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@ A deterministic finite automaton (DFA) is a triple
o =(Q,%,0).

@ The transition function § : Q x ¥ — @ naturally extends to
the free monoid X*, this extension is still denoted by §.

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina



@ A deterministic finite automaton (DFA) is a triple
o = (Q,%, ).

@ The transition function § : Q x ¥ — @ naturally extends to
the free monoid X*, this extension is still denoted by §.

o ADFA & =(Q,%,6) is called synchronizing if there exists a
word w which leaves the automaton in one particular state no
matter at which state in Q it is applied: d(q, w) = §(¢’, w) for
all ¢,¢' € Q.

@ Any such word is said to be reset for the DFA .
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A deterministic finite automaton (DFA) is a triple

o = (Q,%, ).

The transition function ¢ : ) X ¥ — @ naturally extends to
the free monoid X*, this extension is still denoted by §.

A DFA o7 = (Q, %, 0) is called synchronizing if there exists a
word w which leaves the automaton in one particular state no
matter at which state in Q it is applied: d(q, w) = §(¢’, w) for
all ¢,¢' € Q.

Any such word is said to be reset for the DFA .

Syn(ef) — the language of all reset words for a given
automaton 7.
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A reset word is ab: applying it at any state brings the automaton
to the state 1.
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Ideals

For every synchronizing automaton ./ over X it holds
Y Syn(«/ )X = Syn(«)

Every regular (two-sided) ideal language is a language of reset
words for some synchronizing automaton (e.g. for the minimal
automaton recognizing this language).

L(a) =1 = ¥*aba¥* = Syn()
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Reset complexity

@ New description of ideal languages:
given a regular ideal I and a synchronizing automaton 2/ with
Syn(e?) = I, to check whether a word w belongs to I it is
enough to apply it to each state of &/ and see whether
d(q, w) = 6(¢’,w) holds for arbitrary states ¢, ¢’. This check is
linear in the length of w.
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complexity. It is the number of states in the smallest
synchronizing automaton 7 with Syn(</) = I. Notation:
re(l).
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Reset complexity

@ New description of ideal languages:
given a regular ideal I and a synchronizing automaton 2/ with
Syn(e?) = I, to check whether a word w belongs to I it is
enough to apply it to each state of &/ and see whether
d(q, w) = 6(¢’,w) holds for arbitrary states ¢, ¢’. This check is
linear in the length of w.

@ Complexity of such a representation is measured by reset
complexity. It is the number of states in the smallest
synchronizing automaton 7 with Syn(</) = I. Notation:
re(l).

@ In general case rc(I) < sc(I).

Theorem [M, 2011]

For every n > 3 there are ideals I,, such that sc(I,,) = 2" — n, and
re(l,) = n.
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Main problems

Let X be a finite alphabet with [X| > 1.
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Is it possible to construct a strongly connected synchronizing
automaton for a given ideal language I yielding the minimum of
the reset complexity?
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Main problems
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Is it possible to construct a strongly connected synchronizing
automaton for a given ideal language I yielding the minimum of
the reset complexity?
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Main problems

Let X be a finite alphabet with [X| > 1.

Is it possible to construct a strongly connected synchronizing
automaton for a given ideal language I yielding the minimum of
the reset complexity?

In general, this is not the case.

Problem

Input: a finitely generated ideal language I over %, i.e.

I = X*S¥* for some finite set of words S.

Task: to construct a strongly connected synchronizing automaton
2 such that Syn(#) = 1.
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Considered cases

@ ldeal languages generated by X"
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Considered cases

@ ldeal languages generated by X"
@ ldeal languages generated by a set of words of fixed length

o Ideal languages generated by a finite set of words
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Considered cases

Ideal languages generated by "
Ideal languages generated by a set of words of fixed length

Ideal languages generated by a finite set of words

Ideal languages generated by two words
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Ideal language generated by >

Let ¥ = {a,b}. There is unique up to isomorphism strongly
connected synchronizing automaton % such that Syn(%) = 2"

The automaton 4 is actually De Brujin automaton (Rauzy graph)
for the words of length n. Thus, it has 2" states. However
re(32") =n 4+ 1.
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Ideal language generated by a set of words of fixed length

Let U C X™. There is a strongly connected synchronizing
automaton Ay with 2" states such that Syn(%Ay) = X*UX*.
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Ideal language generated by a set of words of fixed length

Let U C X™. There is a strongly connected synchronizing
automaton Ay with 2" states such that Syn(%Ay) = X*UX*.

The construction is based on the De Bruijn automaton for the
language X=". Actually, we redefine some transitions in the
automaton A to obtain the required DFA %y .
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Redefinition of the transitions in &£

Let we had the transition (z,u) % (z,v).
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Redefinition of the transitions in &£

Let we had the transition (z,u) % (z,v).

o Ifuy ¢ U U {a™, b"} we put (z,u) L (z,0).
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Redefinition of the transitions in &£

Let we had the transition (z,u) % (z,v).
o Ifuy ¢ U U {a™, b"} we put (z,u) L (z,0).
o If uy =a™ ¢ U we put

(a,a™ 1) L (b,a™ ). (1)
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Redefinition of the transitions in &£

Let we had the transition (z,u) % (z,v).

o Ifuy ¢ U U {a™, b"} we put (z,u) L (z,0).
o If uy =a™ ¢ U we put

(a,a™ 1) L (b,a™ ). (1)

o If uy =b" ¢ U we put

(b,6" 1) D (a, 571, (2)
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Redefinition of the transitions in &£

Let we had the transition (z,u) % (z,v).

o Ifuy ¢ U U {a™, b"} we put (z,u) L (z,0).
o If uy =a™ ¢ U we put

(a,a™ 1) L (b,a™ ). (1)

o If uy =b" ¢ U we put

(b,6" 1) D (a, 571, (2)

@ The other transitions remain unchanged.
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Let U = {aaa, aab, baa, aba}.
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Example
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Let U = {aaa, aab, baa, aba}.
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Ideal languages generated by a finite set of words

A finite set of words S is anti-factorial if no word in S is a factor of
another word in S.
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Ideal languages generated by a finite set of words

A finite set of words S is anti-factorial if no word in S is a factor of
another word in S.

Let S be finite and anti-factorial set of words in 1. There is a
strongly connected synchronizing automaton %s such that
Syn(%s) = X*S¥*. This automaton has at most 2" states, where

n =max{|s| | s € S}.
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Algorithm. Step 1: reduction to the previous construction

o Llet T={weX"|3seS, s e Fact(w)}, where n is the
maximal length of words in S.

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina



Algorithm. Step 1: reduction to the previous construction

o Llet T={weX"|3seS, s e Fact(w)}, where n is the
maximal length of words in S.
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Algorithm. Step 1: reduction to the previous construction

o Llet T={weX"|3seS, s e Fact(w)}, where n is the
maximal length of words in S.
Example: for S = {aa,aba} we have
T = {aaa, aab, baa,aba}.

@ Construct the automaton %r.
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Algorithm. Step 1: reduction to the previous construction

o Llet T={weX"|3seS, s e Fact(w)}, where n is the
maximal length of words in S.
Example: for S = {aa,aba} we have
T = {aaa, aab, baa,aba}.
@ Construct the automaton %r.
@ The states of A are viewed not as pairs (z,u) with
r € X,uc€ X" ! but as words zu of length n.
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Algorithm. Step 2: factor automaton %/ ~

@ Every word in T can be uniquely factorized as usv, where
s €S, u,v € X* and sv does not contain factors in S except
s.
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Algorithm. Step 2: factor automaton %/ ~

@ Every word in T can be uniquely factorized as usv, where
s €S, u,v € X* and sv does not contain factors in S except
s.

@ Define congruence ~: for w,w’ € T w ~ w' iff w = usv and
w' = u'sv for some s € S, u,u’,v € X*; every w ¢ T forms
its own class.

V. V. Gusev, M. I. Maslennikova, E. V. Pribavkina



Algorithm. Step 2: factor automaton %/ ~

@ Every word in T can be uniquely factorized as usv, where
s €S, u,v € X* and sv does not contain factors in S except
s.

@ Define congruence ~: for w,w’ € T w ~ w' iff w = usv and
w' = u'sv for some s € S, u,u’,v € X*; every w ¢ T forms
its own class.

@ Construct the factor automaton ABr/ ~ .
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Example

Let S = {aa,aba}. Then T = {aaa, aab, baa, aba}.
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Ideal languages generated by two words

Let ¥ = {a,b}, and let u € X"\ {ab" ", a""1b,ba" "1 " La},
v e X\ {ab™ L am b, ba™ L b a}.
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Ideal languages generated by two words

Let ¥ = {a,b}, and let u € X"\ {ab" ", a""1b,ba" "1 " La},
v e X\ {ab™ L am b, ba™ L b a}.

Theorem 4

There is a strongly connected synchronizing automaton %, ,,
having n + m states such that Syn(%,,) = £*(u + v)X*.
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Ideal languages generated by two words

Let ¥ = {a,b}, and let u € X"\ {ab" ", a""1b,ba" "1 " La},
v e X\ {ab™ L am b, ba™ L b a}.

Theorem 4

There is a strongly connected synchronizing automaton %, ,,
having n + m states such that Syn(%,,) = £*(u + v)X*.

The construction is based on the minimal automata recognizing
languages YX*uX* and X*vX*.
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Let u = abaab and v = babab.
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Let u = abaab and v = babab.
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@ The minimal DFA recognizing an ideal language can be
exponentially smaller than a minimal strongly connected
synchronizing automaton for which given language serves as
the language of reset words.
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@ The minimal DFA recognizing an ideal language can be
exponentially smaller than a minimal strongly connected
synchronizing automaton for which given language serves as
the language of reset words.

@ An algorithm to construct strongly connected synchronizing
automaton with at most 2" states whose language of reset
words is generated by a finite set of words S (n is the
maximal length of words in S).
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