

α := 1 · 2 · 2 · 1.

Joel Day, Daniel Reidenbach, Johannes Schneider

Periodicity Forcing Words



Introduction Problem Definition Main Results Conclusion

Example

g(1 · 2 · 2 · 1) = h(1 · 2 · 2 · 1)
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Example

g(1) g(2) g(2) g(1) = h(1) h(2) h(2) h(1)
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Example

a g(2)g(2) a = aba h(2)h(2) aba
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Example

a bab bab a = aba b b aba
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Example

1 · 2 · 2 · 1 is not periodicity forcing.

g(1) = a, g(2) := bab,
h(1) = aba, h(2) := b.
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Example

α′ := 1 · 2 · 2 · 1 · 2.

α′ is periodicity forcing.
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The Results

I A generating ‘prime’ subset.

I Length bounds on the shortest periodicity forcing words.

I Periodicity forcing words can contain any given factor.
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A Prime Subset

I From a previous paper, it is known that for any periodicity
forcing word α, there exist non-trivial morphisms ϕ such that
ϕ(α) is also periodicity forcing.

I Morphisms between periodicity forcing words are also
characterised.

I Thus the set of all periodicity forcing words can be
represented as sequences.
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A Prime Subset

β2
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A Prime Subset
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A Prime Subset
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A Prime Subset

Example: 1 · 2 · 1 · 1 · 2.
Theorem:

There exist periodicity forcing words which are not morphic images
of any other periodicity forcing word.

Example: 1 · 2 · 1 · 1 · 2.

There exists a proper subset of periodicity forcing words from
which the whole set can be generated using morphisms.
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A Prime Subset

Example: 1 · 2 · 1 · 1 · 2.
Theorem:

There exist periodicity forcing words which are not morphic images
of any other periodicity forcing word.

Consequence:

There exists a proper subset of periodicity forcing words from
which the whole set can be generated using morphisms.
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Shortest Periodicity Forcing Words

I It is immediately clear that the shortest periodicity forcing
words must grow with respect to alphabet size.

I The rate of growth provides an indication of the
restrictiveness of periodicity forcing words.

I Also suggests how many periodicity forcing words there might
be (how general the set is).

I (Lower) bounds on length are useful when looking for prime
words.
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Shortest Periodicity Forcing Words

Question:

For any n, what is the length k of the shortest periodicity forcing
word with exactly n different letters?
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Shortest Periodicity Forcing Words

I Trivially, if n = 1, k = 1.

I k = 5 for n = 2 (Culik II, Karhumäki 1980).

I What about for n > 2?

Theorem:

n2 ≤ k ≤ 5n2 + 2n.
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Lower Bound (n2)

I |α| < n2 implies that some y occurs less than n times.

I Write α := β1 · y · β2 · y · · · y · βm, where y does not occur in
any βi and m ≤ n.

I Consider the morphisms of the form:

σ(x) :=

{
ap baq if x = y , and

arx otherwise.

Example:

α :=

β1︷︸︸︷
1 ·

y︷︸︸︷
2 ·

β2︷ ︸︸ ︷
3 · 1 · 1 ·

y︷︸︸︷
2 ·

β3︷ ︸︸ ︷
3 · 3
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Lower Bound (n2)

I |α| < n2 implies that some y occurs less than n times.

I Write α := β1 · y · β2 · y · · · y · βm, where y does not occur in
any βi and m ≤ n.

I Consider the morphisms of the form:

σ(x) :=

{
ap baq if x = y , and

arx otherwise.

Example:

α :=

β1︷︸︸︷
ar1 ·

y︷ ︸︸ ︷
apbaq ·

β2︷ ︸︸ ︷
ar3ar1ar1 ·

y︷ ︸︸ ︷
apbaq ·

β3︷ ︸︸ ︷
ar3ar3
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Lower Bound (n2)

I Two (different) σs agree on α if and only if the exponents of
a coincide between each occurrence of y .

I This produces a system of linear Diophantine equations which
can be solved to show that two different choices for the
exponents may produce the same result.

r1 + p = r ′1 + p′

2r1 + q + r3 + p = 2r ′1 + q′ + r ′3 + p′

q + 2r3 = q′ + 2r ′3
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Lower Bound (n2)

I Two (different) σs agree on α if and only if the exponents of
a coincide between each occurrence of y .

I This produces a system of linear Diophantine equations which
can be solved to show that two different choices for the
exponents may produce the same result.

3 + 1 = 2 + 2

6 + 2 + 2 + 1 = 4 + 4 + 1 + 2

2 + 4 = 4 + 2
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Lower Bound (n2)

α is not periodicity forcing.
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Upper Bound (5n2 + 2n)

I Consider the set Sn of all permutations of the word 1 · 2 · · · n.

I E.g.: S3 := {1 · 2 · 3, 1 · 3 · 2, 2 · 1 · 3, 2 · 3 · 1, 3 · 1 · 2,
3 · 2 · 1}.

I Let βn := 1 · 1 · 2 · 2 · · · n · n.
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Upper Bound (5n2 + 2n)

I The set S ′n := Sn ∪ {βn} is periodicity forcing.

I From literature, there exists a test set Tn ⊂ Sn of Sn
consisting of at most 5n words.

I Tn ∪ {βn} is a test set for S ′n.
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Upper Bound (5n2 + 2n)

I Let α be the result of concatenating every word in T ′n.

I Note that all words in T ′n have the same ratio of letters.

I Thus, any morphisms agreeing on α agrees on T ′n, and
therefore S ′n.

I So α is periodicity forcing.

I T ′n consists of 5n words of length n and one word of length
2n, so |α| = 5n2 + 2n.
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Arbitrary Factors

Theorem:

For any word β, there exists a periodicity forcing word α which
contains β as a factor.
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Arbitrary Factors

I Achieved by constructing a morphism from the target factor,
a periodicity forcing word over the same alphabet, and some
of its conjugates.

I Another measure of how general the set of periodicity forcing
words is.

I The proof can be generalised for prefixes/suffixes effortlessly.
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Conclusions

I The set of periodicity forcing words can be generated from a
subset using morphisms.

I The shortest periodicity forcing words grow at a rate of O(n2).

I Periodicity forcing words may contain any factor/prefix/suffix.
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Questions?

Thank You
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